Skip to main content

Inflammation as a Therapeutic Target after Subarachnoid Hemorrhage: Advances and Challenges

  • Chapter
  • First Online:
Immunological Mechanisms and Therapies in Brain Injuries and Stroke

Abstract

Subarachnoid hemorrhage (SAH) results from the rupture of an intracranial aneurysm, and the first consequent events are increased intracranial pressure (ICP), reduced cerebral perfusion pressure (CPP), and decreased cerebral blood flow (CBF). The resultant hypoxic state alters autoregulation, ionic homeostasis, and excitotoxicity as well as initiates secondary injuries such as cytotoxic edema, blood-brain barrier (BBB) disruption, inflammation, and apoptotic cell death. Inflammation persists through hemorrhage degradation in the subarachnoid space. Several different aspects of the inflammatory response have been demonstrated in stroke pathogenesis, including cellular response (e.g., leukocyte adherence and microglia activation), expression of adhesion molecules (e.g., selectins, integrins, and immunoglobulin superfamily), production of inflammatory mediators (e.g., cytokines, nitric oxide/nitric oxide synthase (NO/NOS), and free radicals), and accumulation of platelet aggregates. Since all of these inflammatory aspects lead to brain edema and cell death, inflammation could be a particularly important target for designing therapeutic strategies against secondary injuries after SAH. Given these inflammatory contributions could be seen in large vessels, a plethora of research has been intended to reduce cerebral vasospasm (CVS) after SAH. The main research field, however, is moving toward studying early brain injury (EBI) because some human research demonstrated the morphological alleviation of CVS alone might not improve the functional recovery in patients after SAH. This chapter provides the current knowledge of the inflammatory response, translational research, and human clinical trials in SAH as well as discusses emerging opportunities for novel therapeutic strategies for clinical management of SAH.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. David S, Kroner A (2011) Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 12:388–99

    CAS  PubMed  Google Scholar 

  2. Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7:366–77

    CAS  PubMed  Google Scholar 

  3. Barone FC, Feuerstein GZ (1999) Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19:819–34

    CAS  PubMed  Google Scholar 

  4. Chamorro A, Hallenbeck J (2006) The harms and benefits of inflammatory and immune responses in vascular disease. Stroke 37:291–3

    PubMed  Google Scholar 

  5. Kleinig TJ, Vink R (2009) Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 22:294–301

    PubMed  Google Scholar 

  6. Xia W, Han J, Huang G, Ying W (2010) Inflammation in ischaemic brain injury: current advances and future perspectives. Clin Exp Pharmacol Physiol 37:253–8

    CAS  PubMed  Google Scholar 

  7. Aronowski J, Hall CE (2005) New horizons for primary intracerebral hemorrhage treatment: experience from preclinical studies. Neurol Res 27:268–79

    PubMed  Google Scholar 

  8. Ducruet AF, Zacharia BE, Hickman ZL, Grobelny BT, Yeh ML, Sosunov SA et al (2009) The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol 219:398–403

    CAS  PubMed  Google Scholar 

  9. Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    CAS  PubMed  Google Scholar 

  10. van Gijn J, Kerr RS, Rinkel GJ (2007) Subarachnoid haemorrhage. Lancet 369:306–18

    PubMed  Google Scholar 

  11. King JT Jr (1997) Epidemiology of aneurysmal subarachnoid hemorrhage. Neuroimaging Clin N Am 7:659–68

    PubMed  Google Scholar 

  12. Sehba FA, Hou J, Pluta RM, Zhang JH (2012) The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 97:14–37

    PubMed  Google Scholar 

  13. Wilkins RH (1990) Cerebral vasospasm. Crit Rev Neurobiol 6:51–77

    CAS  PubMed  Google Scholar 

  14. Fergusen S, Macdonald RL (2007) Predictors of cerebral infarction in patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 60:658–67

    PubMed  Google Scholar 

  15. Fisher CM, Roberson GH, Ojemann RG (1977) Cerebral vasospasm with ruptured saccular aneurysm–the clinical manifestations. Neurosurgery 1:245–8

    CAS  PubMed  Google Scholar 

  16. Rabinstein AA, Friedman JA, Weigand SD, McClelland RL, Fulgham JR, Manno EM et al (2004) Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke 35:1862–6

    PubMed  Google Scholar 

  17. Dorsch NW (1995) Cerebral arterial spasm–a clinical review. Br J Neurosurg 9:403–12

    CAS  PubMed  Google Scholar 

  18. Kusaka G, Ishikawa M, Nanda A, Granger DN, Zhang JH (2004) Signaling pathways for early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 24:916–25

    CAS  PubMed  Google Scholar 

  19. Macdonald RL, Kassell NF, Mayer S, Ruefenacht D, Schmiedek P, Weidauer S et al (2008) Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 39:3015–21

    CAS  PubMed  Google Scholar 

  20. Macdonald RL, Pluta RM, Zhang JH (2007) Cerebral vasospasm after subarachnoid hemorrhage: the emerging revolution. Nat Clin Pract Neurol 3:256–63

    CAS  PubMed  Google Scholar 

  21. Pluta RM (2005) Delayed cerebral vasospasm and nitric oxide: review, new hypothesis, and proposed treatment. Pharmacol Ther 105:23–56

    CAS  PubMed  Google Scholar 

  22. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A (1994) Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke 25:1342–7

    CAS  PubMed  Google Scholar 

  23. Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28:399–414

    CAS  PubMed  Google Scholar 

  24. Ostrowski RP, Tang J, Zhang JH (2006) Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke 37:1314–8

    CAS  PubMed  Google Scholar 

  25. Grote E, Hassler W (1988) The critical first minutes after subarachnoid hemorrhage. Neurosurgery 22:654–61

    CAS  PubMed  Google Scholar 

  26. Cahill J, Calvert JW, Zhang JH (2006) Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 26:1341–53

    CAS  PubMed  Google Scholar 

  27. Keep RF, Andjelkovic AV, Stamatovic SM, Shakui P, Ennis SR (2005) Ischemia-induced endothelial cell dysfunction. Acta Neurochir Suppl 95:399–402

    CAS  PubMed  Google Scholar 

  28. Sehba FA, Pluta RM, Zhang JH (2011) Metamorphosis of subarachnoid hemorrhage research: from delayed vasospasm to early brain injury. Mol Neurobiol 43:27–40

    CAS  PubMed  Google Scholar 

  29. Luster AD, Alon R, von Andrian UH (2005) Immune cell migration in inflammation: present and future therapeutic targets. Nat Immunol 6:1182–90

    CAS  PubMed  Google Scholar 

  30. Friedrich V, Flores R, Muller A, Bi W, Peerschke EI, Sehba FA (2011) Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflammation 8:103

    CAS  PubMed  Google Scholar 

  31. Dumont AS, Dumont RJ, Chow MM, Lin CL, Calisaneller T, Ley KF et al (2003) Cerebral vasospasm after subarachnoid hemorrhage: putative role of inflammation. Neurosurgery 53:123–35

    PubMed  Google Scholar 

  32. Provencio JJ, Fu X, Siu A, Rasmussen PA, Hazen SL, Ransohoff RM (2010) CSF neutrophils are implicated in the development of vasospasm in subarachnoid hemorrhage. Neurocrit Care 12:244–51

    CAS  PubMed  Google Scholar 

  33. Wang Q, Tang XN, Yenari MA (2007) The inflammatory response in stroke. J Neuroimmunol 184:53–68

    CAS  PubMed  Google Scholar 

  34. Wang Y, Zhong M, Tan XX, Yang YJ, Chen WJ, Liu W et al (2007) Expression change of interleukin-8 gene in rabbit basilar artery after subarachnoid hemorrhage. Neurosci Bull 23:151–5

    PubMed  Google Scholar 

  35. Matz P, Turner C, Weinstein PR, Massa SM, Panter SS, Sharp FR (1996) Heme-oxygenase-1 induction in glia throughout rat brain following experimental subarachnoid hemorrhage. Brain Res 713:211–22

    CAS  PubMed  Google Scholar 

  36. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al (2000) Immunobiology of dendritic cells. Annu Rev Immunol 1(8):767–811

    Google Scholar 

  37. Theoharides TC, Alysandratos KD, Angelidou A, Delivanis DA, Sismanopoulos N, Zhang B et al (2012) Mast cells and inflammation. Biochim Biophys Acta 2012:21–33

    Google Scholar 

  38. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S et al (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15:192–9

    CAS  PubMed  Google Scholar 

  39. Rossi B, Constantin G (2008) Anti-selectin therapy for the treatment of inflammatory diseases. Inflamm Allergy Drug Targets 7:85–93

    CAS  PubMed  Google Scholar 

  40. Moore KL (1998) Structure and function of P-selectin glycoprotein ligand-1. Leuk Lymphoma 29:1–15

    CAS  PubMed  Google Scholar 

  41. McEver RP (2002) Selectins: lectins that initiate cell adhesion under flow. Curr Opin Cell Biol 14:581–6

    CAS  PubMed  Google Scholar 

  42. Sperandio M, Smith ML, Forlow SB, Olson TS, Xia L, McEver RP et al (2003) P-selectin glycoprotein ligand-1 mediates L-selectin-dependent leukocyte rolling in venules. J Exp Med 197:1355–63

    CAS  PubMed  Google Scholar 

  43. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–87

    CAS  PubMed  Google Scholar 

  44. Springer TA, Dustin ML, Kishimoto TK, Marlin SD (1987) The lymphocyte function-associated LFA-1, CD2, and LFA-3 molecules: cell adhesion receptors of the immune system. Annu Rev Immunol 5:223–52

    CAS  PubMed  Google Scholar 

  45. Miller LJ, Schwarting R, Springer TA (1986) Regulated expression of the Mac-1, LFA-1, p150, 95 glycoprotein family during leukocyte differentiation. J Immunol 137:2891–900

    CAS  PubMed  Google Scholar 

  46. Pradilla G, Wang PP, Legnani FG, Ogata L, Dietsch GN, Tamargo RJ (2004) Prevention of vasospasm by anti-CD11/CD18 monoclonal antibody therapy following subarachnoid hemorrhage in rabbits. J Neurosurg 101:88–92

    CAS  PubMed  Google Scholar 

  47. Clatterbuck RE, Oshiro EM, Hoffman PA, Dietsch GN, Pardoll DM, Tamargo RJ (2002) Inhibition of vasospasm with lymphocyte function-associated antigen-1 monoclonal antibody in a femoral artery model in rats. J Neurosurg 97:676–82

    CAS  PubMed  Google Scholar 

  48. Handa Y, Kubota T, Kaneko M, Tsuchida A, Kobayashi H, Kawano H et al (1995) Expression of intercellular adhesion molecule 1 (ICAM-1) on the cerebral artery following subarachnoid haemorrhage in rats. Acta Neurochir (Wien) 132:92–7

    CAS  PubMed  Google Scholar 

  49. Gallia GL, Tamargo RJ (2006) Leukocyte-endothelial cell interactions in chronic vasospasm after subarachnoid hemorrhage. Neurol Res 28:750–8

    CAS  PubMed  Google Scholar 

  50. Oshiro EM, Hoffman PA, Dietsch GN, Watts MC, Pardoll DM, Tamargo RJ (1997) Inhibition of experimental vasospasm with anti-intercellular adhesion molecule-1 monoclonal antibody in rats. Stroke 28:2031–8

    CAS  PubMed  Google Scholar 

  51. Sills AK Jr, Clatterbuck RE, Thompson RC, Cohen PL, Tamargo RJ (1997) Endothelial cell expression of intercellular adhesion molecule 1 in experimental posthemorrhagic vasospasm. Neurosurgery 41:453–61

    PubMed  Google Scholar 

  52. Mack WJ, Mocco J, Hoh DJ, Huang J, Choudhri TF, Kreiter KT et al (2002) Outcome prediction with serum intercellular adhesion molecule-1 levels after aneurysmal subarachnoid hemorrhage. J Neurosurg 96:71–5

    CAS  PubMed  Google Scholar 

  53. Polin RS, Bavbek M, Shaffrey ME, Billups K, Bogaev CA, Kassell NF et al (1998) Detection of soluble E-selectin, ICAM-1, VCAM-1, and L-selectin in the cerebrospinal fluid of patients after subarachnoid hemorrhage. J Neurosurg 89:559–67

    CAS  PubMed  Google Scholar 

  54. Sprague AH, Khalil RA (2009) Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 78:539–52

    CAS  PubMed  Google Scholar 

  55. Lu H, Shi JX, Chen HL, Hang CH, Wang HD, Yin HX (2009) Expression of monocyte chemoattractant protein-1 in the cerebral artery after experimental subarachnoid hemorrhage. Brain Res 1262:73–80

    CAS  PubMed  Google Scholar 

  56. Vikman P, Ansar S, Edvinsson L (2007) Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. Laboratory investigation. J Neurosurg 107:1015–22

    CAS  PubMed  Google Scholar 

  57. Aihara Y, Kasuya H, Onda H, Hori T, Takeda J (2001) Quantitative analysis of gene expressions related to inflammation in canine spastic artery after subarachnoid hemorrhage. Stroke 32:212–7

    CAS  PubMed  Google Scholar 

  58. Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–45

    CAS  PubMed  Google Scholar 

  59. Ehrenreich H, Anderson RW, Fox CH, Rieckmann P, Hoffman GS, Travis WD et al (1990) Endothelins, peptides with potent vasoactive properties, are produced by human macrophages. J Exp Med 172:1741–8

    CAS  PubMed  Google Scholar 

  60. Sessa WC, Kaw S, Hecker M, Vane JR (1991) The biosynthesis of endothelin-1 by human polymorphonuclear leukocytes. Biochem Biophys Res Commun 174:613–8

    CAS  PubMed  Google Scholar 

  61. Tierney TS, Clatterbuck RE, Lawson C, Thai QA, Rhines LD, Tamargo RJ (2001) Prevention and reversal of experimental posthemorrhagic vasospasm by the periadventitial administration of nitric oxide from a controlled-release polymer. Neurosurgery 49:945–53

    CAS  PubMed  Google Scholar 

  62. Macdonald RL, Weir BK (1991) A review of hemoglobin and the pathogenesis of cerebral vasospasm. Stroke 22:971–82

    CAS  PubMed  Google Scholar 

  63. Sehba FA, Schwartz AY, Chereshnev I, Bederson JB (2000) Acute decrease in cerebral nitric oxide levels after subarachnoid hemorrhage. J Cereb Blood Flow Metab 20:604–11

    CAS  PubMed  Google Scholar 

  64. Moro MA, Almeida A, Bolanos JP, Lizasoain I (2005) Mitochondrial respiratory chain and free radical generation in stroke. Free Radic Biol Med 39:1291–304

    CAS  PubMed  Google Scholar 

  65. Szabó C, Dawson VL (1998) Role of poly(ADP-ribose) synthetase in inflammation and ischaemia-reperfusion. Trends Pharmacol Sci 19:287–98

    PubMed  Google Scholar 

  66. Calvert JW, Zhang JH (2005) Pathophysiology of an hypoxic-ischemic insult during the perinatal period. Neurol Res 27:246–60

    PubMed  Google Scholar 

  67. Weller R (2003) Nitric oxide: a key mediator in cutaneous physiology. Clin Exp Dermatol 28:511–4

    CAS  PubMed  Google Scholar 

  68. Huang Z, Huang PL, Panahian N, Dalkara T, Fishman MC, Moskowitz MA (1994) Effects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase. Science 265:1883–5

    CAS  PubMed  Google Scholar 

  69. Huang Z, Huang PL, Ma J, Meng W, Ayata C, Fishman MC et al (1996) Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-l-arginine. J Cereb Blood Flow Metab 16:981–7

    CAS  PubMed  Google Scholar 

  70. Iadecola C, Zhang F, Casey R, Clark HB, Ross ME (1996) Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 27:1373–80

    CAS  PubMed  Google Scholar 

  71. Yatsushige H, Calvert JW, Cahill J, Zhang JH (2006) Limited role of inducible nitric oxide synthase in blood–brain barrier function after experimental subarachnoid hemorrhage. J Neurotrauma 23:1874–82

    PubMed  Google Scholar 

  72. McGirt MJ, Lynch JR, Parra A, Sheng H, Pearlstein RD, Laskowitz DT et al (2002) Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke 33:2950–6

    CAS  PubMed  Google Scholar 

  73. Sugawara T, Ayer R, Jadhav V, Chen W, Tsubokawa T, Zhang JH (2008) Simvastatin attenuation of cerebral vasospasm after subarachnoid hemorrhage in rats via increased phosphorylation of Akt and endothelial nitric oxide synthase. J Neurosci Res 86:3635–43

    CAS  PubMed  Google Scholar 

  74. Sabri M, Ai J, Knight B, Tariq A, Jeon H, Shang X et al (2011) Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 31:190–9

    CAS  PubMed  Google Scholar 

  75. Sabri M, Ai J, Marsden PA, Macdonald RL (2011) Simvastatin re-couples dysfunctional endothelial nitric oxide synthase in experimental subarachnoid hemorrhage. PLoS One 6:e17062

    CAS  PubMed  Google Scholar 

  76. Misra HP, Fridovich I (1972) The generation of superoxide radical during the autoxidation of hemoglobin. J Biol Chem 247:6960–2

    CAS  PubMed  Google Scholar 

  77. Rubbo H, Trostchansky A, O’Donnell VB (2009) Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. Arch Biochem Biophys 484:167–72

    CAS  PubMed  Google Scholar 

  78. Sehba FA, Bederson JB (2006) Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res 28:381–98

    CAS  PubMed  Google Scholar 

  79. Giulivi C, Hochstein P, Davies KJA (1994) Hydrogen peroxide production by red blood cells. Free Radic Biol Med 16:123–9

    CAS  PubMed  Google Scholar 

  80. Bruce Van Dykea R, Saltama P (1996) Hemoglobin: a mechanism for the generation of hydroxyl radicals. Free Radic Biol Med 20:985–9

    Google Scholar 

  81. Gutteridge JM (1986) Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett 201:291–5

    CAS  PubMed  Google Scholar 

  82. Mori T, Nagata K, Town T, Tan J, Matsui T, Asano T (2001) Intracisternal increase of superoxide anion production in a canine subarachnoid hemorrhage model. Stroke 32:636–42

    CAS  PubMed  Google Scholar 

  83. Facchinetti F, Dawson VL, Dawson TM (1998) Free radicals as mediators of neuronal injury. Cell Mol Neurobiol 18:667–82

    CAS  PubMed  Google Scholar 

  84. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320:365–76

    CAS  PubMed  Google Scholar 

  85. Lin CL, Hsu YT, Lin TK, Morrow JD, Hsu JC, Hsu YH et al (2006) Increased levels of F2-isoprostanes following aneurysmal subarachnoid hemorrhage in humans. Free Radic Biol Med 40:1466–73

    CAS  PubMed  Google Scholar 

  86. Lewen A, Matz P, Chan PH (2000) Free radical pathways in CNS injury. J Neurotrauma 17:871–90

    CAS  PubMed  Google Scholar 

  87. Gaetani P, Lombardi D (1992) Brain damage following subarachnoid hemorrhage: the imbalance between anti-oxidant systems and lipid peroxidative processes. J Neurosurg Sci 36:1–10

    CAS  PubMed  Google Scholar 

  88. Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH (2001) Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 32:506–15

    CAS  PubMed  Google Scholar 

  89. Weyrich AS, Schwertz H, Kraiss LW, Zimmerman GA (2009) Protein synthesis by platelets: historical and new perspectives. J Thromb Haemost 7:241–6

    CAS  PubMed  Google Scholar 

  90. Akopov S, Sercombe R, Seylaz J (1996) Endothelium–plateletleukocyte interactions in the cerebral circulation. Cerebrovasc Brain Metab Rev 8:11–94

    CAS  PubMed  Google Scholar 

  91. Sehba FA, Mostafa G, Friedrich V Jr, Bederson JB (2005) Acute microvascular platelet aggregation after subarachnoid hemorrhage. J Neurosurg 102:1094–100

    PubMed  Google Scholar 

  92. Friedrich V, Flores R, Muller A, Sehba FA (2010) Escape of intraluminal platelets into brain parenchyma after subarachnoid hemorrhage. Neuroscience 165:968–75

    CAS  PubMed  Google Scholar 

  93. Friedrich V, Flores R, Muller A, Sehba FA (2010) Luminal platelet aggregates in functional deficits inparenchymal vessels after subarachnoid hemorrhage. Brain Res 1354:179–87

    CAS  PubMed  Google Scholar 

  94. Okada Y, Copeland BR, Mori E, Tung MM, Thomas WS, del Zoppo GJ (1994) P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 25:202–11

    CAS  PubMed  Google Scholar 

  95. Sehba FA, Mostafa G, Knopman J, Friedrich V Jr, Bederson JB (2004) Acute alterations in microvascular basal lamina after subarachnoid hemorrhage. J Neurosurg 101:633–40

    PubMed  Google Scholar 

  96. Sehba FA, Friedrich V Jr, Makonnen G, Bederson JB (2007) Acute cerebral vascular injury after subarachnoid hemorrhage and its prevention by administration of a nitric oxide donor. J Neurosurg 106:321–9

    CAS  PubMed  Google Scholar 

  97. Rosenberg GA, Cunningham LA, Wallace J, Alexander S, Estrada EY, Grossetete M et al (2001) Immunohistochemistry of matrix metalloproteinases in reperfusion injury to rat brain: activation of MMP-9 linked to stromelysin-1 and microglia in cell cultures. Brain Res 893:104–12

    CAS  PubMed  Google Scholar 

  98. Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood-brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108:811–20

    CAS  PubMed  Google Scholar 

  99. Asano T, Ikegaki I, Suzuki Y, Satoh S, Shibuya M (1989) Endothelin and the production of cerebral vasospasm in dogs. Biochem Biophys Res Commun 159:1345–51

    CAS  PubMed  Google Scholar 

  100. Zimmermann M, Seifert V (2004) Endothelin receptor antagonists and cerebral vasospasm. Clin Auton Res 14:143–5

    PubMed  Google Scholar 

  101. Sercombe R, Dinh YR, Gomis P (2002) Cerebrovascular inflammation following subarachnoid hemorrhage. Jpn J Pharmacol 88:227–49

    CAS  PubMed  Google Scholar 

  102. Saleh MA, Pollock DM (2011) Endothelin in renal inflammation and hypertension. Contrib Nephrol 172:160–70

    CAS  PubMed  Google Scholar 

  103. Narushima I, Kita T, Kubo K, Yonetani Y, Momochi C, Yoshikawa I et al (1999) Contribution of endothelin-1 to disruption of blood-brain barrier permeability in dogs. Naunyn Schmiedebergs Arch Pharmacol 360:639–45

    CAS  PubMed  Google Scholar 

  104. Haorah J, Knipe B, Leibhart J, Ghorpade A, Persidsky Y (2005) Alcohol-induced oxidative stress in brain endothelial cells causes blood-brain barrier dysfunction. J Leukoc Biol 78:1223–32

    CAS  PubMed  Google Scholar 

  105. Imaizumi S, Kondo T, Deli MA, Gobbel G, Joó F, Epstein CJ et al (1996) The influence of oxygen free radicals on the permeability of the monolayer of cultured brain endothelial cells. Neurochem Int 29:205–11

    CAS  PubMed  Google Scholar 

  106. Ballabh P, Braun A, Nedergaard M (2004) The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 16:1–13

    CAS  PubMed  Google Scholar 

  107. van der Goes A, Wouters D, van Der Pol SM, Huizinga R, Ronken E, Adamson P et al (2001) Reactive oxygen species enhance the migration of monocytes across the blood–brain barrier in vitro. FASEB J 15:1852–4

    PubMed  Google Scholar 

  108. Bavbek M, Polin R, Kwan AL, Arthur AS, Kassell NF, Lee KS (1998) Monoclonal antibodies against ICAM-1 and CD18 attenuate cerebral vasospasm after experimental subarachnoid hemorrhage in rabbits. Stroke 29:1930–6

    CAS  PubMed  Google Scholar 

  109. Clatterbuck RE, Gailloud P, Ogata L, Gebremariam A, Dietsch GN, Murphy KJ et al (2003) Prevention of cerebral vasospasm by a humanized anti-CD11/CD18 monoclonal antibody administered after experimental subarachnoid hemorrhage in nonhuman primates. J Neurosurg 99:376–82

    CAS  PubMed  Google Scholar 

  110. Lin CL, Dumont AS, Calisaneller T, Kwan AL, Hwong SL, Lee KS (2005) Monoclonal antibody against E selectin attenuates subarachnoid hemorrhage-induced cerebral vasospasm. Surg Neurol 64:201–6

    PubMed  Google Scholar 

  111. Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM (2011) Depletion of Ly6G/C(+) cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. J Neuroimmunol 232:94–100

