60-GHz LTCC Antenna Arrays

  • Yong-Xin Guo
  • Lei Wang


The wide unlicensed frequency band around 60-GHz for wireless short-range communications are receiving a lot of attention in recent years. As one of the key components in wireless communication systems, the antenna technology affects radio propagation channels, transceiver designs, and choice of digital modulation schemes in establishing a reliable 60-GHz link. In this connection, the 60-GHz antennas for wireless communications, especially antenna-in-package (AiP), have received considerable attention and become a hot research topic. In this chapter, wideband antenna arrays based on the multilayer low temperature co-fired ceramic (LTCC) technology are presented and discussed for 60-GHz wireless short-range communications applications.


Antenna design 60 GHz ISM band 60 GHz radio IEEE 802.15.3c LTCC technology Antenna array 


  1. 1.
    P. Smulders, Exploring the 60 GHz band for local wireless multimedia access: prospects and future directions. IEEE. Commun. Mag. 40(1), 40–147 (Jan. 2002)CrossRefGoogle Scholar
  2. 2.
    A. Sadri, 802.15.3c usage model document. IEEE 802.15-06-0055-14-003c (May 2006)Google Scholar
  3. 3.
    Y.P. Zhang, D. Liu, Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications. IEEE. Trans. Antennas Propag. 57(10), 2830–2841 (Oct. 2009)CrossRefGoogle Scholar
  4. 4.
    T.S. Rappaport, J.N. Murdck, F. Gutierrez, State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc. IEEE. 99(8), 1390–1436 (Aug. 2011)CrossRefGoogle Scholar
  5. 5.
    D. Liu, Y.P. Zhang, Integration of antenna arrays in chip package for 60-GHz radios. Proc. IEEE. 100(7), 2364–2371 (Jul. 2012)CrossRefGoogle Scholar
  6. 6.
    R.R. Tummala, M. Swaminathan, M.M. Tentzeris, J. Laskar, G.-K. Chang, S. Sitaraman, D. Keezer, D. Guidotti, Z.R. Huang, K. Lim, L.X. Wan, S.K. Bhattacharya, V. Sundaram, F.H. Liu, P.M. Raj, The SOP for miniaturized, mixed-signal computing, communication, and consumer systems of the next decade. IEEE Trans. Adv. Packag. 27(2), 250–267 (May 2004)CrossRefGoogle Scholar
  7. 7.
    Y.P. Zhang, M. Sun, D. Liu, Y. Lu, Dual grid antenna arrays in a thin-profile package for flip-chip interconnection to highly integrated 60-GHz radios. IEEE Trans. Antennas Propag. 59(4), 1191–1199 (Apr. 2011)CrossRefGoogle Scholar
  8. 8.
    H. Chu, Y.-X. Guo, Z. Wang, 60-GHz LTCC wideband vertical Off-Center dipole antenna and arrays. IEEE. Trans. Antennas Propag. 61(1), 153–161 (Jan. 2013)CrossRefGoogle Scholar
  9. 9.
    J. Xu, Z.N. Chen, X. Qing, W. Hong, Bandwidth enhancement for a 60 GHz substrate integrated waveguide fed cavity antenna array on LTCC. IEEE. Trans. Antennas Propag. 59(3), 826–832 (Mar. 2012)CrossRefGoogle Scholar
  10. 10.
    L. Wang, Y.-X. Guo, W.X. Sheng, Wideband high-gain 60-GHz LTCC L-probe patch antenna array with a soft surface. IEEE. Trans. Antennas Propag. 61(4) 1802–1809 (Apr. 2013)CrossRefGoogle Scholar
  11. 11.
    H. Sun, Y.-X. Guo, Z. Wang, 60-GHz circularly polarized U-slot patch antenna array on LTCC. IEEE. Trans. Antennas Propag. 61(1), 430–435, (Jan. 2013)CrossRefGoogle Scholar
  12. 12.
    M. Sun, Y.Q. Zhang, Y.-X. Guo, M.F. Karim, L.C. Ong, M.S. Leong, Integration of circular polarized array and LNA in LTCC as a 60-GHz active receiving antenna. IEEE. Trans. Antennas Propag. 59(8), 3083–3089 (Aug. 2011)CrossRefGoogle Scholar
  13. 13.
    C. Liu, Y.-X. Guo, X. Bao, S.Q. Xiao, 60-GHz LTCC integrated circularly polarized helical antenna array. IEEE. Trans. Antennas Propag. 60(3), 1329–1335 (Mar. 2012)CrossRefGoogle Scholar
  14. 14.
    A.E.I. Lamminen, J. Säily, A.R. Vimpari, 60-GHz patch antennas and arrays on LTCC with embedded-cavity substrates. IEEE. Trans. Antennas Propag. 56(9), 2865–2874 (Sep. 2008)CrossRefGoogle Scholar
  15. 15.
    I. K. Kim, N. Kidera, S. Pinel, J. Papapolymerou, J. Laskar, J.-G. Yook, M.M. Tentzeris, Linear tapered cavity-backed slot antenna for millimeter-wave LTCC modules. IEEE. Antennas Wireless. Propag. Lett. 5, 175–178 (2006)CrossRefGoogle Scholar
  16. 16.
    S.B. Yeap, Z.N. Chen, X. Qing, Gain-enhanced 60-GHz LTCC antenna array with open air cavities. IEEE. Trans. Antennas Propag. 59(9), 3470–3473 (Sep. 2011)CrossRefGoogle Scholar
  17. 17.
    A.E.I. Lamminen, A.R. Vimpari. J. Säily, UC-EBG on LTCC for 60-GHz frequency band antenna applications. IEEE. Trans. Antennas Propag. 57(10), 2904–2912 (Oct. 2009)CrossRefGoogle Scholar
  18. 18.
    Y. Li, Z.N. Chen, X. Qing, Z. Zhang, J. Xu, Z. Feng, Axial ratio bandwidth enhancement of 60-GHz substrate integrated waveguide-fed circularly polarized LTCC antenna array. IEEE. Trans. Antennas Propag. 60(10), 4619–4626 (Oct. 2012)CrossRefGoogle Scholar
  19. 19.
    K.M. Luk, C.L. Mak, Y.L. Chow, K.F. Lee, Broadband microstrip patch antenna. Electron. Lett. 34, 1442–1443 (July 1998)CrossRefGoogle Scholar
  20. 20.
    C.L. Mak, K.M. Luk, K.F. Lee, Y.L. Chow, Experimental study of a microstrip antenna with an L-shaped probe. IEEE. Trans. Antennas Propag. 48, 777–783 (May 2000)CrossRefGoogle Scholar
  21. 21.
    Y.-X. Guo, C.L. Mak, K.M. Luk, K.F. Lee, Analysis and design of L-probe proximity fed patch antenna. IEEE. Trans. Antennas Propag. 49(2), 145–149 (Feb. 2001)CrossRefGoogle Scholar
  22. 22.
    P.-S. Kildal, Artificially soft and hard surfaces in electromagnetic. IEEE. Trans. Antennas Propag. 38(10), 1537–1544 (Oct. 1990)CrossRefGoogle Scholar
  23. 23.
    Z. Ying, P.-S. Kildal, Study of different realizations and calculation models for soft-surfaces by using vertical monopole on soft disk as test bed. IEEE. Trans. Antennas Propag. 44(11), 1474–1481 (Nov. 1996)Google Scholar
  24. 24.
    R. Li, G. DeJean, M.M. Tentzeris, J. Papapolymerou, J. Laskar, Radiation-pattern improvement of patch antenna on a large-size substrate using a compact soft-surface structure and Its realization on LTCC multilayer technology. IEEE. Trans. Antennas Propag. 53(1), 200–208 (Jan. 2005)CrossRefGoogle Scholar
  25. 25.
    Y.-X. Guo, K.M. Luk, K.F. Lee, Broadband dual polarization patch element for cellular-phone base stations. IEEE. Trans. Antennas Propag. 50(2), 251–253 (Feb 2002)CrossRefGoogle Scholar
  26. 26.
    L. Bian, Y.-X. Guo, L.C. Ong, X.Q. Shi, Wideband circularly-polarized patch antenna. . IEEE. Trans. Antennas Propag. 54(9), 2682–2686 (Sep. 2006)CrossRefGoogle Scholar
  27. 27.
    H. Wong, K.-L. Lau, K.-M. Luk, Design of dual-polarized L-probe patch antenna arrays with high isolation. IEEE. Trans. Antennas Propag. 52(1), 45–52 (Jan. 2004)CrossRefGoogle Scholar
  28. 28.
    Y.-X, Guo, K.-W. Khoo, L.C. Ong, Wideband dual-polarized patch antenna with broadband baluns. IEEE. Trans. Antennas Propag. 55(1), 78–83 (Jan. 2004)CrossRefGoogle Scholar
  29. 29.
    K.L. Lau, K.M. Luk, A. wideband dual-polarized L-Probe stacked patch antenna array. IEEE. Lett. 6, 529–532 (2007)Google Scholar
  30. 30.
    J. Heyen, A. Gordiyenko, P. Heide, A.F. Jacob, Vertical feedthroughs for millimeter-wave LTCC modules. In IEEE Eur. Microw. Conf., Munich, Germany, pp. 411–414 (Oct. 2003)Google Scholar
  31. 31.
    C.-C. Tsai, T.-S. Chen, T.-Y. Huang, Y.A. Hsu, R.-B. Wu, Design of microstrip-to-microstrip via transition in multilayered LTCC for frequencies up to 67 GHz. IEEE Trans. Compon. Packag. Manufactur. Tech. 1(4), 595–600 (April. 2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeRepublic of Singapore

Personalised recommendations