Skip to main content

Current and Future Reproductive Technologies for Avian Species

  • Chapter
  • First Online:
Current and Future Reproductive Technologies and World Food Production

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 752))

Abstract

The global demand for poultry meat and eggs is expected to increase exponentially in the next several decades. Increasing global poultry production in the future would require significant improvements in genetics, nutrition, and managerial practices including reproduction. This chapter summarizes some of the recent developments in ameliorating reproductive dysfunction in broiler breeder chickens, cryopreservation of avian spermatozoa, sex selection, and avian transgenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barash IA et al (1996) Leptin is a metabolic signal to the reproductive system. Endocrinology 137:3144–3147

    Article  PubMed  CAS  Google Scholar 

  • Blanco JM, Long JA, Gee G, Wildt DE, Donoghue AM (2012) Comparative cryopreservation of avian spermatozoa: effects of freezing and thawing rates on turkey and sandhill crane sperm cryosurvival. Anim Reprod Sci 131:1–8

    Article  PubMed  Google Scholar 

  • Blesbois E (2007) Current status in avian semen cryopreservation. Worlds Poult Sci Assoc 63:213–222

    Article  Google Scholar 

  • Blesbois E, Grasseau I, Seigneurin F (2005) Membrane fluidity and the ability of domestic bird spermatozoa to survive cryopreservation. Reproduction 129:371–378

    Article  PubMed  CAS  Google Scholar 

  • Blesbois E et al (2008) Predictors of success of semen cryopreservation in chickens. Theriogenology 69:252–261

    Article  PubMed  CAS  Google Scholar 

  • Bluher S, Mantzoros CS (2007) Leptin in reproduction. Curr Opin Endocrinol Diabetes Obes 14:458–464

    Article  PubMed  Google Scholar 

  • Bruggeman V, Vanmontfort D, Renaville R, Portetelle D, Decuypere E (1997) The effect of food intake from two weeks of age to sexual maturity on plasma growth hormone, insulin-like growth factor-I, insulin-like growth factor-binding proteins, and thyroid hormones in female broiler breeder chickens. Gen Comp Endocrinol 107:212–220

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman V et al (1998a) The effect of food intake from 2 to 24 weeks of age on LHRH-I content in the median eminence and gonadotrophin levels in pituitary and plasma in female broiler breeder chickens. Gen Comp Endocrinol 112:200–209

    Article  PubMed  CAS  Google Scholar 

  • Bruggeman V et al (1998b) Effect of long-term food restriction on pituitary sensitivity to cLHRH-I in broiler breeder females. J Reprod Fertil 114:267–276

    Article  PubMed  CAS  Google Scholar 

  • Cary LC et al (1989) Transposon mutagenesis of baculoviruses: analysis of Trichoplusia ni transposon IFP2 insertions within the FP-locus of nuclear polyhedrosis viruses. Virology 172:156–169

    Article  PubMed  CAS  Google Scholar 

  • Cassy S et al (2004) Leptin receptor in the chicken ovary: potential involvement in ovarian dysfunction of ad libitum-fed broiler breeder hens. Reprod Biol Endocrinol 2:72

    Article  PubMed  Google Scholar 

  • Chen SE, McMurtry JP, Walzem RL (2006) Overfeeding-induced ovarian dysfunction in broiler breeder hens is associated with lipotoxicity. Poult Sci 85:70–81

    PubMed  CAS  Google Scholar 

  • Cook CL, Siow Y, Brenner AG, Fallat ME (2002) Relationship between serum mullerian-inhibiting substance and other reproductive hormones in untreated women with polycystic ovary syndrome and normal women. Fertil Steril 77:141–146

    Article  PubMed  Google Scholar 

  • Correa SM, Adkins-Regan E, Johnson PA (2005) High progesterone during avian meiosis biases sex ratios toward females. Biol Lett 1:215–218

    Article  PubMed  CAS  Google Scholar 

  • Ding S et al (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell 122:473–483

    Article  PubMed  CAS  Google Scholar 

  • Donoghue AM, Wishart GJ (2000) Storage of poultry semen. Anim Reprod Sci 62:213–232

    Article  Google Scholar 

  • FAO (2009) FAO’s Director-General on how to feed the world in 2050. Poupl Dev Rev 35(4):837–839

    Google Scholar 

  • Froman DP, Feltmann AJ (2010) A new approach to sperm preservation based on bioenergetic theory. J Anim Sci 88:1314–1320

    Article  PubMed  CAS  Google Scholar 

  • Froman DP et al (2011) Physiology and endocrinology symposium: a proteome-based model for sperm mobility phenotype. J Anim Sci 89:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Goerzen PR, Julsrud WL, Robinson FE (1996) Duration of fertility in ad libitum and feed-restricted caged broiler breeders. Poult Sci 75:962–965

    Article  PubMed  CAS  Google Scholar 

  • Han JY (2009) Germ cells and transgenesis in chickens. Comp Immunol Microbiol Infect Dis 32:61–80

    Article  PubMed  Google Scholar 

  • Harvey AJ, Speksnijder G, Baugh LR, Morris JA, Ivarie R (2002) Expression of exogenous protein in the egg white of transgenic chickens. Nat Biotechnol 20:396–399

    Article  PubMed  CAS  Google Scholar 

  • Hocking PM, Bernard R, Wilkie RS, Goddard C (1994) Plasma growth hormone and insulin-like growth factor-I (IGF-I) concentrations at the onset of lay in ad libitum and restricted broiler breeder fowl. Br Poult Sci 35:299–308

    Article  PubMed  CAS  Google Scholar 

  • Johnson PA, Wang SY, Brooks C (1993) Characterization of a source and levels of plasma immunoreactive inhibin during the ovulatory cycle of the domestic hen. Biol Reprod 48:262–267

    Article  PubMed  CAS  Google Scholar 

  • Johnson PA, Kent TR, Urick ME, Trevino LS, Giles JR (2009) Expression of anti-Mullerian hormone in hens selected for different ovulation rates. Reproduction 137:857–863

    Article  PubMed  CAS  Google Scholar 

  • Kamihira M et al (2005) High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J Virol 79:10864–10874

    Article  PubMed  CAS  Google Scholar 

  • Lillico SG et al (2007) Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci U S A 104:1771–1776

    Article  PubMed  CAS  Google Scholar 

  • Liu X et al (2012) Efficient production of transgenic chickens based on piggyBac. Transgenic Res 22(2):417–423

    PubMed  Google Scholar 

  • Long JA (2006) Avian semen cryopreservation: what are the biological challenges? Poult Sci 85:232–236

    PubMed  CAS  Google Scholar 

  • Lovell TM, Knight PG, Groome NP, Gladwell RT (2001) Changes in plasma inhibin A levels during sexual maturation in the female chicken and the effects of active immunization against inhibin alpha-subunit on reproductive hormone profiles and ovarian function. Biol Reprod 64:188–196

    Article  PubMed  CAS  Google Scholar 

  • Lu Y, Lin C, Wang X (2009) PiggyBac transgenic strategies in the developing chicken spinal cord. Nucleic Acids Res 37:e141

    Article  PubMed  Google Scholar 

  • Macdonald J et al (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci U S A 109:E1466–E1472

    Article  PubMed  CAS  Google Scholar 

  • McGrew MJ et al (2004) Efficient production of germline transgenic chickens using lentiviral vectors. EMBO Rep 5:728–733

    Article  PubMed  CAS  Google Scholar 

  • Moce E, Grasseau I, Blesbois E (2010) Cryoprotectant and freezing-process alter the ability of chicken sperm to acrosome react. Anim Reprod Sci 122:359–366

    Article  PubMed  CAS  Google Scholar 

  • Mozdziak PE, Petitte JN (2004) Status of transgenic chicken models for developmental biology. Dev Dyn 229:414–421

    Article  PubMed  CAS  Google Scholar 

  • Ohkubo T, Tanaka M, Nakashima K (2000) Structure and tissue distribution of chicken leptin receptor (cOb-R) mRNA. Biochim Biophys Acta 1491:303–308

    Article  PubMed  CAS  Google Scholar 

  • Olson MW, Fraps RM (1950) Maturation changes in the hen’s ovum. J Exp Zool 144:485–487

    Google Scholar 

  • Onagbesan OM, Decuypere E, Leenstra F, Ehlhardt DA (1999) Differential effects of amount of feeding on cell proliferation and progesterone production in response to gonadotrophins and insulin-like growth factor I by ovarian granulosa cells of broiler breeder chickens selected for fatness or leanness. J Reprod Fertil 116:73–85

    Article  PubMed  CAS  Google Scholar 

  • Paczoska-Eliasiewicz HE et al (2003) Attenuation by leptin of the effects of fasting on ovarian function in hens (Gallus domesticus). Reproduction 126:739–751

    Article  PubMed  CAS  Google Scholar 

  • Pan YE et al (2012) Ceramide accumulation and up-regulation of proinflammatory interleukin-1beta exemplify lipotoxicity to mediate declines of reproductive efficacy of broiler hens. Domest Anim Endocrinol 42:183–194

    Article  PubMed  CAS  Google Scholar 

  • Park TS, Han JY (2012a) Genetic modification of chicken germ cells. Ann N Y Acad Sci 1271:104–109

    Article  PubMed  CAS  Google Scholar 

  • Park TS, Han JY (2012b) PiggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci USA 109:9337–9341

    Article  PubMed  CAS  Google Scholar 

  • Pelaez J, Bongalhardo DC, Long JA (2011) Characterizing the glycocalyx of poultry spermatozoa: III. Semen cryopreservation methods alter the carbohydrate component of rooster sperm membrane glycoconjugates. Poult Sci 90:435–443

    Article  PubMed  CAS  Google Scholar 

  • Petitte JN, Liu G, Yang Z (2004) Avian pluripotent stem cells. Mech Dev 121:1159–1168

    Article  PubMed  CAS  Google Scholar 

  • Pinson SE, Parr CM, Wilson JL, Navara KJ (2011a) Acute corticosterone administration during meiotic segregation stimulates females to produce more male offspring. Physiol Biochem Zool 84:292–298

    Article  PubMed  CAS  Google Scholar 

  • Pinson SE, Wilson JL, Navara KJ (2011b) Elevated testosterone during meiotic segregation stimulates laying hens to produce more sons than daughters. Gen Comp Endocrinol 174:195–201

    Article  PubMed  CAS  Google Scholar 

  • Renema RA, Robinson FE, Newcombe M, McKay RI (1999) Effects of body weight and feed allocation during sexual maturation in broiler breeder hens. 1. Growth and carcass characteristics. Poult Sci 78:619–628

    PubMed  CAS  Google Scholar 

  • Robinson FE, Zuidhof MJ, Renema RA (2007) Reproductive efficiency and metabolism of female broiler breeders as affected by genotype, feed allocation, and age at photostimulation. 1. Pullet growth and development. Poult Sci 86:2256–2266

    PubMed  CAS  Google Scholar 

  • Satterlee DG, Cadd GG, Fioretti WC (2002) Active immunization of broiler breeder hens with a recombinant chicken inhibin fusion protein enhances egg lay. Poult Sci 81:519–528

    PubMed  CAS  Google Scholar 

  • Scott BB, Lois C (2006) Generation of transgenic birds with replication-deficient lentiviruses. Nat Protoc 1:1406–1411

    Article  PubMed  CAS  Google Scholar 

  • Sharp PJ, Dunn IC, Waddington D, Boswell T (2008) Chicken leptin. Gen Comp Endocrinol 158:2–4

    Article  PubMed  CAS  Google Scholar 

  • Simon J, Rideau N, Taouis M (2009) Reply to viewpoints by PJ Sharp, IC Dunn, D Waddington and T Boswell [Chicken Leptin: General and Comparative Endocrinology, 158, 2–4 (2008)]. Gen Comp Endocrinol 161:159

    PubMed  CAS  Google Scholar 

  • Slappey SN, Davis AJ (2003) Expression pattern of messenger ribonucleic acid for the activin type II receptors and the inhibin/activin subunits during follicular development in broiler breeder hens. Poult Sci 82:338–344

    PubMed  CAS  Google Scholar 

  • Sun JM et al (2006) The relationship of body composition, feed intake, and metabolic hormones for broiler breeder females. Poult Sci 85:1173–1184

    PubMed  CAS  Google Scholar 

  • U.S. Census Bureau (2012) U.S. and World Poulation Clock. http://www.census.gov/popclock/

  • Vanmontfort D, Rombauts L, Decuypere E, Verhoeven G (1992) Source of immunoreactive inhibin in the chicken ovary. Biol Reprod 47:977–983

    Article  PubMed  CAS  Google Scholar 

  • Vanmontfort D, Berghman LR, Rombauts L, Verhoeven G, Decuypere E (1995) Developmental changes in immunoreactive inhibin and FSH in plasma of chickens from hatch to sexual maturity. Br Poult Sci 36:779–790

    Article  PubMed  CAS  Google Scholar 

  • Wojtusik J, Johnson PA (2012) Vitamin D regulates anti-Mullerian hormone expression in granulosa cells of the hen. Biol Reprod 86:91

    Article  PubMed  Google Scholar 

  • Xie YL et al (2012) Palmitic acid in chicken granulosa cell death-lipotoxic mechanisms mediate reproductive inefficacy of broiler breeder hens. Theriogenology 78(9):1917–1928

    Article  PubMed  CAS  Google Scholar 

  • You S, Bridgham JT, Foster DN, Johnson AL (1996) Characterization of the chicken follicle-stimulating hormone receptor (cFSH-R) complementary deoxyribonucleic acid, and expression of cFSH-R messenger ribonucleic acid in the ovary. Biol Reprod 55:1055–1062

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh Ramachandran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ramachandran, R. (2014). Current and Future Reproductive Technologies for Avian Species. In: Lamb, G., DiLorenzo, N. (eds) Current and Future Reproductive Technologies and World Food Production. Advances in Experimental Medicine and Biology, vol 752. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8887-3_2

Download citation

Publish with us

Policies and ethics