    CAS  PubMed  Google Scholar 

  112. Wang Z, Wang KY, Wu Y, Zhou P, Sun XO, Chen G (2010) Potential role of CD34 in cerebral vasospasm after experimental subarachnoid hemorrhage in rats. Cytokine 52:245–51

    CAS  PubMed  Google Scholar 

  113. Wu Y, Tang K, Huang RQ, Zhuang Z, Cheng HL, Yin HX et al (2011) Therapeutic potential of peroxisome proliferator-activated receptor γ agonist rosiglitazone in cerebral vasospasm after a rat experimental subarachnoid hemorrhage model. J Neurol Sci 305:85–91

    CAS  PubMed  Google Scholar 

  114. Weber C, Erl W, Weber KS, Weber PC (1997) HMG-CoA reductase inhibitors decrease CD11b expression and CD11b-dependent adhesion of monocytes to endothelium and reduce increased adhesiveness of monocytes isolated from patients with hypercholesterolemia. J Am Coll Cardiol 30:1212–7

    CAS  PubMed  Google Scholar 

  115. Kallen J, Welzenbach K, Ramage P, Geyl D, Kriwacki R, Legge G et al (1999) Structural basis for LFA-1 inhibition upon lovastatin binding to the CD11a I-domain. J Mol Biol 292:1–9

    CAS  PubMed  Google Scholar 

  116. McGirt MJ, Pradilla G, Legnani FG, Thai QA, Recinos PF, Tamargo RJ et al (2006) Systemic administration of simvastatin after the onset of experimental subarachnoid hemorrhage attenuates cerebral vasospasm. Neurosurgery 58:945–51

    PubMed  Google Scholar 

  117. Thai QA, Oshiro EM, Tamargo RJ (1999) Inhibition of experimental vasospasm in rats with the periadventitial administration of ibuprofen using controlled-release polymers. Stroke 30:140–7

    CAS  PubMed  Google Scholar 

  118. Hino A, Weir BK, Macdonald RL, Thisted RA, Kim CJ, Johns LM (1995) Prospective, randomized, double-blind trial of BQ-123 and bosentan for prevention of vasospasm following subarachnoid hemorrhage in monkeys. J Neurosurg 83:503–9

    CAS  PubMed  Google Scholar 

  119. Itoh S, Sasaki T, Ide K, Ishikawa K, Nishikibe M, Yano M (1993) A novel endothelin ETA receptor antagonist, BQ-485, and its preventive effect on experimental cerebral vasospasm in dogs. Biochem Biophys Res Commun 195:969–75

    CAS  PubMed  Google Scholar 

  120. Itoh S, Sasaki T, Asai A, Kuchino Y (1994) Prevention of delayed vasospasm by an endothelin ETA receptor antagonist, BQ-123: change of ETA receptor mRNA expression in a canine subarachnoid hemorrhage model. J Neurosurg 81:759–64

    CAS  PubMed  Google Scholar 

  121. Kita T, Kubo K, Hiramatsu K, Sakaki T, Yonetani Y, Sato S et al (1998) Profiles of an intravenously available endothelin A-receptor antagonist, S-0139, for preventing cerebral vasospasm in a canine two-hemorrhage model. Life Sci 63:305–15

    CAS  PubMed  Google Scholar 

  122. Macdonald RL, Bassiouny M, Johns L, Sajdak M, Marton LS, Weir BK et al (1998) U74389G prevents vasospasm after subarachnoid hemorrhage in dogs. Neurosurgery 42:1339–46

    CAS  PubMed  Google Scholar 

  123. Macdonald RL, Johns L, Lin G, Marton LS, Hallak H, Marcoux F et al (1998) Prevention of vasospasm after subarachnoid hemorrhage in dogs by continuous intravenous infusion of PD156707. Neurol Med Chir (Tokyo) 38(Suppl):138–45

    Google Scholar 

  124. Nirei H, Hamada K, Shoubo M, Sogabe K, Notsu Y, Ono T (1993) An endothelin ETA receptor antagonist, FR139317, ameliorates cerebral vasospasm in dogs. Life Sci 52:1869–74

    CAS  PubMed  Google Scholar 

  125. Roux S, Breu V, Giller T, Neidhart W, Ramuz H, Coassolo P et al (1997) Ro 61-1790, a new hydrosoluble endothelin antagonist: general pharmacology and effects on experimental cerebral vasospasm. J Pharmacol Exp Ther 283:1110–8

    CAS  PubMed  Google Scholar 

  126. Shigeno T, Clozel M, Sakai S, Saito A, Goto K (1995) The effect of bosentan, a new potent endothelin receptor antagonist, on the pathogenesis of cerebral vasospasm. Neurosurgery 37:87–91

    CAS  PubMed  Google Scholar 

  127. Wanebo JE, Louis HG, Arthur AS, Zhou J, Kassell NF, Lee KS, et al (1997) Attenuation of cerebral vasospasm by systemic administration of an endothelin-A receptor antagonist, TBC 11251, in a rabbit model of subarachnoid hemorrhage. Neurosurg Focus 3:article

    Google Scholar 

  128. Wanebo JE, Arthur AS, Louis HG, West K, Kassell NF, Lee KS et al (1998) Systemic administration of the endothelin-A receptor antagonist TBC 11251 attenuates cerebral vasospasm after experimental subarachnoid hemorrhage: dose study and review of endothelin-based therapies in the literature on cerebral vasospasm. Neurosurgery 43:1409–18

    CAS  PubMed  Google Scholar 

  129. Willette RN, Zhang H, Mitchell MP, Sauermelch CF, Ohlstein EH, Sulpizio AC (1994) Nonpeptide endothelin antagonist. Cerebrovascular characterization and effects on delayed cerebral vasospasm. Stroke 25:2450–6

    CAS  PubMed  Google Scholar 

  130. Zimmermann M, Seifert V, Löffler BM, Stolke D, Stenzel W (1996) Prevention of cerebral vasospasm after experimental subarachnoid hemorrhage by RO 47-0203, a newly developed orally active endothelin receptor antagonist. Neurosurgery 38:115–20

    CAS  PubMed  Google Scholar 

  131. Zuccarello M, Soattin GB, Lewis AI, Breu V, Hallak H, Rapoport RM (1996) Prevention of subarachnoid hemorrhage-induced cerebral vasospasm by oral administration of endothelin receptor antagonists. J Neurosurg 84:503–7

    CAS  PubMed  Google Scholar 

  132. Zuccarello M, Boccaletti R, Romano A, Rapoport RM (1998) Endothelin B receptor antagonists attenuate subarachnoid hemorrhage-induced cerebral vasospasm. Stroke 29:1924–9

    CAS  PubMed  Google Scholar 

  133. Caner HH, Kwan AL, Arthur A, Jeng AY, Lappe RW, Kassell NF et al (1996) Systemic administration of an inhibitor of endothelin-converting enzyme for attenuation of cerebral vasospasm following experimental subarachnoid hemorrhage. J Neurosurg 85:917–22

    CAS  PubMed  Google Scholar 

  134. Kwan AL, Bavbek M, Jeng AY, Maniara W, Toyoda T, Lappe RW et al (1997) Prevention and reversal of cerebral vasospasm by an endothelin-converting enzyme inhibitor, CGS 26303, in an experimental model of subarachnoid hemorrhage. J Neurosurg 87:281–6

    CAS  PubMed  Google Scholar 

  135. Kwan AL, Lin CL, Chang CZ, Wu HJ, Hwong SL, Jeng AY et al (2001) Continuous intravenous infusion of CGS 26303, an endothelin-converting enzyme inhibitor, prevents and reverses cerebral vasospasm after experimental subarachnoid hemorrhage. Neurosurgery 49:422–9

    CAS  PubMed  Google Scholar 

  136. Kwan AL, Lin CL, Yen CP, Winardi W, Su YF, Winardi D, Dai ZK, Jeng AY, Kassell NF, Howng SL, Wang CJ (2006) Prevention and reversal of vasospasm and ultrastructural changes in basilar artery by continuous infusion of CGS 35066 following subarachnoid hemorrhage. Exp Biol Med (Maywood) 231:1069–74

    CAS  Google Scholar 

  137. Lin CL, Kwan AL, Dumont AS, Su YF, Kassell NF, Wang CJ et al (2007) Attenuation of experimental subarachnoid hemorrhage-induced increases in circulating intercellular adhesion molecule-1 and cerebral vasospasm by the endothelin-converting enzyme inhibitor CGS 26303. J Neurosurg 106:442–8

    PubMed  Google Scholar 

  138. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–25

    CAS  PubMed  Google Scholar 

  139. Macdonald RL, Weir BK, Runzer TD, Grace MG, Poznansky MJ (1992) Effect of intrathecal superoxide dismutase and catalase on oxyhemoglobin-induced vasospasm in monkeys. Neurosurgery 30:529–39

    CAS  PubMed  Google Scholar 

  140. Shishido T, Suzuki R, Qian L, Hirakawa K (1994) The role of superoxide anions in the pathogenesis of cerebral vasospasm. Stroke 25:864–8

    CAS  PubMed  Google Scholar 

  141. Mori T, Nagata K, Matsui T, Ishida T, Ohami H, Asano T (1995) Superoxide anions in the pathogenesis of talc-induced cerebral vasocontraction. Neuropathol Appl Neurobiol 21:378–85

    CAS  PubMed  Google Scholar 

  142. Kamii H, Kato I, Kinouchi H, Chan PH, Epstein CJ, Akabane A et al (1999) Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke 30:867–72

    CAS  PubMed  Google Scholar 

  143. Güney O, Erdi F, Esen H, Kiyici A, Kocaogullar Y (2010) N-acetylcysteine prevents vasospasm after subarachnoid hemorrhage. World Neurosurg 73(42–9):e3

    Google Scholar 

  144. Kuo CP, Lu CH, Wen LL, Cherng CH, Wong CS, Borel CO et al (2011) Neuroprotective effect of curcumin in an experimental rat model of subarachnoid hemorrhage. Anesthesiology 115:1229–38

    CAS  PubMed  Google Scholar 

  145. Germano A, Imperatore C, d’Avella D, Costa G, Tomasello F (1998) Antivasospastic and brain-protective effects of a hydroxyl radical scavenger (AVS) after experimental subarachnoid hemorrhage. J Neurosurg 88:1075–81

    CAS  PubMed  Google Scholar 

  146. Imperatore C, Germano A, d’Avella D, Tomasello F, Costa G (2000) Effects of the radical scavenger AVS on behavioral and BBB changes after experimental subarachnoid hemorrhage. Life Sci 66:779–90

    CAS  PubMed  Google Scholar 

  147. Turner CP, Panter SS, Sharp FR (1999) Anti-oxidants prevent focal rat brain injury as assessed by induction of heat shock proteins (HSP70, HO-1/HSP32, HSP47) following subarachnoid injections of lysed blood. Brain Res Mol Brain Res 65:87–102

    CAS  PubMed  Google Scholar 

  148. Kanamaru K, Weir BK, Simpson I, Witbeck T, Grace M (1991) Effect of 21-aminosteroid U-74006F on lipid peroxidation in subarachnoid clot. J Neurosurg 74:454–9

    CAS  PubMed  Google Scholar 

  149. Matsui T, Asano T (1994) Effects of new 21-aminosteroid tirilazad mesylate (U74006F) on chronic cerebral vasospasm in a “two-hemorrhage” model of beagle dogs. Neurosurgery 34:1035–9

    CAS  PubMed  Google Scholar 

  150. Vollmer DG, Kassell NF, Hongo K, Ogawa H, Tsukahara T (1989) Effect of the nonglucocorticoid 21-aminosteroid U74006F experimental cerebral vasospasm. Surg Neurol 31:190–4

    CAS  PubMed  Google Scholar 

  151. Zuccarello M, Marsch JT, Schmitt G, Woodward J, Anderson DK (1989) Effect of the 21-aminosteroid U-74006F on cerebral vasospasm following subarachnoid hemorrhage. J Neurosurg 71:98–104

    CAS  PubMed  Google Scholar 

  152. Suzuki H, Kanamaru K, Kuroki M, Sun H, Waga S, Miyazawa T (1999) Effects of tirilazad mesylate on vasospasm and phospholipid hydroperoxides in a primate model of subarachnoid hemorrhage. Stroke 30:450–6

    CAS  PubMed  Google Scholar 

  153. Hall ED (1992) The neuroprotective pharmacology of methylprednisolone. J Neurosurg 76:13–22

    CAS  PubMed  Google Scholar 

  154. Gaetani P, Marzatico F, Renault B, Fulle I, Lombardi D, Ferlenga P et al (1990) High-dose methylprednisolone and ‘ex vivo’ release of eicosanoids after experimental subarachnoid haemorrhage. Neurol Res 12:111–6

    CAS  PubMed  Google Scholar 

  155. Tang WH, Chen Z, Liu Z, Zhang JH, Xi G, Feng H (2008) The effect of ecdysterone on cerebral vasospasm following experimental subarachnoid hemorrhage in vitro and in vivo. Neurol Res 30:571–80

    CAS  PubMed  Google Scholar 

  156. Handa Y, Kaneko M, Takeuchi H, Tsuchida A, Kobayashi H, Kubota T (2000) Effect of an antioxidant, ebselen, on development of chronic cerebral vasospasm after subarachnoid hemorrhage in primates. Surg Neurol 53:323–9

    CAS  PubMed  Google Scholar 

  157. Watanabe T, Nishiyama M, Hori T, Asano T, Shimizu T, Masayasu H (1997) Ebselen (DR3305) ameliorates delayed cerebral vasospasm in a canine two-hemorrhage model. Neurol Res 19:563–5

    CAS  PubMed  Google Scholar 

  158. Nakagomi T, Yamakawa K, Sasaki T, Saito I, Takakura K (2003) Effect of edaravone on cerebral vasospasm following experimental subarachnoid hemorrhage. J Stroke Cerebrovasc Dis 12:17–21

    PubMed  Google Scholar 

  159. Shimada Y, Tsunoda H, Zang L, Hirano M, Oka T, Tanaka T (2009) Synergistic induction of heme oxygenase-1 by nicaraven after subarachnoid hemorrhage to prevent delayed cerebral vasospasm. Eur J Pharmacol 620:16–20

    CAS  PubMed  Google Scholar 

  160. Aladag MA, Turkoz Y, Ozcan C, Sahna E, Parlakpinar H, Akpolat N et al (2006) Caffeic acid phenethyl ester (CAPE) attenuates cerebral vasospasm after experimental subarachnoidal haemorrhage by increasing brain nitric oxide levels. Int J Dev Neurosci 24:9–14

    CAS  PubMed  Google Scholar 

  161. Saito I, Asano T, Sano K, Takakura K, Abe H, Yoshimoto T et al (1998) Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhage. Neurosurgery 42:269–78

    CAS  PubMed  Google Scholar 

  162. Munakata A, Ohkuma H, Nakano T, Shimamura N, Asano K, Naraoka M (2009) Effect of a free radical scavenger, edaravone, in the treatment of patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 64:423–9

    PubMed  Google Scholar 

  163. Kassell NF, Haley EC Jr, Apperson-Hansen C, Alves WM (1996) Randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in Europe, Australia, and New Zealand. J Neurosurg 84:221–8

    CAS  PubMed  Google Scholar 

  164. Haley EC Jr, Kassell NF, Apperson-Hansen C, Maile MH, Alves WM (1997) A randomized, double-blind, vehicle-controlled trial of tirilazad mesylate in patients with aneurysmal subarachnoid hemorrhage: a cooperative study in North America. J Neurosurg 86:467–74

    CAS  PubMed  Google Scholar 

  165. Asano T, Takakura K, Sano K, Kikuchi H, Nagai H, Saito I et al (1996) Effects of a hydroxyl radical scavenger on delayed ischemic neurological deficits following aneurysmal subarachnoid hemorrhage: results of a multicenter, placebo-controlled double-blind trial. J Neurosurg 84:792–803

    CAS  PubMed  Google Scholar 

  166. Hashi K, Takakura K, Sano K, Ohta T, Saito I, Okada K (1988) Intravenous hydrocortisone in large doses in the treatment of delayed ischemic neurological deficits following subarachnoid hemorrhage—results of a multi-center controlled double-blind clinical study. No to Shinkei—Brain & Nerve 40:373–82 [Japanese]

    CAS  Google Scholar 

  167. Chyatte D, Fode NC, Nichols DA, Sundt TM Jr (1987) Preliminary report: effects of high dose methylprednisolone on delayed cerebral ischemia in patients at high risk for vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 21:157–160

    CAS  PubMed  Google Scholar 

  168. Gomis P, Graftieaux JP, Sercombe R, Hettler D, Scherpereel B, Rousseaux P (2010) Randomized, double-blind, placebo-controlled, pilot trial of high-dose methylprednisolone in aneurysmal subarachnoid hemorrhage. J Neurosurg 112:681–8

    CAS  PubMed  Google Scholar 

  169. Sehba FA, Ding WH, Chereshnev I, Bederson JB (1999) Effects of S-nitrosoglutathione on acute vasoconstriction and glutamate release after subarachnoid hemorrhage. Stroke 30:1955–61

    CAS  PubMed  Google Scholar 

  170. Pluta RM, Afshar JK, Thompson BG, Boock RJ, Harvey-White J, Oldfield EH (2000) Increased cerebral blood flow but no reversal or prevention of vasospasm in response to l-arginine infusion after subarachnoid hemorrhage. J Neurosurg 92:121–6

    CAS  PubMed  Google Scholar 

  171. Marbacher S, Neuschmelting V, Graupner T, Jakob SM, Fandino J (2008) Prevention of delayed cerebral vasospasm by continuous intrathecal infusion of glyceroltrinitrate and nimodipine in the rabbit model in vivo. Intensive Care Med 34:932–8

    CAS  PubMed  Google Scholar 

  172. Zheng B, Zheng T, Wang L, Chen X, Shi C, Zhao S (2010) Aminoguanidine inhibition of iNOS activity ameliorates cerebral vasospasm after subarachnoid hemorrhage in rabbits via restoration of dysfunctional endothelial cells. J Neurol Sci 295:97–103

    CAS  PubMed  Google Scholar 

  173. Stoodley M, Weihl CC, Zhang ZD, Lin G, Johns LM, Kowalczuk A et al (2000) Effect of adenovirus-mediated nitric oxide synthase gene transfer on vasospasm after experimental subarachnoid hemorrhage. Neurosurgery 46:1193–1203

    CAS  PubMed  Google Scholar 

  174. Chou SH, Smith EE, Badjatia N, Nogueira RG, Sims JR 2nd, Ogilvy CS et al (2008) A randomized, double-blind, placebo-controlled pilot study of simvastatin in aneurysmal subarachnoid hemorrhage. Stroke 39:2891–3

