Skip to main content

SRAM-Based Memory Operation and Yield

  • Chapter
  • First Online:
Embedded Memory Design for Multi-Core and Systems on Chip

Part of the book series: Analog Circuits and Signal Processing ((ACSP,volume 116))

Abstract

The SRAM 6T cell typically is the most frequently used cell in designs requiring on-chip memory due to its fast access time and relatively small area. Its main function is to store data for the program to access; it retains the stored data so long as power is applied (volatile). The detail schematic of a 6T cell is shown in Fig. 4.1. Its design involves complex tradeoffs between the following seven factors [9, 27, 28].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilkes, M. The memory gap and the future of high performance memories, ACM Computer Architecture News, vol. 29, March 2001, pp. 2–7.

    Google Scholar 

  2. Weste, N. and Harris, D. CMOS VLSI Design: A Circuits and Systems Perspective, Addison-Wesley, 2005.

    Google Scholar 

  3. Rabaey, J.; Chandrakasan A.; Nikolic B.; Digital Integrated Circuits (2nd Edition), Jan 2003.

    Google Scholar 

  4. J. Bhavnagarwala et al. The impact of intrinsic device fluctuations on CMOS SRAM cell stability, IEEE J. Solid-State Circuits, volume 36, April 2001, pp. 658–665.

    Article  Google Scholar 

  5. R. Kapre, K. Shakeri, H. Puchner, J. Tandigan, T. Nigam, K. Jang, M. V. R. Reddy, S. Lakshminarayanan, D. Sajoto, and M. Whately, SRAM Variability and Supply Voltage Scaling Challenges. IEEE, 2007, pp. 782–787.

    Google Scholar 

  6. Kumar, S.V., Kim, C.H., and Sapatnekar A. Impact of NBTI on SRAM Read Stability and Design for Reliability, in Proc. ISLPED, 2006.

    Google Scholar 

  7. Mohammad, B.; Bassett, P.; Aziz, A; and Abraham J. Cache Organization for Embedded Processors: CAM-vs-SRAM., IEEE International SOC Conference, September 2006, pp. 299–302.

    Google Scholar 

  8. Kao, J.; Chandrakasan, P. Dual-Threshold Voltage Techniques for Low-Power Digital Circuits, IEEE Journal of Solid-State Circuits, volume 35, July 2000, pp. 1009–1018.

    Article  Google Scholar 

  9. Qualcomm Snapdragon S4 Mobile Processors, www.qualcomm.com/snapdragon, October 2011.

  10. Amelifard, B; Fallah, F.; Pedram, M. Leakage minimization of SRAM cells in a dual-Vt and dual-Tox technology, Trans. On VLSI Systems, 2008.

    Google Scholar 

  11. Mukhopadhyay, S.; Mahmoodi, H, and Roy, K. Modeling of failure probability and statistical design of SRAM array for yield enhancement in nanoscaled CMOS, Proc. of TCAD, December 2005, pp. 1859–1880.

    Google Scholar 

  12. J. G. Massey. NBTI: what we know and what we need to know—a tutorial addressing the current understanding and challenges for the future, In IEEE International Integrated Reliability Workshop Final Report, 2004; pp. 199–211.

    Google Scholar 

  13. Chandarkasan, W.J., and Fox F. Design of High-Performance Microprocessir Circuits, IEEE Press 2000.

    Google Scholar 

  14. K.-L. C. K.-L. Cheng, C. C. Wu, Y. P. Wang, D. W. Lin, C. M. Chu, Y. Y. Tarng, S. Y. Lu, S. J. Yang, M. H. Hsieh, C. M. Liu, S. P. Fu, J. H. Chen, C. T. Lin, W. Y. Lien, H. Y. Huang, P. W. Wang, H. H. Lin, D. Y. Lee, M. J. Huang, C. F. Nieh, L. T. Lin, C. C. Chen, W. Chang, Y. H. Chiu, M. Y. Wang, C. H. Yeh, F. C. Chen, Y. H. Chang, S. C. Wang, H. C. Hsieh, M. D. Lei, K. Goto, H. J. Tao, M. Cao, H. C. Tuan, C. H. Diaz, Y. J. Mii, and C. M. Wu, A highly scaled, high performance 45 nm bulk logic CMOS technology with 0.242 amp;#x003BC;m2 SRAM cell. IEEE, 2007, pp. 243–246.

    Google Scholar 

  15. Kuhn, K. Reducing variation in advanced logic technologies: Approaches to process and design for manufacturability of nano scale CMOS, Proc. IEDM, December 2007, pp. 471–474.

    Google Scholar 

  16. Calhounm, A.; and Chandrakasan, A. Analyzing Static Noise Margin for sub-threshold SRAM in 65nm CMOS, ESSCIRC, September 2005, pp. 1673–1679.

    Google Scholar 

  17. Mohammad, B; Saint-Laurent, M; Bassett P.; Abraham J. Cache Design for Low Power and High Yield, ISQED, March 2008, pp. 103–107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mohammad, B. (2014). SRAM-Based Memory Operation and Yield. In: Embedded Memory Design for Multi-Core and Systems on Chip. Analog Circuits and Signal Processing, vol 116. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8881-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8881-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8880-4

  • Online ISBN: 978-1-4614-8881-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics