Skip to main content

Semiconductors and Mott-Schottky Plots

  • Chapter
  • First Online:
Electrochemical Impedance Spectroscopy and its Applications

Abstract

When a conductive electrode (e.g., metallic or glassy carbon) is in contact with an electrolytic solution, the excess electronic charge is accumulated at the electrode surface and charge distribution occurs in the solution only. This is related to the fact that as the number of charged species increases, the space in which the redistribution of charges occurs shrinks. At a metallic electrode–solution interface, the charge redistribution in solution depends on the applied potential and is described by the Guy-Chapman-Stern theory. The characteristic thickness of the diffuse layer in nonadsorbing electrolytes varies from 0.3 nm in 1 M to 3 nm in 0.01 M aqueous electrolyte, while the thickness of the Helmholtz layer is much smaller [17].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, New York, 2008)

    Book  Google Scholar 

  2. A.J. Bard, L.R. Faulkner, Electrochemical Methods. Fundamentals and Applications (Wiley, New York, 2001)

    Google Scholar 

  3. G.J. Brug, A.L.G. van den Eeden, M. Sluyters-Rehbach, J.H. Sluyters, J. Electroanal. Chem. 176, 275 (1984)

    Article  CAS  Google Scholar 

  4. C.H. Hsu, F. Mansfeld, Corrosion 57, 747 (2001)

    Article  CAS  Google Scholar 

  5. A.W. Bott, Curr. Sep. 17, 98 (1998)

    Google Scholar 

  6. K. Rajeshwar, in Encyclopedia of Electrochemistry, vol. 6, ed. by A.J. Bard, M. Stratmann, S. Licht (Wiley-VCH, Weinheim, 2002), p. 1

    Google Scholar 

  7. W. Schottky, Z. Phys. 113, 367 (1939); 118, 539 (1942)

    Google Scholar 

  8. K. Gelderman, L. Lee, S.W. Donne, J. Chem. Educ. 84, 685 (2007)

    Article  CAS  Google Scholar 

  9. R. Thapar, K. Rajeshwar, Electrochim. Acta 28, 195 (1983)

    Article  CAS  Google Scholar 

  10. S.P. Harrington, T.M. Devine, J. Electrochem. Soc. 155, C381 (2008)

    Article  CAS  Google Scholar 

  11. M.A. Rodriguez, R.M. Carranza, J. Electrochem. Soc. 158, C221 (2011)

    Article  CAS  Google Scholar 

  12. D. Vanmaekelbergh, Electrochim. Acta 42, 1135 (1997)

    Article  CAS  Google Scholar 

  13. M. Parthasarathy, N.S. Ramgir, B.R. Sathe, I.S. Mulla, V.K. Pillai, J. Phys. Chem. 111, 13092 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lasia, A. (2014). Semiconductors and Mott-Schottky Plots. In: Electrochemical Impedance Spectroscopy and its Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8933-7_10

Download citation

Publish with us

Policies and ethics