    CAS  PubMed  Google Scholar 

  175. Lynch JR, Wang H, McGirt MJ, Floyd J, Friedman AH, Coon AL et al (2005) Simvastatin reduces vasospasm after aneurysmal subarachnoid hemorrhage: results of a pilot randomized clinical trial. Stroke 36:2024–6

    CAS  PubMed  Google Scholar 

  176. Tseng MY, Czosnyka M, Richards H, Pickard JD, Kirkpatrick PJ (2005) Effects of acute treatment with pravastatin on cerebral vasospasm, autoregulation, and delayed ischemic deficits after aneurysmal subarachnoid hemorrhage: a phase II randomized placebo-controlled trial. Stroke 36:1627–32

    CAS  PubMed  Google Scholar 

  177. Vergouwen MD, Meijers JC, Geskus RB, Coert BA, Horn J, Stroes ES et al (2009) Biologic effects of simvastatin in patients with aneurysmal subarachnoid hemorrhage: a double-blind, placebo-controlled randomized trial. J Cereb Blood Flow Metab 29:1444–53

    CAS  PubMed  Google Scholar 

  178. Linder M, Alksne JF (1978) Prevention of persistent cerebral smooth muscle contraction in response to whole blood. Stroke 9:472–7

    CAS  PubMed  Google Scholar 

  179. Juvela S (1995) Aspirin and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. J Neurosurg 82:945–52

    CAS  PubMed  Google Scholar 

  180. Bilginer B, Onal MB, Narin F, Soylemezoglu F, Ziyal IM, Ozgen T (2009) The effects of intravenous cilostazol and nimodipine on cerebral vasospasm after subarachnoid hemorrhage in an experimental rabbit model. Turk Neurosurg 19:374–9

    PubMed  Google Scholar 

  181. Nishino A, Umegaki M, Fujinaka T, Yoshimine T (2010) Cilostazol attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Neurol Res 32:873–8

    CAS  PubMed  Google Scholar 

  182. Hirashima Y, Endo S, Kato R, Takaku A (1996) Prevention of cerebrovasospasm following subarachnoid hemorrhage in rabbits by the platelet-activating factor antagonist, E5880. J Neurosurg 84:826–30

    CAS  PubMed  Google Scholar 

  183. Dorhout Mees SM, van den Bergh WM, Algra A, Rinkel GJ (2007) Antiplatelet therapy for aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 17, CD006184

    Google Scholar 

  184. Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH (2013) Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 4:432–46

    Google Scholar 

  185. Bederson JB, Germano IM, Guarino L (1995) Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke 26:1086–92

    CAS  PubMed  Google Scholar 

  186. Veelken JA, Laing RJ, Jakubowski J (1995) The Sheffield model of subarachnoid hemorrhage in rats. Stroke 26:1279–84

    CAS  PubMed  Google Scholar 

  187. Sozen T, Tsuchiyama R, Hasegawa Y, Suzuki H, Jadhav V, Nishizawa S et al (2009) Role of interleukin-1beta in early brain injury after subarachnoid hemorrhage in mice. Stroke 40:2519–25

    CAS  PubMed  Google Scholar 

  188. Sugawara T, Jadhav V, Ayer R, Chen W, Suzuki H, Zhang JH (2009) Thrombin inhibition by argatroban ameliorates early brain injury and improves neurological outcomes after experimental subarachnoid hemorrhage in rats. Stroke 40:1530–2

    PubMed  Google Scholar 

  189. Suzuki H, Ayer R, Sugawara T, Chen W, Sozen T, Hasegawa Y et al (2010) Protective effects of recombinant osteopontin on early brain injury after subarachnoid hemorrhage in rats. Crit Care Med 38:612–8

    CAS  PubMed  Google Scholar 

  190. Endo H, Nito C, Kamada H, Yu F, Chan PH (2007) Reduction in oxidative stress by superoxide dismutase overexpression attenuates acute brain injury after subarachnoid hemorrhage via activation of Akt/glycogensynthase kinase-3beta survival signaling. J Cereb Blood Flow Metab 27:975–982

    CAS  PubMed  Google Scholar 

  191. Gao Y, Ding XS, Xu S, Wang W, Zuo QL, Kuai F (2009) Neuroprotective effects of edaravone on early brain injury in rats after subarachnoid hemorrhage. Chin Med J (Engl) 122:1935–40

    CAS  Google Scholar 

  192. Erşahin M, Toklu HZ, Erzik C, Cetinel S, Akakin D, Velioğlu-Oğünç A et al (2010) The anti-inflammatory and neuroprotective effects of ghrelin in subarachnoid hemorrhage-induced oxidative brain damage in rats. J Neurotrauma 27:1143–55

    PubMed  Google Scholar 

  193. Kassell NF, Sasaki T, Colohan AR, Nazar G (1985) Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke 16:562–72

    CAS  PubMed  Google Scholar 

  194. Megyesi JF, Vollrath B, Cook DA, Findlay JM (2000) In vivo animal models of cerebral vasospasm: a review. Neurosurgery 46:448–61

    CAS  PubMed  Google Scholar 

  195. Alaraj A, Charbel FT, Amin-Hanjani S (2009) Peri-operative measures for treatment and prevention of cerebral vasospasm following subarachnoid hemorrhage. Neurol Res 31:651–9

    PubMed  Google Scholar 

  196. Caner B, Hou J, Altay O, Fujii M, Zhang JH (2012) Transition of research focus from vasospasm to early brain injury after subarachnoid hemorrhage. J Neurochem 123(Suppl 2):12–21

    CAS  PubMed  Google Scholar 

  197. Lee JY, Sagher O, Keep R, Hua Y, Xi G (2009) Comparison of experimental rat models of early brain injury after subarachnoid hemorrhage. Neurosurgery 65:331–43

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supports by the National Institutes of Health NS053407 to J.H. Zhang.

Conflict of Interest Statement

We declare that we have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John H. Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fujii, M., Chen, S., Klebe, D., Soejima, Y., Vakhmyanin, A., Zhang, J.H. (2014). Inflammation as a Therapeutic Target after Subarachnoid Hemorrhage: Advances and Challenges. In: Chen, J., Hu, X., Stenzel-Poore, M., Zhang, J. (eds) Immunological Mechanisms and Therapies in Brain Injuries and Stroke. Springer Series in Translational Stroke Research, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8915-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8915-3_14

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8914-6

  • Online ISBN: 978-1-4614-8915-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics