Skip to main content

Cardiac CT and MR Evaluation of the Adult Fontan Patient

  • Chapter
  • First Online:
Cardiac CT and MR for Adult Congenital Heart Disease

Abstract

Congenital heart disease resulting in single ventricular physiology includes many diverse diagnoses (see Table 21.1). Optimal palliation for such patients requires that the ventricle act as the systemic pump and that a secure source of pulmonary blood flow is created. Unobstructed flow to the systemic and pulmonary circulations is the goal; optimally, widely patent aortic anatomy and branch pulmonary arteries are desirable. Due to complex anatomy and hemodynamics, any single ventricle patient with Fontan palliation requires continued meticulous medical surveillance. A critical component of this care involves advanced cardiac imaging. A multimodality imaging approach for the Fontan patient is best performed at a center with expertise in adult congenital heart disease and in-depth knowledge regarding the advantages and disadvantages of each imaging technique. Cardiac magnetic resonance (CMR) imaging and multidetector cardiac computed tomography (MDCT) are the noninvasive, advanced cardiac imaging techniques presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castaneda AR. From Glenn to Fontan. A continuing evolution. Circulation. 1992;86:II80–4.

    PubMed  CAS  Google Scholar 

  2. Trusler GA, Williams WG, Cohen AJ, et al. William Glenn lecture. The cavopulmonary shunt. Evolution of a concept. Circulation. 1990;82:IV131–8.

    PubMed  CAS  Google Scholar 

  3. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax. 1971;26:240–8.

    Article  PubMed  CAS  Google Scholar 

  4. Reul GJ, Gregoric ID. Recent modifications of the Fontan procedure for complex congenital heart disease. Tex Heart Inst J. 1992;19:223–31.

    PubMed  CAS  Google Scholar 

  5. Said SM, Burkhart HM, Dearani JA. The Fontan connections: past, present, and future. World J Pediatr Congenit Heart Surg. 2012;3:171–82.

    Article  PubMed  Google Scholar 

  6. Kreutzer G, Galindez E, Bono H, De Palma C, Laura JP. An operation for the correction of tricuspid atresia. J Thorac Cardiovasc Surg. 1973;66:613–21.

    PubMed  CAS  Google Scholar 

  7. Kreutzer GO, Vargas FJ, Schlichter AJ, et al. Atriopulmonary anastomosis. J Thorac Cardiovasc Surg. 1982;83:427–36.

    PubMed  CAS  Google Scholar 

  8. Bjork VO, Olin CL, Bjarke BB, Thoren CA. Right atrial-right ventricular anastomosis for correction of tricuspid atresia. J Thorac Cardiovasc Surg. 1979;77:452–8.

    PubMed  CAS  Google Scholar 

  9. Cowgill LD. The Fontan procedure: a historical review. Ann Thorac Surg. 1991;51:1026–30.

    Article  PubMed  CAS  Google Scholar 

  10. Mavroudis C, Backer CL, Deal BJ, Johnsrude C, Strasburger J. Total cavopulmonary conversion and maze procedure for patients with failure of the Fontan operation. J Thorac Cardiovasc Surg. 2001;122:863–71.

    Article  PubMed  CAS  Google Scholar 

  11. Fredenburg TB, Johnson TR, Cohen MD. The Fontan procedure: anatomy, complications, and manifestations of failure. Radiographics. 2011;31:453–63.

    Article  PubMed  Google Scholar 

  12. de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atriopulmonary connection for complex Fontan operations. Experimental studies and early clinical experience. J Thorac Cardiovasc Surg. 1988;96:682–95.

    PubMed  Google Scholar 

  13. Marcelletti C, Corno A, Giannico S, Marino B. Inferior vena cava-pulmonary artery extracardiac conduit. A new form of right heart bypass. J Thorac Cardiovasc Surg. 1990;100:228–32.

    PubMed  CAS  Google Scholar 

  14. Rogers LS, Glatz AC, Ravishankar C, et al. 18 years of the Fontan operation at a single institution: results from 771 consecutive patients. J Am Coll Cardiol. 2012;60:1018–25.

    Article  PubMed  Google Scholar 

  15. Norwood WI, Jacobs ML. Fontan’s procedure in two stages. Am J Surg. 1993;166:548–51.

    Article  PubMed  CAS  Google Scholar 

  16. Kawashima Y, Kitamura S, Matsuda H, Shimazaki Y, Nakano S, Hirose H. Total cavopulmonary shunt operation in complex cardiac anomalies. A new operation. J Thorac Cardiovasc Surg. 1984;87:74–81.

    PubMed  CAS  Google Scholar 

  17. Srivastava D, Preminger T, Lock JE, et al. Hepatic venous blood and the development of pulmonary arteriovenous malformations in congenital heart disease. Circulation. 1995;92:1217–22.

    Article  PubMed  CAS  Google Scholar 

  18. McElhinney DB, Kreutzer J, Lang P, Mayer Jr JE, del Nido PJ, Lock JE. Incorporation of the hepatic veins into the cavopulmonary circulation in patients with heterotaxy and pulmonary arteriovenous malformations after a Kawashima procedure. Ann Thorac Surg. 2005;80:1597–603.

    Article  PubMed  Google Scholar 

  19. Bradley SM, Mosca RS, Hennein HA, Crowley DC, Kulik TJ, Bove EL. Bidirectional superior cavopulmonary connection in young infants. Circulation. 1996;94:II5–11.

    PubMed  CAS  Google Scholar 

  20. Lemler MS, Scott WA, Leonard SR, Stromberg D, Ramaciotti C. Fenestration improves clinical outcome of the fontan procedure: a prospective, randomized study. Circulation. 2002;105:207–12.

    Article  PubMed  Google Scholar 

  21. Rychik J, Goldberg D, Dodds K. Long-term results and consequences of single ventricle palliation. Prog Pediatr Cardiol. 2010;29:19–23.

    Article  Google Scholar 

  22. Rychik J. Forty years of the Fontan operation: a failed strategy. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13:96–100.

    Article  PubMed  Google Scholar 

  23. Garg R, Powell AJ, Sena L, Marshall AC, Geva T. Effects of metallic implants on magnetic resonance imaging evaluation of Fontan palliation. Am J Cardiol. 2005;95:688–91.

    Article  PubMed  Google Scholar 

  24. Lambert V, Sigal-Cinqualbre A, Belli E, et al. Preoperative and postoperative evaluation of airways compression in pediatric patients with 3-dimensional multislice computed tomographic scanning: effect on surgical management. J Thorac Cardiovasc Surg. 2005;129:1111–8.

    Article  PubMed  Google Scholar 

  25. McCollough CH, Chen GH, Kalender W, et al. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology. 2012;264:567–80.

    Article  PubMed  Google Scholar 

  26. Donnelly LF, Emery KH, Brody AS, et al. Minimizing radiation dose for pediatric body applications of single-detector helical CT: strategies at a large Children’s Hospital. AJR Am J Roentgenol. 2001;176: 303–6.

    Article  PubMed  CAS  Google Scholar 

  27. Kalra MK, Maher MM, Toth TL, et al. Strategies for CT radiation dose optimization. Radiology. 2004;230: 619–28.

    Article  PubMed  Google Scholar 

  28. Frush DP. Strategies of dose reduction. Pediatr Radiol. 2002;32:293–7.

    Article  PubMed  Google Scholar 

  29. Lell MM, May M, Deak P, et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Invest Radiol. 2011;46:116–23.

    Article  PubMed  Google Scholar 

  30. Renker M, Ramachandra A, Schoepf UJ, et al. Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr. 2011;5:225–30.

    Article  PubMed  Google Scholar 

  31. Han BK, Grant KL, Garberich R, Sedlmair M, Lindberg J, Lesser JR. Assessment of an iterative reconstruction algorithm (SAFIRE) on image quality in pediatric cardiac CT datasets. J Cardiovasc Comput Tomogr. 2012;6:200–4.

    Article  PubMed  Google Scholar 

  32. Nelson RC, Feuerlein S, Boll DT. New iterative reconstruction techniques for cardiovascular computed tomography: how do they work, and what are the advantages and disadvantages? J Cardiovasc Comput Tomogr. 2011;5:286–92.

    Article  PubMed  Google Scholar 

  33. Mieville FA, Gudinchet F, Rizzo E, et al. Paediatric cardiac CT examinations: impact of the iterative reconstruction method ASIR on image quality–preliminary findings. Pediatr Radiol. 2011;41:1154–64.

    Article  PubMed  Google Scholar 

  34. Flohr T, Prokop M, Becker C, et al. A retrospectively ECG-gated multislice spiral CT scan and reconstruction technique with suppression of heart pulsation artifacts for cardio-thoracic imaging with extended volume coverage. Eur Radiol. 2002;12:1497–503.

    Article  PubMed  CAS  Google Scholar 

  35. Takx RA, Moscariello A, Schoepf UJ, et al. Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol. 2012;81:e598–604.

    Article  PubMed  Google Scholar 

  36. Kim HY, Lee JW, Hong YJ, et al. Dual-source coronary CT angiography in patients with high heart rates using a prospectively ECG-triggered axial mode at end-systole. Int J Cardiovasc Imaging. 2012;28 (Suppl 2):101–7.

    Google Scholar 

  37. Baumueller S, Alkadhi H, Stolzmann P, et al. Computed tomography of the lung in the high-pitch mode: is breath holding still required? Invest Radiol. 2011;46:240–5.

    Article  PubMed  Google Scholar 

  38. Han BK, Lindberg J, Overman D, Schwartz RS, Grant K, Lesser JR. Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population. J Cardiovasc Comput Tomogr. 2012;6:252–9.

    Article  PubMed  Google Scholar 

  39. Fink C, Krissak R, Henzler T, et al. Radiation dose at coronary CT angiography: second-generation dual-source CT versus single-source 64-MDCT and first-generation dual-source CT. AJR Am J Roentgenol. 2011;196:W550–7.

    Article  PubMed  Google Scholar 

  40. Paul JF, Rohnean A, Elfassy E, Sigal-Cinqualbre A. Radiation dose for thoracic and coronary step-and-shoot CT using a 128-slice dual-source machine in infants and small children with congenital heart disease. Pediatr Radiol. 2011;41:244–9.

    Article  PubMed  Google Scholar 

  41. Prabhu SP, Mahmood S, Sena L, Lee EY. MDCT evaluation of pulmonary embolism in children and young adults following a lateral tunnel Fontan procedure: optimizing contrast-enhancement techniques. Pediatr Radiol. 2009;39:938–44.

    Article  PubMed  Google Scholar 

  42. Park EA, Lee W, Chung SY, Yin YH, Chung JW, Park JH. Optimal scan timing and intravenous route for contrast-enhanced computed tomography in patients after Fontan operation. J Comput Assist Tomogr. 2010;34:75–81.

    Article  PubMed  Google Scholar 

  43. Goo HW, Jhang WK, Kim YH, et al. CT findings of plastic bronchitis in children after a Fontan operation. Pediatr Radiol. 2008;38:989–93.

    Article  PubMed  Google Scholar 

  44. Kim YM, Yoo SJ, Kim TH, et al. Three-dimensional computed tomography in children with compression of the central airways complicating congenital heart disease. Cardiol Young. 2002;12:44–50.

    Article  PubMed  Google Scholar 

  45. Eichhorn JG, Long FR, Hill SL, et al. Assessment of in-stent stenosis in small children with congenital heart disease using multi-detector computed tomography: a validation study. Catheter Cardiovasc Interv. 2006;68:11–20.

    Article  PubMed  Google Scholar 

  46. Choi YH, Lee W, Cheon JE, et al. CT findings in unilateral hepatopulmonary syndrome after the Fontan operation. Pediatr Radiol. 2009;39:336–42.

    Article  PubMed  Google Scholar 

  47. Babu-Narayan SV, Kilner PJ, Gatzoulis MA. When to order cardiovascular magnetic resonance in adults with congenital heart disease. Curr Cardiol Rep. 2003;5:324–30.

    Article  PubMed  Google Scholar 

  48. Alfakih K, Thiele H, Plein S, Bainbridge GJ, Ridgway JP, Sivananthan MU. Comparison of right ventricular volume measurement between segmented k-space gradient-echo and steady-state free precession magnetic resonance imaging. J Magn Reson Imaging. 2002;16:253–8.

    Article  PubMed  Google Scholar 

  49. Robbers-Visser D, Boersma E, Helbing WA. Normal biventricular function, volumes, and mass in children aged 8 to 17 years. J Magn Reson Imaging. 2009;29:552–9.

    Article  PubMed  Google Scholar 

  50. Hor KN, Gottliebson WM, Carson C, et al. Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging. 2010;3:144–51.

    Article  PubMed  Google Scholar 

  51. Grosse-Wortmann L, Al-Otay A, Yoo SJ. Aortopulmonary collaterals after bidirectional cavopulmonary connection or Fontan completion: quantification with MRI. Circ Cardiovasc Imaging. 2009;2:219–25.

    Article  PubMed  Google Scholar 

  52. Whitehead KK, Gillespie MJ, Harris MA, Fogel MA, Rome JJ. Noninvasive quantification of systemic-to-pulmonary collateral flow: a major source of inefficiency in patients with superior cavopulmonary connections. Circ Cardiovasc Imaging. 2009;2:405–11.

    Article  PubMed  Google Scholar 

  53. Rathod RH, Prakash A, Powell AJ, Geva T. Myocardial fibrosis identified by cardiac magnetic resonance late gadolinium enhancement is associated with adverse ventricular mechanics and ventricular tachycardia late after Fontan operation. J Am Coll Cardiol. 2010;55:1721–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffanie R. Johnson MD, FAAP, FACC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Johnson, T.R., Samyn, M.M., Sena, L. (2014). Cardiac CT and MR Evaluation of the Adult Fontan Patient. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_21

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics