Skip to main content

Current and Future Assisted Reproductive Technologies for Mammalian Farm Animals

  • Chapter
  • First Online:
Book cover Current and Future Reproductive Technologies and World Food Production

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 752))

Abstract

Reproduction in domestic animals is under control by man and the technologies developed to facilitate that control have a major impact on the efficiency of food production. Reproduction is an energy-intensive process. In beef cattle, for example, over 50 % of the total feed consumption required to produce a unit of meat protein is consumed by the dam of the meat animal (Anim Prod 27:367–379, 1978). Sows are responsible for about 20 % of the total feed needed to produce animals for slaughter (Adv Pork Prod 19:223–237, 2008). Accordingly, energy input to produce food from animal sources is reduced by increasing number of offspring per unit time a breeding female is in the herd. Using beef cattle as an example again, life-cycle efficiency for production of weaned calves is positively related to early age at puberty and short calving intervals (J Anim Sci 57:852–866, 1983). Reproductive technologies also dictate the strategies that can be used to select animals genetically for traits that improve production. Of critical importance has been artificial insemination (AI) (Anim Reprod Sci 62:143–172, 2000; Stud Hist Philos Biol Biomed Sci 38:411–441, 2007; Reprod Domest Anim 43:379–385, 2008; J Dairy Sci 92:5814–5833, 2009) and, as will be outlined in this chapter, emerging technologies offer additional opportunities for improvements in genetic selection. Given the central role of reproduction as a determinant of production efficiency and in genetic selection, improvements in reproductive technologies will be crucial to meeting the challenges created by the anticipated increases in world population (from seven billion people in 2011 to an anticipated nine billion by 2050; World population prospects: the 2010 revision, highlights and advance tables. Working Paper No. ESA/P/WP.220, New York) and by difficulties in livestock production wrought by climate change (SAT eJournal 4:1–23, 2007).

The purpose of this chapter will be to highlight current and emerging reproductive technologies that have the potential to improve efficiency of livestock production. The focus will be on technologies that manipulate male and female gametes as well as the stem cells from which they are derived and the preimplantation embryo. While technology is crucial to other interventions in the reproductive process like control of seasonal breeding, hormonal regulation of ovulation, estrous cyclicity and pregnancy establishment, feeding to optimize reproduction, minimizing environmental stress, and selection of genes controlling reproduction, these will not be considered here. Rather the reader is directed to other chapters in this volume as well as some reviews on other aspects of artificial manipulation of reproduction (Reprod Fertil Dev 24:258–266, 2011; Reprod Domest Anim 43:40–47, 2008; Reprod Domest Anim 43:122–128, 2008; Soc Reprod Fertil Suppl 66:87–102, 2009; Comprehensive biotechnology, Amsterdam, pp 477–485; Dairy production medicine, Chichester, pp 153–163; Theriogenology 76:1619–1631, 2011; Theriogenology 76:1568–1582, 2011; Theriogenology 77:1–11, 2012). Given the large number of mammalian species used for production of products useful for man and the diversity in their biology and management, the review will not be comprehensive but instead will use results from species that are most illustrative of the opportunities generated by assisted reproductive technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiridis GS, Cseh S (2012) Assisted reproductive technologies in the reproductive management of small ruminants. Anim Reprod Sci 130:152–161

    PubMed  CAS  Google Scholar 

  • An L, Wu ZH, Wu YF, Zhang XL, Liu X, Zhu YB, Cheng WM, Gao HM, Guo M, Tian JH (2010) Fertility in single-ovulating and superovulated dairy heifers after insemination with low dose sex-sorted sperm. Reprod Domest Anim 45:e344–e350

    PubMed  CAS  Google Scholar 

  • Ball RO, Samuel RS, Moehn S (2008) Nutrient requirements of prolific sows. Adv Pork Prod 19:223–237

    Google Scholar 

  • Barbas JP, Mascarenhas RD (2009) Cryopreservation of domestic animal sperm cells. Cell Tissue Bank 10: 49–62

    PubMed  CAS  Google Scholar 

  • Barceló-Fimbres M, Seidel GE Jr (2007) Effects of fetal calf serum, phenazine ethosulfate and either glucose or fructose during in vitro culture of bovine embryos on embryonic development after cryopreservation. Mol Reprod Dev 74:1395–1405

    PubMed  Google Scholar 

  • Baruselli PS, de Sá Filho MF, Martins CM, Nasser LF, Nogueira MF, Barros CM, Bó GA (2006) Superovulation and embryo transfer in Bos indicus cattle. Theriogenology 65:77–88

    PubMed  Google Scholar 

  • Bisinotto RS, Santos JE (2011) The use of endocrine treatments to improve pregnancy rates in cattle. Reprod Fertil Dev 24:258–266

    PubMed  CAS  Google Scholar 

  • Block J, Bonilla L, Hansen PJ (2010) Efficacy of in vitro embryo transfer in lactating dairy cows using fresh or vitrified embryos produced in a novel embryo culture medium. J Dairy Sci 93:5234–2542

    PubMed  CAS  Google Scholar 

  • Block J, Hansen PJ, Loureiro B, Bonilla L (2011) Improving post-transfer survival of bovine embryos produced in vitro: actions of insulin-like growth factor-1, colony stimulating factor-2 and hyaluronan. Theriogenology 76:1602–1609

    PubMed  CAS  Google Scholar 

  • Bostock J, Riley H (1890) The natural history of pliny, vol II. George Bell, London

    Google Scholar 

  • Brackett BG, Bousquet D, Boice ML, Donawick WJ, Evans JF, Dressel MA (1982) Normal development following in vitro fertilization in the cow. Biol Reprod 27:147–158

    PubMed  CAS  Google Scholar 

  • Buckrell BC, Buschbeck C, Gartley CJ, Kroetsch T, McCutcheon W, Martin J, Penner WK, Walton JS (1994) Further development of a transcervical technique for artificial insemination in sheep using previously frozen semen. Theriogenology 42:601–611

    PubMed  CAS  Google Scholar 

  • Caballero I, Parrilla I, Almiñana C, del Olmo D, Roca J, Martínez EA, Vázquez JM (2012) Seminal plasma proteins as modulators of the sperm function and their application in sperm biotechnologies. Reprod Domest Anim 47(Suppl 3):12–21

    PubMed  Google Scholar 

  • Candappa IB, Bainbridge HC, Price NT, Hourigan KR, Bartlewski PM (2009) A preliminary study on the suitability of Cervidil to induce cervical dilation for artificial insemination in ewes. Res Vet Sci 87:204–206

    PubMed  CAS  Google Scholar 

  • Canu S, Boland M, Lloyd GM, Newman M, Christie MF, May PJ, Christley RM, Smith RF, Dobson H (2010) Predisposition to repeat breeding in UK cattle and success of artificial insemination alone or in combination with embryo transfer. Vet Rec 167:44–51

    PubMed  CAS  Google Scholar 

  • Carta A, Casu S, Salaris S (2009) Invited review: current state of genetic improvement in dairy sheep. J Dairy Sci 92:5814–5833

    PubMed  CAS  Google Scholar 

  • Chavatte-Palmer P, Camous S, Jammes H, Le Cleac’h N, Guillomot M, Lee RS (2012) Review: placental perturbations induce the developmental abnormalities often observed in bovine somatic cell nuclear transfer. Placenta 33(Suppl):S99–S104

    PubMed  Google Scholar 

  • Chemineau P, Guillaume D, Migaud M, Thiéry JC, Pellicer-Rubio MT, Malpaux B (2008) Seasonality of reproduction in mammals: intimate regulatory mechanisms and practical implications. Reprod Domest Anim 43(Suppl 2):40–47

    PubMed  Google Scholar 

  • Crowe CA, Ravenhill PJ, Hepburn RJ, Shepherd CH (2008) A retrospective study of artificial insemination of 251 mares using chilled and fixed time frozen-thawed semen. Equine Vet J 40:572–576

    PubMed  CAS  Google Scholar 

  • Cseh S, Faigl V, Amiridis GS (2012) Semen processing and artificial insemination in health management of small ruminants. Anim Reprod Sci 130:187–192

    PubMed  CAS  Google Scholar 

  • Davis ME, Rutledge JJ, Cundiff LV, Hauser ER (1983) Life cycle efficiency of beef production: II. Relationship of cow efficiency ratios to traits of the dam and progeny weaned. J Anim Sci 57:852–866

    PubMed  CAS  Google Scholar 

  • De Rensis F, Saleri R, Tummaruk P, Techakumphu M, Kirkwood RN (2012) Prostaglandin F2α and control of reproduction in female swine: a review. Therio-genology 77:1–11

    Google Scholar 

  • De Vries A, Overton M, Fetrow J, Leslie K, Eicker S, Rogers G (2008) Exploring the impact of sexed semen on the structure of the dairy industry. J Dairy Sci 91:847–456

    PubMed  Google Scholar 

  • de Vries M, Vosters S, Merkx G, D’Hauwers K, Wansink DG, Ramos L, de Boer P (2012) Human male meiotic sex chromosome inactivation. PLoS One 7:e31485

    PubMed  Google Scholar 

  • DeJarnette JM, Nebel RL, Marshall CE (2009) Evaluating the success of sex-sorted semen in US dairy herds from on farm records. Theriogenology 71:49–58

    PubMed  CAS  Google Scholar 

  • Deleuze S, Dubois CS, Caillaud M, Bruneau B, Goudet G, Duchamp G (2010) Influence of cysteamine on in vitro maturation, in vitro and in vivo fertilization of equine oocytes. Reprod Domest Anim 45:1–7

    PubMed  CAS  Google Scholar 

  • Dematawewa CM, Berger PJ (1998) Break-even cost of cloning in genetic improvement of dairy cattle. J Dairy Sci 81:1136–1147

    PubMed  CAS  Google Scholar 

  • Demetrio DG, Santos RM, Demetrio CG, Vasconcelos JL (2007) Factors affecting conception rates following artificial insemination or embryo transfer in lactating Holstein cows. J Dairy Sci 90:5073–5082

    PubMed  CAS  Google Scholar 

  • Dickerson GE (1978) Animal size and efficiency: basic concepts. Anim Prod 27:367–379

    Google Scholar 

  • Dransfield MB, Nebel RL, Pearson RE, Warnick LD (1998) Timing of insemination for dairy cows identified in estrus by a radiotelemetric estrus detection system. J Dairy Sci 81:1874–1882

    PubMed  CAS  Google Scholar 

  • Drews K, Jozefczuk J, Prigione A, Adjaye J (2012) Human induced pluripotent stem cells—from mechanisms to clinical applications. J Mol Med (Berl) 90: 735–745

    Google Scholar 

  • Drost M (2007) Advanced reproductive technology in the water buffalo. Theriogenology 68:450–453

    PubMed  CAS  Google Scholar 

  • Edwards JL, Schrick FN, McCracken MD, van Amstel SR, Hopkins FM, Welborn MG, Davies CJ (2003) Cloning adult farm animals: a review of the possibilities and problems associated with somatic cell nuclear transfer. Am J Reprod Immunol 50:113–123

    PubMed  CAS  Google Scholar 

  • Ezashi T, Telugu BP, Roberts RM (2012) Induced pluripotent stem cells from pigs and other ungulate species: an alternative to embryonic stem cells? Reprod Domest Anim 47(Suppl 4):92–97

    PubMed  Google Scholar 

  • Farin PW, Slenning BD, Britt JH (1999) Estimates of pregnancy outcomes based on selection of bovine embryos produced in vivo or in vitro. Theriogenology 52:659–670

    PubMed  CAS  Google Scholar 

  • Farin PW, Piedrahita JA, Farin CE (2006) Errors in development of fetuses and placentas from in vitro-produced bovine embryos. Theriogenology 65:178–191

    PubMed  Google Scholar 

  • Flowers WL, Alhusen HD (1992) Reproductive performance and estimates of labor requirements associated with combinations of artificial insemination and natural service in swine. J Anim Sci 70:615–621

    PubMed  CAS  Google Scholar 

  • Foote RH (2002) The history of artificial insemination: selected notes and notables. J Anim Sci 80(E. Suppl):E22–E32

    Google Scholar 

  • Galli C, Lagutina I, Duchi R, Colleoni S, Lazzari G (2008) Somatic cell nuclear transfer in horses. Reprod Domest Anim 43(Suppl 2):331–337

    PubMed  Google Scholar 

  • García EM, Vázquez JM, Parrilla I, Calvete JJ, Sanz L, Caballero I, Roca J, Vazquez JL, Martínez EA (2007) Improving the fertilizing ability of sex sorted boar spermatozoa. Theriogenology 68:771–778

    PubMed  Google Scholar 

  • García-Roselló E, García-Mengual E, Coy P, Alfonso J, Silvestre MA (2009) Intracytoplasmic sperm injection in livestock species: an update. Reprod Domest Anim 44:143–151

    PubMed  Google Scholar 

  • Garner DL, Seidel GE Jr (2008) History of commercializing sexed semen for cattle. Theriogenology 69:886–895

    PubMed  CAS  Google Scholar 

  • Gil MA, Cuello C, Parrilla I, Vazquez JM, Roca J, Martinez EA (2010) Advances in swine in vitro embryo production technologies. Reprod Domest Anim 45(Suppl 2):40–48

    PubMed  Google Scholar 

  • Hansen PJ (2011a) Heat stress and climate change. In: Moo-Young M (ed) Comprehensive biotechnology, vol 4, 2nd edn. Elsevier, Amsterdam, pp 477–485

    Google Scholar 

  • Hansen PJ (2011b) Managing reproduction during heat stress in dairy cows. In: Risco CA, Melendez-Retamel P (eds) Dairy production medicine. Wiley-Blackwell, Chichester, pp 153–163

    Google Scholar 

  • Hansen PJ (2011c) The immunology of early pregnancy in farm animals. Reprod Domest Anim 46(Suppl 3):18–30

    PubMed  Google Scholar 

  • Hansen PJ (2013) Prospects for use of embryo transfer for genetic selection and fertility improvement in cattle. Cattle Pract 21:30–34

    Google Scholar 

  • Hansen PJ, Block J (2004) Towards an embryocentric world: the current and potential uses of embryo technologies in dairy production. Reprod Fertil Dev 16:1–14

    PubMed  Google Scholar 

  • Hayakawa H, Hirai T, Takimoto A, Ideta A, Aoyagi Y (2009) Superovulation and embryo transfer in Holstein cattle using sexed sperm. Theriogenology 71:68–73

    PubMed  CAS  Google Scholar 

  • Hinrichs K (2010) In vitro production of equine embryos: state of the art. Reprod Domest Anim 45(Suppl 2):3–8

    PubMed  Google Scholar 

  • Honaramooz A, Behboodi E, Megee SO, Overton SA, Galantino-Homer H, Echelard Y, Dobrinski I (2003) Fertility and germline transmission of donor haplotype following germ cell transplantation in immunocompetent goats. Biol Reprod 69:1260–1264

    PubMed  CAS  Google Scholar 

  • Hutt KJ, Albertini DF (2006) Clinical applications and limitations of current ovarian stem cell research: a review. J Exp Clin Assist Reprod 3:6

    PubMed  Google Scholar 

  • Johnson LA, Flook JP, Hawk HW (1989) Sex preselection in rabbits: live births from X and Y sperm separated by DNA and cell sorting. Biol Reprod 41:199–203

    PubMed  CAS  Google Scholar 

  • Johnson LA, Weitze KF, Fiser P, Maxwell WM (2000) Storage of boar semen. Anim Reprod Sci 62:143–172

    PubMed  CAS  Google Scholar 

  • Kasimanickam V, Kasimanickam R, Arangasamy A, Saberivand A, Stevenson JS, Kastelic JP (2012) Association between mRNA abundance of functional sperm function proteins and fertility of Holstein bulls. Theriogenology 78:2007–2019

    PubMed  CAS  Google Scholar 

  • Keefer CL (2008) Lessons learned from nuclear transfer (cloning). Theriogenology 69:48–54

    PubMed  CAS  Google Scholar 

  • Klinc P, Rath D (2007) Reduction of oxidative stress in bovine spermatozoa during flow cytometric sorting. Reprod Domest Anim 42:63–67

    PubMed  CAS  Google Scholar 

  • Landivar C, Galina CS, Duchateau A, Navarro-Fierro R (1985) Fertility trial in Zebu cattle after a natural or controlled estrus with prostaglandin F2 alpha, comparing natural mating with artificial insemination. Theriogenology 23:421–429

    PubMed  CAS  Google Scholar 

  • Larson JE, Lamb GC, Funnell BJ, Bird S, Martins A, Rodgers JC (2010) Embryo production in superovulated Angus cows inseminated four times with sexed-sorted or conventional, frozen-thawed semen. Theriogenology 73:698–703

    PubMed  CAS  Google Scholar 

  • Leahy T, Marti JI, Evans G, Maxwell WM (2009) Seminal plasma proteins protect flow-sorted ram spermatozoa from freeze-thaw damage. Reprod Fertil Dev 21: 571–578

    PubMed  CAS  Google Scholar 

  • Leboeuf B, Delgadillo JA, Manfredi E, Piacère A, Clément V, Martin P, Pellicer M, Boué P, de Cremoux R (2008) Management of goat reproduction and insemination for genetic improvement in France. Reprod Domest Anim 43(Suppl 2):379–385

    PubMed  Google Scholar 

  • Lima FS, Risco CA, Thatcher MJ, Benzaquen ME, Archbald LF, Santos JE, Thatcher WW (2009) Comparison of reproductive performance in lactating dairy cows bred by natural service or timed artificial insemination. J Dairy Sci 92:5456–5466

    PubMed  CAS  Google Scholar 

  • Loi P, Clinton M, Vackova I, Fulka J Jr, Feil R, Palmieri C, Della Salda L, Ptak G (2006) Placental abnormalities associated with post-natal mortality in sheep somatic cell clones. Theriogenology 65:1110–1121

    PubMed  Google Scholar 

  • Loomis PR (2001) The equine frozen semen industry. Anim Reprod Sci 68:191–200

    PubMed  CAS  Google Scholar 

  • Loomis PR, Graham JK (2008) Commercial semen freezing: individual male variation in cryosurvival and response of stallion sperm to customized freezing protocols. Anim Reprod Sci 105:119–128

    PubMed  CAS  Google Scholar 

  • Lopes RF, Forell F, Oliveira AT, Rodrigues JL (2001) Splitting and biopsy for bovine embryo sexing under field conditions. Theriogenology 56:1383–1392

    PubMed  CAS  Google Scholar 

  • Lu K, Cran DG, Seidel GE Jr (1999) In vitro fertilization with flow-cytometrically-sorted bovine sperm. Theriogenology 52:1393–1405

    PubMed  CAS  Google Scholar 

  • Luo Y, Lin L, Bolund L, Jensen TG, Sørensen CB (2012) Genetically modified pigs for biomedical research. J Inherit Metab Dis 35:695–713

    PubMed  CAS  Google Scholar 

  • Meirelles FV, Birgel EH, Perecin F, Bertolini M, Traldi AS, Pimentel JR, Komninou ER, Sangalli JR, Neto PF, Nunes MT, Pogliani FC, Meirelles FD, Kubrusly FS, Vannucchi CI, Silva LC (2010) Delivery of cloned offspring: experience in Zebu cattle (Bos indicus). Reprod Fertil Dev 22:88–97

    PubMed  Google Scholar 

  • Men H, Walters EM, Nagashima H, Prather RS (2012) Emerging applications of sperm, embryo and somatic cell cryopreservation in maintenance, relocation and rederivation of swine genetics. Theriogenology 78: 1720–1729

    PubMed  CAS  Google Scholar 

  • Merton JS, de Roos AP, Mullaart E, de Ruigh L, Kaal L, Vos PL, Dieleman SJ (2003) Factors affecting oocyte quality and quantity in commercial application of embryo technologies in the cattle breeding industry. Theriogenology 59:651–674

    PubMed  CAS  Google Scholar 

  • Merton JS, Ask B, Onkundi DC, Mullaart E, Colenbrander B, Nielen M (2009) Genetic parameters for oocyte number and embryo production within a bovine ovum pick-up-in vitro production embryo-production program. Theriogenology 72:885–893

    PubMed  CAS  Google Scholar 

  • Mikkola M, Sironen A, Kopp C, Taponen J, Sukura A, Vilkki J, Katila T, Andersson M (2006) Transplantation of normal boar testicular cells resulted in complete focal spermatogenesis in a boar affected by the immotile short-tail sperm defect. Reprod Domest Anim 41: 124–128

    PubMed  CAS  Google Scholar 

  • Moghaddaszadeh-Ahrabi S, Farajnia S, Rahimi-Mianji G, Nejati-Javaremi A (2012) A short and simple improved-primer extension preamplification (I-PEP) procedure for whole genome amplification (WGA) of bovine cells. Anim Biotechnol 23:24–42

    PubMed  CAS  Google Scholar 

  • Moore K, Thatcher WW (2006) Major advances associated with reproduction in dairy cattle. J Dairy Sci 89:1254–1266

    PubMed  CAS  Google Scholar 

  • Moruzzi JF (1979) Selecting a mammalian species for the determination of X- and Y-chromosome-bearing sperm. J Reprod Fertil 57:319–323

    PubMed  CAS  Google Scholar 

  • Mozo-Martín R, Gil L, Gómez-Rincón CF, Dahmani Y, García-Tomás M, Úbeda JL, Grandía J (2012) Use of a novel double uterine deposition artificial insemination technique using low concentrations of sperm in pigs. Vet J 193:251–256

    PubMed  Google Scholar 

  • Nagano M, Brinster CJ, Orwig KE, Ryu BY, Avarbock MR, Brinster RL (2001) Transgenic mice produced by retroviral transduction of male germ-line stem cells. Proc Natl Acad Sci U S A 98:13090–13095

    PubMed  CAS  Google Scholar 

  • Nivet al, Bunel A, Labrecque R, Belanger J, Vigneault C, Blondin P, Sirard MA (2012) FSH withdrawal improves developmental competence of oocytes in the bovine model. Reproduction 143:165–171

    Google Scholar 

  • Norman HD, Hutchison JL, Miller RH (2010) Use of sexed semen and its effect on conception rate, calf sex, dystocia, and stillbirth of Holsteins in the United States. J Dairy Sci 93:3880–3890

    PubMed  CAS  Google Scholar 

  • Notter DR (2008) Genetic aspects of reproduction in sheep. Reprod Domest Anim 43(Suppl 2):122–128

    PubMed  Google Scholar 

  • Novak S, Ruiz-Sánchez A, Dixon WT, Foxcroft GR, Dyck MK (2010a) Seminal plasma proteins as potential markers of relative fertility in boars. J Androl 31:188–200

    PubMed  CAS  Google Scholar 

  • Novak S, Smith TA, Paradis F, Burwash L, Dyck MK, Foxcroft GR, Dixon WT (2010b) Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology 74:956–967

    PubMed  CAS  Google Scholar 

  • Nowak-Imialek M, Kues W, Carnwath JW, Niemann H (2011) Pluripotent stem cells and reprogrammed cells in farm animals. Microsc Microanal 17:474–497

    PubMed  CAS  Google Scholar 

  • O’Brien JK, Steinman KJ, Robeck TR (2009) Application of sperm sorting and associated reproductive technology for wildlife management and conservation. Theriogenology 71:98–107

    PubMed  Google Scholar 

  • Oatley JM (2010) Spermatogonial stem cell biology in the bull: development of isolation, culture, and transplantation methodologies and their potential impacts on cattle production. Soc Reprod Fertil Suppl 67:133–143

    PubMed  CAS  Google Scholar 

  • Oatley JM, Brinster RL (2012) The germline stem cell niche unit in mammalian testes. Physiol Rev 92:577–595

    PubMed  CAS  Google Scholar 

  • Oback B (2008) Climbing mount efficiency—small steps, not giant leaps towards higher cloning success in farm animals. Reprod Domest Anim 43(Suppl 2):407–416

    PubMed  Google Scholar 

  • Oback B (2009) Cloning from stem cells: different lineages, different species, same story. Reprod Fertil Dev 21:83–94

    PubMed  CAS  Google Scholar 

  • Onteru SK, Ross JW, Rothschild MF (2009) The role of gene discovery, QTL analyses and gene expression in reproductive traits in the pig. Soc Reprod Fertil Suppl 66:87–102

    PubMed  CAS  Google Scholar 

  • Park YJ, Kwon WS, Oh SA, Pang MG (2012) Fertility-related proteomic profiling bull spermatozoa separated by percoll. J Proteome Res 11:4162–4168

    PubMed  CAS  Google Scholar 

  • Pereira RM, Marques CC (2008) Animal oocyte and embryo cryopreservation. Cell Tissue Bank 9:267–277

    PubMed  CAS  Google Scholar 

  • Perumal P, Selvaraju S, Selvakumar S, Barik AK, Mohanty DN, Das S, Das RK, Mishra PC (2011) Effect of pre-freeze addition of cysteine hydrochloride and reduced glutathione in semen of crossbred Jersey bulls on sperm parameters and conception rates. Reprod Domest Anim 46:636–641

    PubMed  CAS  Google Scholar 

  • Polisseni J, Sá WF, Guerra Mde O, Machado MA, Serapião RV, Carvalho BC, Camargo LS, Peters VM (2010) Post-biopsy bovine embryo viability and whole genome amplification in preimplantation genetic diagnosis. Fertil Steril 93:783–788

    PubMed  CAS  Google Scholar 

  • Pontes JH, Silva KC, Basso AC, Rigo AG, Ferreira CR, Santos GM, Sanches BV, Porcionato JP, Vieira PH, Faifer FS, Sterza FA, Schenk JL, Seneda MM (2010) Large-scale in vitro embryo production and pregnancy rates from Bos taurus, Bos indicus, and indicus-taurus dairy cows using sexed sperm. Theriogenology 74: 1349–1355

    PubMed  CAS  Google Scholar 

  • Rasmussen S, Block J, Seidel GE, Brink Z, McSweeney K, Farin PW, Bonilla L, Hansen PJ (2013) Pregnancy rates of lactating cows after transfer of in vitro produced embryos using X-sorted sperm. Theriogenology 79(3):453–461

    PubMed  CAS  Google Scholar 

  • Rath D, Johnson LA (2008) Application and commercialization of flow cytometrically sex-sorted semen. Reprod Domest Anim 43(Suppl 2):338–346

    PubMed  Google Scholar 

  • Rath D, Moench-Tegeder G, Taylor U, Johnson LA (2009) Improved quality of sex-sorted sperm: a prerequisite for wider commercial application. Theriogenology 71:22–29

    PubMed  CAS  Google Scholar 

  • Ribeiro ES, Galvão KN, Thatcher WW, Santos JEP (2012) Economic aspects of applying reproductive technologies to dairy herds. Anim Reprod 9:370–387

    Google Scholar 

  • Rico C, Drouilhet L, Salvetti P, Dalbiès-Tran R, Jarrier P, Touzé JL, Pillet E, Ponsart C, Fabre S, Monniaux D (2012) Determination of anti-Müllerian hormone concentrations in blood as a tool to select Holstein donor cows for embryo production: from the laboratory to the farm. Reprod Fertil Dev 24:932–944

    PubMed  CAS  Google Scholar 

  • Robinson JJ, McKelvey WA, King ME, Mitchell SE, Mylne MJ, McEvoy TG, Dingwall WS, Williams LM (2011) Traversing the ovine cervix—a challenge for cryopreserved semen and creative science. Animal 5:1791–1804

    PubMed  CAS  Google Scholar 

  • Roca J, Parrilla I, Rodriguez-Martinez H, Gil MA, Cuello C, Vazquez JM, Martinez EA (2011) Approaches towards efficient use of boar semen in the pig industry. Reprod Domest Anim 46(Suppl 2):79–83

    PubMed  Google Scholar 

  • Rodriguez-Osorio N, Urrego R, Cibelli JB, Eilertsen K, Memili E (2012) Reprogramming mammalian somatic cells. Theriogenology 78:1869–1886

    PubMed  CAS  Google Scholar 

  • Roser JF, Meyers-Brown G (2012) Superovulation in the mare: a work in progress. J Equine Vet Sci 32: 376–386

    Google Scholar 

  • Santos-Biase WK, Biase FH, Buratini J Jr, Balieiro J, Watanabe YF, Accorsi MF, Ferreira CR, Stranieri P, Caetano AR, Meirelles FV (2012) Single nucleotide polymorphisms in the bovine genome are associated with the number of oocytes collected during ovum pick up. Anim Reprod Sci 134:141–149

    PubMed  CAS  Google Scholar 

  • Saragusty J, Arav A (2011) Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction 141:1–19

    PubMed  CAS  Google Scholar 

  • Sartori R, Souza AH, Guenther JN, Carviello DZ, Geiger LN, Schenk JL, Wiltbank MC (2004) Fertilization rate and embryo quality in superovulated Holstein heifers artificially inseminated with X-sorted or unsorted sperm. Anim Reprod 1:86–90

    Google Scholar 

  • Sartori R, Gümen A, Guenther JN, Souza AH, Caraviello DZ, Wiltbank MC (2006) Comparison of artificial insemination versus embryo transfer in lactating dairy cows. Theriogenology 65:1311–1321

    PubMed  CAS  Google Scholar 

  • Smith LC, Suzuki J Jr, Goff AK, Filion F, Therrien J, Murphy BD, Kohan-Ghadr HR, Lefebvre R, Brisville AC, Buczinski S, Fecteau G, Perecin F, Meirelles FV (2012) Developmental and epigenetic anomalies in cloned cattle. Reprod Domest Anim 47(Suppl 4): 107–114

    PubMed  Google Scholar 

  • Son DS, Choe CY, Cho SR, Choi SH, Kim HJ, Hur TY, Jung YG, Kang HG, Kim IM (2007) A CIDR-based timed embryo transfer protocol increases the pregnancy rate of lactating repeat breeder dairy cows. J Reprod Dev 53:1313–1318

    PubMed  Google Scholar 

  • Spizziri BE, Fox MH, Bruemmer JE, Squires EL, Graham JK (2010) Cholesterol-loaded-cyclodextrins and fertility potential of stallions spermatozoa. Anim Reprod Sci 118:255–264

    PubMed  CAS  Google Scholar 

  • Stewart BM, Block J, Morelli P, Navarette AE, Amstalden M, Bonilla L, Hansen PJ, Bilby TR (2011) Efficacy of embryo transfer in lactating dairy cows during summer using fresh or vitrified embryos produced in vitro with sex-sorted semen. J Dairy Sci 94:3437–3445

    PubMed  CAS  Google Scholar 

  • Stockwell S, Herrid M, Davey R, Brownlee A, Hutton K, Hill JR (2009) Microsatellite detection of donor-derived sperm DNA following germ cell transplantation in cattle. Reprod Fertil Dev 21:462–468

    PubMed  CAS  Google Scholar 

  • Stroud B (2011) IETS 2011 Statistics and Data Retrieval Committee Report. Embryo Transf Newsl 29(4): 14–23

    Google Scholar 

  • Thatcher WW, Santos JE, Staples CR (2011) Dietary manipulations to improve embryonic survival in cattle. Theriogenology 76:1619–1631

    PubMed  CAS  Google Scholar 

  • Thornton P, Herrero M, Freeman A, Mwai O, Rege E, Jones P, McDermott J (2007) Vulnerability, climate change and livestock—research opportunities and challenges for poverty alleviation. SAT eJournal 4:1–23

    Google Scholar 

  • Tríbulo A, Rogan D, Tribulo H, Tribulo R, Alasino RV, Beltramo D, Bianco I, Mapletoft RJ, Bó GA (2011) Superstimulation of ovarian follicular development in beef cattle with a single intramuscular injection of Folltropin-V. Anim Reprod Sci 129:7–13

    PubMed  Google Scholar 

  • Tsiligianni T, Valasi I, Cseh S, Vainas E, Faigl V, Samartzi F, Papanikolaou T, Dovolou E, Amiridis G (2009) Effects of melatonin treatment on follicular development and oocyte quality in Chios ewes—short communication. Acta Vet Hung 57:331–335

    PubMed  CAS  Google Scholar 

  • Underwood SL, Bathgate R, Maxwell WM, Evans G (2010a) Birth of offspring after artificial insemination of heifers with frozen-thawed, sex-sorted, re-frozen-thawed bull sperm. Anim Reprod Sci 118:171–175

    PubMed  CAS  Google Scholar 

  • Underwood SL, Bathgate R, Pereira DC, Castro A, Thomson PC, Maxwell WM, Evans G (2010b) Embryo production after in vitro fertilization with frozen-thawed, sex-sorted, re-frozen-thawed bull sperm. Theriogenology 73:97–102

    PubMed  CAS  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2011) World population prospects: the 2010 revision, highlights and advance tables. Working Paper No. ESA/P/WP.220, New York

    Google Scholar 

  • Vajta G, Callesen H (2012) Establishment of an efficient somatic cell nuclear transfer system for production of transgenic pigs. Theriogenology 77:1263–1274

    PubMed  CAS  Google Scholar 

  • Vajta G, Rienzi L, Cobo A, Yovich J (2010) Embryo culture: can we perform better than nature? Reprod Biomed Online 20:453–469

    PubMed  Google Scholar 

  • VanRaden PM, Van Tassell CP, Wiggans GR, Sonstegard TS, Schnabel RD, Taylor JF, Schenkel FS (2009) Invited review: reliability of genomic predictions for North American Holstein bulls. J Dairy Sci 92:16–24

    PubMed  CAS  Google Scholar 

  • Vasconcelos JL, Demétrio DG, Santos RM, Chiari JR, Rodrigues CA, Sá Filho OG (2006) Factors potentially affecting fertility of lactating dairy cow recipients. Theriogenology 65:192–200

    PubMed  CAS  Google Scholar 

  • Vasconcelos JL, Jardina DT, Sá Filho OG, Aragon FL, Veras MB (2011) Comparison of progesterone-based protocols with gonadotropin-releasing hormone or estradiol benzoate for timed artificial insemination or embryo transfer in lactating dairy cows. Theriogenology 75:1153–1160

    PubMed  CAS  Google Scholar 

  • Vidament M, Vincent P, Martin FX, Magistrini M, Blesbois E (2009) Differences in ability of jennies and mares to conceive with cooled and frozen semen containing glycerol or not. Anim Reprod Sci 112:22–35

    PubMed  CAS  Google Scholar 

  • Weigel KA, Hoffman PC, Herring W, Lawlor TJ Jr (2012) Potential gains in lifetime net merit from genomic testing of cows, heifers, and calves on commercial dairy farms. J Dairy Sci 95:2215–2225

    PubMed  CAS  Google Scholar 

  • Wheeler MB, Rutledge JJ, Fischer-Brown A, VanEtten T, Malusky S, Beebe DJ (2006) Application of sexed semen technology to in vitro embryo production in cattle. Theriogenology 65:219–227

    PubMed  Google Scholar 

  • White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL (2012) Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med 18:413–421

    PubMed  CAS  Google Scholar 

  • Whitworth KM, Prather RS (2010) Somatic cell nuclear transfer efficiency: how can it be improved through nuclear remodeling and reprogramming? Mol Reprod Dev 77:1001–1015

    PubMed  CAS  Google Scholar 

  • Whyte JJ, Prather RS (2011) Genetic modifications of pigs for medicine and agriculture. Mol Reprod Dev 78:879–891

    PubMed  CAS  Google Scholar 

  • Wilmot S (2007) From ‘public service’ to artificial insemination: animal breeding science and reproductive research in early twentieth-century Britain. Stud Hist Philos Biol Biomed Sci 38:411–441

    PubMed  Google Scholar 

  • Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    PubMed  CAS  Google Scholar 

  • Wiltbank MC, Sartori R, Herlihy MM, Vasconcelos JL, Nascimento AB, Souza AH, Ayres H, Cunha AP, Keskin A, Guenther JN, Gumen A (2011) Managing the dominant follicle in lactating dairy cows. Theriogenology 76:1568–1582

    PubMed  CAS  Google Scholar 

  • Woods DC, Tilly JL (2012) The next (re)generation of ovarian biology and fertility in women: is current science tomorrow’s practice? Fertil Steril 98:3–10

    PubMed  Google Scholar 

  • Xu J, Guo Z, Su L, Nedambale TL, Zhang J, Schenk J, Moreno JF, Dinnyés A, Ji W, Tian XC, Yang X, Du F (2006) Developmental potential of vitrified Holstein cattle embryos fertilized in vitro with sex-sorted sperm. J Dairy Sci 89:2510–2518

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Funahashi H (2012) Effect of the addition of beta-mercaptoethanol to a thawing solution supplemented with caffeine on the function of frozen-thawed boar sperm and on the fertility of sows after artificial insemination. Theriogenology 77:926–932

    PubMed  CAS  Google Scholar 

  • Yoshioka K (2011) Development and application of a chemically defined medium for the in vitro production of porcine embryos. J Reprod Dev 57:9–16

    PubMed  CAS  Google Scholar 

  • Youngs CR (2011) Factors influencing the success of embryo transfer in the pig. Theriogenology 56: 1311–1320

    Google Scholar 

  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    PubMed  CAS  Google Scholar 

  • Zhang W, Yi K, Chen C, Hou X, Zhou X (2012) Application of antioxidants and centrifugation for cryopreservation of boar spermatozoa. Anim Reprod Sci 132:123–128

    PubMed  CAS  Google Scholar 

  • Zou K, Yuan Z, Yang Z, Luo H, Sun K, Zhou L, Xiang J, Shi L, Yu Q, Zhang Y, Hou R, Wu J (2009) Production of offspring from a germline stem cell line derived from neonatal ovaries. Nat Cell Biol 11:631–636

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hansen, P.J. (2014). Current and Future Assisted Reproductive Technologies for Mammalian Farm Animals. In: Lamb, G., DiLorenzo, N. (eds) Current and Future Reproductive Technologies and World Food Production. Advances in Experimental Medicine and Biology, vol 752. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8887-3_1

Download citation

Publish with us

Policies and ethics