Skip to main content

Toll-Like Receptors in Ischemic Stroke and Other Acute Brain Injuries

  • Chapter
  • First Online:
Immunological Mechanisms and Therapies in Brain Injuries and Stroke

Abstract

Each year a substantial number of Americans suffer from hypoxic injury to the brain due to diminished blood flow and few effective treatments are available. A fruitful area of current investigation involves toll-like receptors (TLRs), which are a family of highly conserved receptors that play a key role in the pathology of brain injury. Studies in animals deficient in specific TLRs as well as genetic data from patients with altered TLR biology suggest that the activation of TLRs exacerbates damage in the setting of ischemia. Paradoxically, the stimulation of TLRs prior to injury is known to induce a state of tolerance to subsequent ischemic injury or “preconditioning”. Such preconditioning results in a profound neuroprotective effect and the mechanisms involved are under intense investigation. Understanding these divergent roles of TLRs in brain injury and neuroprotection offers great promise in the discovery of new therapeutic targets and the mitigation of ischemic brain injury in “at risk” patients through the use of prophylactic TLR stimulation as a therapeutic strategy. This chapter focuses on these two divergent roles of TLRs—one role that promotes and another that prevents ischemic injury in the brain in the context of stroke and other acute brain injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99:4–9

    CAS  PubMed  Google Scholar 

  2. Jin R, Yang G, Li G (2010) Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukoc Biol 87:779–789

    CAS  PubMed  Google Scholar 

  3. Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    CAS  PubMed  Google Scholar 

  4. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    CAS  PubMed  Google Scholar 

  5. Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol 11:373–384

    CAS  PubMed  Google Scholar 

  6. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuchi O, Takeda K, Akira S (2002) Cutting edge: a novel toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-beta promoter in the toll-like receptor signaling. J Immunol 169:6668–6672

    CAS  PubMed  Google Scholar 

  7. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S (2003) Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301:640–643

    CAS  PubMed  Google Scholar 

  8. Tanimura N, Saitoh S, Matsumoto F, Akashi-Takamura S, Miyake K (2008) Roles for LPS-dependent interaction and relocation of TLR4 and TRAM in TRIF-signaling. Biochem Biophys Res Commun 368:94–99

    CAS  PubMed  Google Scholar 

  9. Takeda K, Akira S (2004) TLR signaling pathways. Semin Immunol 16:3–9

    CAS  PubMed  Google Scholar 

  10. Akira S, Takeda K, Kaisho T (2001) Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2:675–680

    CAS  PubMed  Google Scholar 

  11. Erridge C (2010) Endogenous ligands of TLR2 and TLR4: agonists or assistants? J Leukoc Biol 87:989–999

    CAS  PubMed  Google Scholar 

  12. Miyake Y, Yamasaki S (2012) Sensing necrotic cells. Adv Exp Med Biol 738:144–152

    CAS  PubMed  Google Scholar 

  13. Lloyd-Jones KL, Kelly MM, Kubes P (2008) Varying importance of soluble and membrane CD14 in endothelial detection of lipopolysaccharide. J Immunol 181:1446–1453

    CAS  PubMed  Google Scholar 

  14. Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342

    CAS  PubMed  Google Scholar 

  15. Kono H, Chen CJ, Ontiveros F, Rock KL (2010) Uric acid promotes an acute inflammatory response to sterile cell death in mice. J Clin Invest 120:1939–1949

    CAS  PubMed  Google Scholar 

  16. Quintana FJ, Cohen IR (2005) Heat shock proteins as endogenous adjuvants in sterile and septic inflammation. J Immunol 175:2777–2782

    CAS  PubMed  Google Scholar 

  17. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    CAS  PubMed  Google Scholar 

  18. Hofmann MA, Drury S, Fu C, Qu W, Taguchi A, Lu Y, Avila C, Kambham N, Bierhaus A, Nawroth P, Neurath MF, Slattery T, Beach D, McClary J, Nagashima M, Morser J, Stern D, Schmidt AM (1999) RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides. Cell 97:889–901

    CAS  PubMed  Google Scholar 

  19. Johnson GB, Brunn GJ, Kodaira Y, Platt JL (2002) Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by toll-like receptor 4. J Immunol 168:5233–5239

    CAS  PubMed  Google Scholar 

  20. Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, Jahn H, Planyavsky M, Bilban M, Colinge J, Bennett KL, Superti-Furga G (2009) An orthogonal proteomic-genomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat Immunol 10:266–272

    PubMed  Google Scholar 

  21. Kariko K, Ni H, Capodici J, Lamphier M, Weissman D (2004) mRNA is an endogenous ligand for toll-like receptor 3. J Biol Chem 279:12542–12550

    CAS  PubMed  Google Scholar 

  22. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kalin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15:827–835

    CAS  PubMed  Google Scholar 

  23. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, Chow JC, Strauss JF 3rd (2001) The extra domain A of fibronectin activates toll-like receptor 4. J Biol Chem 276:10229–10233

    CAS  PubMed  Google Scholar 

  24. Taylor KR, Trowbridge JM, Rudisill JA, Termeer CC, Simon JC, Gallo RL (2004) Hyaluronan fragments stimulate endothelial recognition of injury through TLR4. J Biol Chem 279:17079–17084

    CAS  PubMed  Google Scholar 

  25. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, Miyake K, Freudenberg M, Galanos C, Simon JC (2002) Oligosaccharides of hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med 195:99–111

    CAS  PubMed  Google Scholar 

  26. Roelofs MF, Boelens WC, Joosten LA, Abdollahi-Roodsaz S, Geurts J, Wunderink LU, Schreurs BW, van den Berg WB, Radstake TR (2006) Identification of small heat shock protein B8 (HSP22) as a novel TLR4 ligand and potential involvement in the pathogenesis of rheumatoid arthritis. J Immunol 176:7021–7027

    CAS  PubMed  Google Scholar 

  27. Harada K, Hide I, Seki T, Tanaka S, Nakata Y, Sakai N (2011) Extracellular ATP differentially modulates toll-like receptor 4-mediated cell survival and death of microglia. J Neurochem 116:1138–1147

    CAS  PubMed  Google Scholar 

  28. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164:558–561

    CAS  PubMed  Google Scholar 

  29. Vabulas RM, Ahmad-Nejad P, da Costa C, Miethke T, Kirschning CJ, Hacker H, Wagner H (2001) Endocytosed HSP60s use toll-like receptor 2 (TLR2) and TLR4 to activate the toll/interleukin-1 receptor signaling pathway in innate immune cells. J Biol Chem 276:31332–31339

    CAS  PubMed  Google Scholar 

  30. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 277:15028–15034

    CAS  PubMed  Google Scholar 

  31. Shi Y, Evans JE, Rock KL (2003) Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 425:516–521

    CAS  PubMed  Google Scholar 

  32. Leadbetter EA, Rifkin IR, Hohlbaum AM, Beaudette BC, Shlomchik MJ, Marshak-Rothstein A (2002) Chromatin-IgG complexes activate B cells by dual engagement of IgM and toll-like receptors. Nature 416:603–607

    CAS  PubMed  Google Scholar 

  33. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 413:732–738

    CAS  PubMed  Google Scholar 

  34. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    CAS  PubMed  Google Scholar 

  35. Yu M, Wang H, Ding A, Golenbock DT, Latz E, Czura CJ, Fenton MJ, Tracey KJ, Yang H (2006) HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock 26:174–179

    CAS  PubMed  Google Scholar 

  36. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    CAS  PubMed  Google Scholar 

  37. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    CAS  PubMed  Google Scholar 

  38. Tukel C, Wilson RP, Nishimori JH, Pezeshki M, Chromy BA, Baumler AJ (2009) Responses to amyloids of microbial and host origin are mediated through toll-like receptor 2. Cell Host Microbe 6:45–53

    CAS  PubMed  Google Scholar 

  39. Biragyn A, Coscia M, Nagashima K, Sanford M, Young HA, Olkhanud P (2008) Murine beta-defensin 2 promotes TLR-4/MyD88-mediated and NF-kappaB-dependent atypical death of APCs via activation of TNFR2. J Leukoc Biol 83:998–1008

    CAS  PubMed  Google Scholar 

  40. Biragyn A, Ruffini PA, Leifer CA, Klyushnenkova E, Shakhov A, Chertov O, Shirakawa AK, Farber JM, Segal DM, Oppenheim JJ, Kwak LW (2002) Toll-like receptor 4-dependent activation of dendritic cells by beta-defensin 2. Science 298:1025–1029

    CAS  PubMed  Google Scholar 

  41. Funderburg N, Lederman MM, Feng Z, Drage MG, Jadlowsky J, Harding CV, Weinberg A, Sieg SF (2007) Human -defensin-3 activates professional antigen-presenting cells via toll-like receptors 1 and 2. Proc Natl Acad Sci USA 104:18631–18635

    CAS  PubMed  Google Scholar 

  42. Hertz CJ, Wu Q, Porter EM, Zhang YJ, Weismuller KH, Godowski PJ, Ganz T, Randell SH, Modlin RL (2003) Activation of toll-like receptor 2 on human tracheobronchial epithelial cells induces the antimicrobial peptide human beta defensin-2. J Immunol 171:6820–6826

    CAS  PubMed  Google Scholar 

  43. Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90

    CAS  PubMed  Google Scholar 

  44. Smiley ST, King JA, Hancock WW (2001) Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol 167:2887–2894

    CAS  PubMed  Google Scholar 

  45. Miller YI, Choi SH, Wiesner P, Bae YS (2012) The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. Br J Pharmacol 167:990–999

    CAS  PubMed  Google Scholar 

  46. Miller YI, Viriyakosol S, Worrall DS, Boullier A, Butler S, Witztum JL (2005) Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler Thromb Vasc Biol 25:1213–1219

    CAS  PubMed  Google Scholar 

  47. Walton KA, Hsieh X, Gharavi N, Wang S, Wang G, Yeh M, Cole AL, Berliner JA (2003) Receptors involved in the oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine-mediated synthesis of interleukin-8. A role for toll-like receptor 4 and a glycosylphosphatidylinositol-anchored protein. J Biol Chem 278:29661–29666

    CAS  PubMed  Google Scholar 

  48. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A (2012) Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med 18:911–917

    CAS  PubMed  Google Scholar 

  49. Vogl T, Tenbrock K, Ludwig S, Leukert N, Ehrhardt C, van Zoelen MA, Nacken W, Foell D, van der Poll T, Sorg C, Roth J (2007) Mrp8 and Mrp14 are endogenous activators of toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat Med 13:1042–1049

    CAS  PubMed  Google Scholar 

  50. Qiu J, Nishimura M, Wang Y, Sims JR, Qiu S, Savitz SI, Salomone S, Moskowitz MA (2008) Early release of HMGB-1 from neurons after the onset of brain ischemia. J Cereb Blood Flow Metab 28:927–938

    CAS  PubMed  Google Scholar 

  51. Agnello D, Wang H, Yang H, Tracey KJ, Ghezzi P (2002) HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6 production, and mediates anorexia and taste aversion. Cytokine 18:231–236

    CAS  PubMed  Google Scholar 

  52. O'Connor KA, Hansen MK, Rachal Pugh C, Deak MM, Biedenkapp JC, Milligan ED, Johnson JD, Wang H, Maier SF, Tracey KJ, Watkins LR (2003) Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: central nervous system effects. Cytokine 24:254–265

    PubMed  Google Scholar 

  53. Liu K, Mori S, Takahashi HK, Tomono Y, Wake H, Kanke T, Sato Y, Hiraga N, Adachi N, Yoshino T, Nishibori M (2007) Anti-high mobility group box 1 monoclonal antibody ameliorates brain infarction induced by transient ischemia in rats. FASEB J 21:3904–3916

    CAS  PubMed  Google Scholar 

  54. Ziegler G, Prinz V, Albrecht MW, Harhausen D, Khojasteh U, Nacken W, Endres M, Dirnagl U, Nietfeld W, Trendelenburg G (2009) Mrp-8 and -14 mediate CNS injury in focal cerebral ischemia. Biochim Biophys Acta 1792:1198–1204

    CAS  PubMed  Google Scholar 

  55. Constantin D, Cordenier A, Robinson K, Ala'Aldeen DA, Murphy S (2004) Neisseria meningitidis-induced death of cerebrovascular endothelium: mechanisms triggering transcriptional activation of inducible nitric oxide synthase. J Neurochem 89:1166–1174

    CAS  PubMed  Google Scholar 

  56. Cristofaro P, Opal SM (2006) Role of toll-like receptors in infection and immunity: clinical implications. Drugs 66:15–29

    CAS  PubMed  Google Scholar 

  57. Farina C, Krumbholz M, Giese T, Hartmann G, Aloisi F, Meinl E (2005) Preferential expression and function of toll-like receptor 3 in human astrocytes. J Neuroimmunol 159:12–19

    CAS  PubMed  Google Scholar 

  58. Guo LH, Schluesener HJ (2007) The innate immunity of the central nervous system in chronic pain: the role of toll-like receptors. Cell Mol Life Sci 64:1128–1136

    CAS  PubMed  Google Scholar 

  59. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci (Lond) 121:367–387

    CAS  Google Scholar 

  60. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531–4537

    CAS  PubMed  Google Scholar 

  61. Lafon M, Megret F, Lafage M, Prehaud C (2006) The innate immune facet of brain: human neurons express TLR-3 and sense viral dsRNA. J Mol Neurosci 29:185–194

    CAS  PubMed  Google Scholar 

  62. Leow-Dyke S, Allen C, Denes A, Nilsson O, Maysami S, Bowie AG, Rothwell NJ, Pinteaux E (2012) Neuronal toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. J Neuroinflammation 9:230

    CAS  PubMed  Google Scholar 

  63. Muzio M, Bosisio D, Polentaurutti N, D’amico G, Stoppacciaro A, Manicinelli R, Cv V, Penton-Rol R, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004

    CAS  PubMed  Google Scholar 

  64. Nishimura M, Naito S (2005) Tissue-specific mRNA expression profiles of human toll-like receptors and related genes. Biol Pharm Bull 28:886–892

    CAS  PubMed  Google Scholar 

  65. Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14

    CAS  PubMed  Google Scholar 

  66. Tsan MF, Gao B (2004) Endogenous ligands of toll-like receptors. J Leukoc Biol 76:514–519

    CAS  PubMed  Google Scholar 

  67. Wang YC, Lin S, Yang QW (2011) Toll-like receptors in cerebral ischemic inflammatory injury. J Neuroinflammation 8:134

    CAS  PubMed  Google Scholar 

  68. Zarember KA, Godowski PJ (2002) Tissue expression of human toll-like receptors and differential regulation of toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 168:554–561

    CAS  PubMed  Google Scholar 

  69. Bsibsi M, Ravid R, Gveric D, Noort JMV (2002) Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61:1013–1021

    CAS  PubMed  Google Scholar 

  70. Carty M, Bowie AG (2011) Evaluating the role of toll-like receptors in diseases of the central nervous system. Biochem Pharmacol 81:825–837

    CAS  PubMed  Google Scholar 

  71. Arumugam TV, Okun E, Tang SC, Thundyil J, Taylor SM, Woodruff TM (2009) Toll-like receptors in ischemia-reperfusion injury. Shock 32:4–16

    CAS  PubMed  Google Scholar 

  72. Kielian T (2006) Toll-like receptors in central nervous system glial inflammation and homeostasis. J Neurosci Res 83:711–730

    CAS  PubMed  Google Scholar 

  73. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3:216–227

    CAS  PubMed  Google Scholar 

  74. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease–a double-edged sword. Neuron 35:419–432

    CAS  PubMed  Google Scholar 

  75. Griffiths MR, Gasque P, Neal JW (2009) The multiple roles of the innate immune system in the regulation of apoptosis and inflammation in the brain. J Neuropathol Exp Neurol 68:217–226

    CAS  PubMed  Google Scholar 

  76. Kraft AD, Harry GJ (2011) Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 8:2980–3018

    PubMed  Google Scholar 

  77. Yang I, Han SJ, Kaur G, Crane C, Parsa AT (2010) The role of microglia in central nervous system immunity and glioma immunology. J Clin Neurosci 17:6–10

    PubMed  Google Scholar 

  78. Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: the role of microglia in toll-like receptor-mediated neuronal injury. Glia 58:253–263

    PubMed  Google Scholar 

  79. Neumann J, Gunzer M, Gutzeit HO, Ullrich O, Reymann KG, Dinkel K (2006) Microglia provide neuroprotection after ischemia. FASEB J 20:714–716

    CAS  PubMed  Google Scholar 

  80. Neumann J, Sauerzweig S, Ronicke R, Gunzer F, Dinkel K, Ullrich O, Gunzer M, Reymann KG (2008) Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 28:5965–5975

    CAS  PubMed  Google Scholar 

  81. Walter L, Neumann H (2009) Role of microglia in neuronal degeneration and regeneration. Semin Immunopathol 31:513–525

    PubMed  Google Scholar 

  82. Jack CS, Arbour N, Manusow J, Montgrain V, Blain M, McCrea E, Shapiro A, Antel JP (2005) TLR signaling tailors innate immune responses in human microglia and astrocytes. J Immunol 175:4320–4320

    CAS  PubMed  Google Scholar 

  83. Bsibsi M, Persoon-Deen C, Verwer RW, Meeuwsen S, Ravid R, Van Noort JM (2006) Toll-like receptor 3 on adult human astrocytes triggers production of neuroprotective mediators. Glia 53:688–695

    PubMed  Google Scholar 

  84. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    PubMed  Google Scholar 

  85. Chen GY, Nunez G (2010) Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol 10:826–837

    CAS  PubMed  Google Scholar 

  86. Babcock AA, Wirenfeldt M, Holm T, Nielsen HH, Dissing-Olesen L, Toft-Hansen H, Millward JM, Landmann R, Rivest S, Finsen B, Owens T (2006) Toll-like receptor 2 signaling in response to brain injury: an innate bridge to neuroinflammation. J Neurosci 26:12826–12837

    CAS  PubMed  Google Scholar 

  87. Rubartelli A, Lotze MT (2007) Inside, outside, upside down: damage-associated molecular-pattern molecules (DAMPs) and redox. Trends Immunol 28:429–436

    CAS  PubMed  Google Scholar 

  88. Brea D, Blanco M, Ramos-Cabrer P, Moldes O, Arias S, Perez-Mato M, Leira R, Sobrino T, Castillo J (2011) Toll-like receptors 2 and 4 in ischemic stroke: outcome and therapeutic values. J Cereb Blood Flow Metab 31:1424–1431

    CAS  PubMed  Google Scholar 

  89. Caso JR, Pradillo JM, Hurtado O, Lorenzo P, Moro MA, Lizasoain I (2007) Toll-like receptor 4 is involved in brain damage and inflammation after experimental stroke. Circulation 115:1599–1608

    CAS  PubMed  Google Scholar 

  90. Hua F, Ma J, Ha T, Kelley JL, Kao RL, Schweitzer JB, Kalbfleisch JH, Williams DL, Li C (2009) Differential roles of TLR2 and TLR4 in acute focal cerebral ischemia/reperfusion injury in mice. Brain Res 1262:100–108

    CAS  PubMed  Google Scholar 

  91. Ock J, Jeong J, Choi WS, Lee WH, Kim SH, Kim IK, Suk K (2007) Regulation of toll-like receptor 4 expression and its signaling by hypoxia in cultured microglia. J Neurosci Res 85:1989–1995

    CAS  PubMed  Google Scholar 

  92. Tang SC, Arumugam TV, Xu X, Cheng A, Mughal MR, Jo DG, Lathia JD, Siler DA, Chigurupati S, Ouyang X, Magnus T, Camandola S, Mattson MP (2007) Pivotal role for neuronal toll-like receptors in ischemic brain injury and functional deficits. Proc Natl Acad Sci 104:13798–13803

    CAS  PubMed  Google Scholar 

  93. Yang QW, Li JC, Lu FL, Wen AQ, Xiang J, Zhang LL, Huang ZY, Wang JZ (2008) Upregulated expression of toll-like receptor 4 in monocytes correlates with severity of acute cerebral infarction. J Cereb Blood Flow Metab 28:1588–1596

    CAS  PubMed  Google Scholar 

  94. Tang Y, Lu A, Sharp FR (2001) Global gene expression profiling reveals mechanisms of brain injury following focal ischemia, intracerebral hemorrhage, seizures and hypoglycemia. Soc Neurosci Abstr 27:203.1

    Google Scholar 

  95. Caso JR, Pradillo JM, Hurtado O, Leza JC, Moro MA, Lizasoain I (2008) Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke 39:1314–1320

    CAS  PubMed  Google Scholar 

  96. Hua F, Ma J, Ha T, Xia Y, Kelley J, Williams DL, Kao RL, Browder IW, Schweitzer JB, Kalbfleisch JH, Li C (2007) Activation of toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol 190:101–111

    CAS  PubMed  Google Scholar 

  97. Kilic U, Kilic E, Matter CM, Bassetti CL, Hermann DM (2008) TLR-4 deficiency protects against focal cerebral ischemia and axotomy-induced neurodegeneration. Neurobiol Dis 31:33–40

    CAS  PubMed  Google Scholar 

  98. Cao CX, Yang QW, Lv FL, Cui J, Fu HB, Wang JZ (2007) Reduced cerebral ischemia-reperfusion injury in toll-like receptor 4 deficient mice. Biochem Biophys Res Commun 353:509–514

    CAS  PubMed  Google Scholar 

  99. Sansing LH, Harris TH, Welsh FA, Kasner SE, Hunter CA, Kariko K (2011) Toll-like receptor 4 contributes to poor outcome after intracerebral hemorrhage. Ann Neurol 70:646–656

    CAS  PubMed  Google Scholar 

  100. Abe T, Shimamura M, Jackman K, Kurinami H, Anrather J, Zhou P, Iadecola C (2010) Key role of CD36 in Toll-like receptor 2 signaling in cerebral ischemia. Stroke 41:898–904

    CAS  PubMed  Google Scholar 

  101. Lehnardt S, Lehmann S, Kaul D, Tschimmel K, Hoffmann O, Cho S, Krueger C, Nitsch R, Meisel A, Weber JR (2007) Toll-like receptor 2 mediates CNS injury in focal cerebral ischemia. J Neuroimmunol 190:28–33

    CAS  PubMed  Google Scholar 

  102. Ziegler G, Freyer D, Harhausen D, Khojasteh U, Nietfeld W, Trendelenburg G (2011) Blocking TLR2 in vivo protects against accumulation of inflammatory cells and neuronal injury in experimental stroke. J Cereb Blood Flow Metab 31:757–766

    CAS  PubMed  Google Scholar 

  103. Ziegler G, Harhausen D, Schepers C, Hoffmann O, Rohr C, Prinz V, Konig J, Lehrach H, Nietfeld W, Trendelenburg G (2007) TLR2 has a detrimental role in mouse transient focal cerebral ischemia. Biochem Biophys Res Commun 359:574–579

    CAS  PubMed  Google Scholar 

  104. Stridh L, Smith PL, Naylor AS, Wang X, Mallard C (2011) Regulation of toll-like receptor 1 and −2 in neonatal mice brains after hypoxia-ischemia. J Neuroinflammation 8:45

    CAS  PubMed  Google Scholar 

  105. Bohacek I, Cordeau P, Lalancette-Hebert M, Gorup D, Weng YC, Gajovic S, Kriz J (2012) Toll-like receptor 2 deficiency leads to delayed exacerbation of ischemic injury. J Neuroinflammation 9:191

    CAS  PubMed  Google Scholar 

  106. Selvamani A, Sathyan P, Miranda RC, Sohrabji F (2012) An antagomir to microRNA Let7f promotes neuroprotection in an ischemic stroke model. PLoS One 7:e32662

    CAS  PubMed  Google Scholar 

  107. Graham DI (1996) Neuropathology of head injury. In: Na-Rayan RK, Willberger J, Povlishock JT (eds) Neurotrauma. McGraw Hill, New York, NY

    Google Scholar 

  108. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741

    PubMed  Google Scholar 

  109. Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10:89–102

    CAS  PubMed  Google Scholar 

  110. Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7:22–30

    CAS  PubMed  Google Scholar 

  111. Hua F, Wang J, Ishrat T, Wei W, Atif F, Sayeed I, Stein DG (2011) Genomic profile of toll-like receptor pathways in traumatically brain-injured mice: effect of exogenous progesterone. J Neuroinflammation 8:42

    CAS  PubMed  Google Scholar 

  112. Zhang Z, Zhang ZY, Wu Y, Schluesener HJ (2012) Immunolocalization of toll-like receptors 2 and 4 as well as their endogenous ligand, heat shock protein 70, in rat traumatic brain injury. Neuroimmunomodulation 19:10–19

    PubMed  Google Scholar 

  113. Yu ZQ, Zha JH (2012) Genetic ablation of toll-like receptor 2 reduces secondary brain injury caused by cortical contusion in mice. Ann Clin Lab Sci 42:26–33

    PubMed  Google Scholar 

  114. Hans VH, Kossmann T, Joller H, Otto V, Morganti-Kossmann MC (1999) Interleukin-6 and its soluble receptor in serum and cerebrospinal fluid after cerebral trauma. Neuroreport 10:409–412

    CAS  PubMed  Google Scholar 

  115. Helmy A, Carpenter KL, Menon DK, Pickard JD, Hutchinson PJ (2011) The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31:658–670

    CAS  PubMed  Google Scholar 

  116. Kossmann T, Stahel PF, Lenzlinger PM, Redl H, Dubs RW, Trentz O, Schlag G, Morganti-Kossmann MC (1997) Interleukin-8 released into the cerebrospinal fluid after brain injury is associated with blood–brain barrier dysfunction and nerve growth factor production. J Cereb Blood Flow Metab 17:280–289

    CAS  PubMed  Google Scholar 

  117. Kigerl KA, Lai W, Rivest S, Hart RP, Satoskar AR, Popovich PG (2007) Toll-like receptor (TLR)-2 and TLR-4 regulate inflammation, gliosis, and myelin sparing after spinal cord injury. J Neurochem 102:37–50

    CAS  PubMed  Google Scholar 

  118. Valles SL, Blanco AM, Pascual M, Guerri C (2004) Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 14:365–371

    CAS  PubMed  Google Scholar 

  119. Alfonso-Loeches S, Pascual M, Gomez-Pinedo U, Pascual-Lucas M, Renau-Piqueras J, Guerri C (2012) Toll-like receptor 4 participates in the myelin disruptions associated with chronic alcohol abuse. Glia 60:948–964

    PubMed  Google Scholar 

  120. Blanco AM, Valles SL, Pascual M, Guerri C (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175:6893–6899

    CAS  PubMed  Google Scholar 

  121. Fernandez-Lizarbe S, Pascual M, Gascon MS, Blanco A, Guerri C (2008) Lipid rafts regulate ethanol-induced activation of TLR4 signaling in murine macrophages. Mol Immunol 45:2007–2016

    CAS  PubMed  Google Scholar 

  122. Hua F, Ma J, Ha T, Kelley J, Williams DL, Kao RL, Kalbfleisch JH, Browder IW, Li C (2008) Preconditioning with a TLR2 specific ligand increases resistance to cerebral ischemia/reperfusion injury. J Neuroimmunol 199:75–82

    CAS  PubMed  Google Scholar 

  123. Leung PY, Stevens SL, Packard AE, Lessov NS, Yang T, Conrad VK, van den Dungen NN, Simon RP, Stenzel-Poore MP (2012) Toll-like receptor 7 preconditioning induces robust neuroprotection against stroke by a novel type I interferon-mediated mechanism. Stroke 43:1383–1389

    CAS  PubMed  Google Scholar 

  124. Marsh B, Stevens SL, Packard AE, Gopalan B, Hunter B, Leung PY, Harrington CA, Stenzel-Poore MP (2009) Systemic lipopolysaccharide protects the brain from ischemic injury by reprogramming the response of the brain to stroke: a critical role for IRF3. J Neurosci 29:9839–9849

    CAS  PubMed  Google Scholar 

  125. Packard AE, Hedges JC, Bahjat FR, Stevens SL, Conlin MJ, Salazar AM, Stenzel-Poore MP (2012) Poly-IC preconditioning protects against cerebral and renal ischemia-reperfusion injury. J Cereb Blood Flow Metab 32:242–247

    CAS  PubMed  Google Scholar 

  126. Pradillo JM, Fernandez-Lopez D, Garcia-Yebenes I, Sobrado M, Hurtado O, Moro MA, Lizasoain I (2009) Toll-like receptor 4 is involved in neuroprotection afforded by ischemic preconditioning. J Neurochem 109:287–294

    CAS  PubMed  Google Scholar 

  127. Stevens SL, Ciesielski TM, Marsh BJ, Yang T, Homen DS, Boule JL, Lessov NS, Simon RP, Stenzel-Poore MP (2008) Toll-like receptor 9: a new target of ischemic preconditioning in the brain. J Cereb Blood Flow Metab 28:1040–1047

    CAS  PubMed  Google Scholar 

  128. Tasaki K, Ruetzler CA, Ohtsuki T, Martin D, Nawashiro H, Hallenbeck JM (1997) Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats. Brain Res 748:267–270

    CAS  PubMed  Google Scholar 

  129. Vartanian KB, Stenzel-Poore MP (2010) Toll-like receptor tolerance as a mechanism for neuroprotection. Transl Stroke Res 1:252–260

    CAS  PubMed  Google Scholar 

  130. Hickey EJ, You X, Kaimaktchiev V, Stenzel-Poore M, Ungerleider RM (2007) Lipopolysaccharide preconditioning induces robust protection against brain injury resulting from deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 133:1588–1596

    PubMed  Google Scholar 

  131. Rosenzweig HL, Minami M, Lessov NS, Coste SC, Stevens SL, Henshall DC, Meller R, Simon RP, Stenzel-Poore MP (2007) Endotoxin preconditioning protects against the cytotoxic effects of TNFalpha after stroke: a novel role for TNFalpha in LPS-ischemic tolerance. J Cereb Blood Flow Metab 27:1663–1674

    CAS  PubMed  Google Scholar 

  132. Bahjat FR, Williams-Karnesky RL, Kohama SG, West GA, Doyle KP, Spector MD, Hobbs TR, Stenzel-Poore MP (2011) Proof of concept: pharmacological preconditioning with a toll-like receptor agonist protects against cerebrovascular injury in a primate model of stroke. J Cereb Blood Flow Metab 31:1229–1242

    CAS  PubMed  Google Scholar 

  133. Vartanian KB, Stevens SL, Marsh BJ, Williams-Karnesky R, Lessov NS, Stenzel-Poore MP (2011) LPS preconditioning redirects TLR signaling following stroke: TRIF-IRF3 plays a seminal role in mediating tolerance to ischemic injury. J Neuroinflammation 8:140

    CAS  PubMed  Google Scholar 

  134. Virca GD, Kim SY, Glaser KB, Ulevitch RJ (1989) Lipopolysaccharide induced hyporesponsiveness to its own action in RAW 264.7 cells. J Biol Chem 264:21951–21956

    CAS  PubMed  Google Scholar 

  135. Stevens SL, Leung PY, Vartanian KB, Gopalan B, Yang T, Simon RP, Stenzel-Poore MP (2011) Multiple preconditioning paradigms converge on interferon regulatory factor-dependent signaling to promote tolerance to ischemic brain injury. J Neurosci 31:8456–8463

    CAS  PubMed  Google Scholar 

  136. Marsh BJ, Stevens SL, Hunter B, Stenzel-Poore MP (2009) Inflammation and the emerging role of the toll-like receptor system in acute brain ischemia. Stroke 40:S34–7

    CAS  PubMed  Google Scholar 

  137. Pappas DJ, Gabatto PA, Oksenberg D, Khankhanian P, Baranzini SE, Gan L, Oksenberg JR (2012) Transcriptional expression patterns triggered by chemically distinct neuroprotective molecules. Neuroscience 226:10–20

    CAS  PubMed  Google Scholar 

  138. Longhi L, Gesuete R, Perego C, Ortolano F, Sacchi N, Villa P, Stocchetti N, De Simoni MG (2011) Long-lasting protection in brain trauma by endotoxin preconditioning. J Cereb Blood Flow Metab 31:1919–1929

    CAS  PubMed  Google Scholar 

  139. Kwissa M, Nakaya HI, Oluoch H, Pulendran B (2012) Distinct TLR adjuvants differentially stimulate systemic and local innate immune responses in nonhuman primates. Blood 119:2044–2055

    CAS  PubMed  Google Scholar 

  140. Rosenzweig HL, Lessov NS, Henshall DC, Minami M, Simon RP, Stenzel-Poore MP (2004) Endotoxin preconditioning prevents the cellular inflammatory response during ischemic neuroprotection in mice. Stroke 35:2576–2581

    CAS  PubMed  Google Scholar 

  141. Engblom D, Ek M, Saha S, Ericsson-Dahlstrand A, Jakobsson PJ, Blomqvist A (2002) Prostaglandins as inflammatory messengers across the blood–brain barrier. J Mol Med (Berl) 80:5–15

    CAS  Google Scholar 

  142. Packard AE, Leung PY, Vartanian KB, Stevens SL, Bahjat FR, Stenzel-Poore MP (2012) TLR9 bone marrow chimeric mice define a role for cerebral TNF in neuroprotection induced by CpG preconditioning. J Cereb Blood Flow Metab 32:2193–200

    CAS  PubMed  Google Scholar 

  143. Sandoval KE, Witt KA (2008) Blood–brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219

    CAS  PubMed  Google Scholar 

  144. Gesuete R, Packard AE, Vartanian KB, Conrad VK, Stevens SL, Bahjat FR, Yang T, Stenzel-Poore MP (2012) Poly-ICLC preconditioning protects the blood–brain barrier against ischemic injury in vitro through type I interferon signaling. J Neurochem 123(Suppl 2):75–85

    CAS  PubMed  Google Scholar 

  145. Weinstock-Guttman B, Ramanathan M, Zivadinov R (2008) Interferon-beta treatment for relapsing multiple sclerosis. Expert Opin Biol Ther 8:1435–1447

    CAS  PubMed  Google Scholar 

  146. Roger VL, Go AS, Lloyd-Jones DM et al (2012) Heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation 125:e2–e220

    PubMed  Google Scholar 

  147. Altay T, Kang HI, Woo HH, Masaryk TJ, Rasmussen PA, Fiorella DJ, Moskowitz SI (2011) Thromboembolic events associated with endovascular treatment of cerebral aneurysms. J Neurointerv Surg 3:147–150

    PubMed  Google Scholar 

  148. Barber PA, Hach S, Tippett LJ, Ross L, Merry AF, Milsom P (2008) Cerebral ischemic lesions on diffusion-weighted imaging are associated with neurocognitive decline after cardiac surgery. Stroke 39:1427–1433

    CAS  PubMed  Google Scholar 

  149. Biondi A, Oppenheim C, Vivas E, Casasco A, Lalam T, Sourour N, Jean LL, Dormont D, Marsault C (2000) Cerebral aneurysms treated by Guglielmi detachable coils: evaluation with diffusion-weighted MR imaging. AJNR Am J Neuroradiol 21:957–963

    CAS  PubMed  Google Scholar 

  150. Eggebrecht H, Schmermund A, Voigtlander T, Kahlert P, Erbel R, Mehta RH (2012) Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention 8:129–138

    PubMed  Google Scholar 

  151. Gutierrez IZ, Barone DL, Makula PA, Currier C (1987) The risk of perioperative stroke in patients with asymptomatic carotid bruits undergoing peripheral vascular surgery. Am Surg 53:487–489

    CAS  PubMed  Google Scholar 

  152. McKhann GM, Grega MA, Borowicz LM Jr, Baumgartner WA, Selnes OA (2006) Stroke and encephalopathy after cardiac surgery: an update. Stroke 37:562–571

    PubMed  Google Scholar 

  153. Nosan DK, Gomez CR, Maves MD (1993) Perioperative stroke in patients undergoing head and neck surgery. Ann Otol Rhinol Laryngol 102:717–723

    CAS  PubMed  Google Scholar 

  154. Faul M, Xu L, Wald MM, Coronado V (2010) Traumatic brain injury in the United States: Emergency Department Visits, Hospitalizations and Deaths, 2002–2006. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta, Georgia

    Google Scholar 

  155. Brea D, Sobrino T, Rodriguez-Yanez M, Ramos-Cabrer P, Agulla J, Rodriguez-Gonzalez R, Campos F, Blanco M, Castillo J (2011) Toll-like receptors 7 and 8 expression is associated with poor outcome and greater inflammatory response in acute ischemic stroke. Clin Immunol 139:193–198

    CAS  PubMed  Google Scholar 

  156. Park HJ, Kim SK, Yun DH, Kim DH, Chon J, Kim JW, Chung JH (2012) Association of toll-like receptor 2 polymorphisms with National Institute of Health Stroke Scale scores of ischemic stroke patients. J Mol Neurosci 46:536–540

    CAS  PubMed  Google Scholar 

  157. Lin YC, Chang YM, Yu JM, Yen JH, Chang JG, Hu CJ (2005) Toll-like receptor 4 gene C119A but not Asp299Gly polymorphism is associated with ischemic stroke among ethnic Chinese in Taiwan. Atherosclerosis 180:305–309

    CAS  PubMed  Google Scholar 

  158. Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G (2012) Trial watch: FDA-approved toll-like receptor agonists for cancer therapy. Oncoimmunology 1:894–907

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary P. Stenzel-Poore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bahjat, F.R., Gesuete, R., Stenzel-Poore, M.P. (2014). Toll-Like Receptors in Ischemic Stroke and Other Acute Brain Injuries. In: Chen, J., Hu, X., Stenzel-Poore, M., Zhang, J. (eds) Immunological Mechanisms and Therapies in Brain Injuries and Stroke. Springer Series in Translational Stroke Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8915-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8915-3_7

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8914-6

  • Online ISBN: 978-1-4614-8915-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics