Skip to main content

Cardiac Shunts: ASD, VSD, PDA

  • Chapter
  • First Online:
Cardiac CT and MR for Adult Congenital Heart Disease
  • 2987 Accesses

Abstract

Atrial septum defects (ASDs), ventricular septum defects (VSDs), and patent ductus arteriosus (PDA) are common congenital heart defects in both children and adults (Webb and Gatzoulis, Circulation 114:1645–1653, 2006; Minette and Sahn, Circulation 114:2190–2197, 2006; Schneider and Moore, Circulation 114:1873–1882, 2006). Morphological classification of these anomalies is important for treatment decisions. Accurate morphological classification requires imaging technique that is able to identify the defect and define its site, size, and relationship to the structures forming its margins. Imaging technique should also be able to identify associated anomalies, the amount of shunt through the defect, and accurate analysis of the heart and valve functions. Echocardiography is a great method for diagnosis of intracardiac shunts with good resolution to image cardiac morphology in detail and can identify small intracardiac defects and measure the shunt volume. Cardiac MR provides a comprehensive assessment of intracardiac anatomy and accurately quantifies biventricular function and blood flow. Detections of small defects (i.e., apical VSD) may require high-resolution imaging and CT can be the preferred technique. Assessment of associated extracardiac anomalies such as anomalous venous return can be optimally done with CT. In this chapter, a complete review of the shunts and clinical applications of CT and MRI will be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Webb G, Gatzoulis M. Atrial septal defects in the adult: recent progress and overview. Circulation. 2006;114:1645–53.

    PubMed  Google Scholar 

  2. Minette MS, Sahn DJ. Ventricular septal defects. Circulation. 2006;114:2190–7.

    PubMed  Google Scholar 

  3. Schneider DJ, Moore JW. Patent ductus arteriosus. Circulation. 2006;114:1873–82.

    PubMed  Google Scholar 

  4. Harley HR. The sinus venosus type of interatrial septal defect. Thorax. 1958;13(1):12–27.

    PubMed  CAS  Google Scholar 

  5. Anderson RH, Webb S, Brown NA. Clinical anatomy of the atrial septum with reference to its developmental components. Clin Anat. 1999;12: 362–74.

    PubMed  CAS  Google Scholar 

  6. Anderson RH, Brown NA, Webb S. Development and structure of the atrial septum. Heart. 2002;88:104–10.

    PubMed  Google Scholar 

  7. Anderson RH, Brown NA. The anatomy of the heart revisited. Anat Rec. 1996;246(1):1e7.

    Google Scholar 

  8. Thompson T, Evans W. Paradoxical embolism. Quart J Med. 1930;23:135–40.

    Google Scholar 

  9. Hagen PT, Scholz DG, Edwards WD. Incidence and size of patent foramen ovale during the first 10 decades of life: an autopsy study of 965 normal hearts. Mayo Clin Proc. 1984;59:17–20.

    PubMed  CAS  Google Scholar 

  10. Webster MW, Chancellor AM, Smith HJ, et al. Patent foramen ovale in young stroke patients. Lancet. 1988;8601:11–2.

    Google Scholar 

  11. Homma S, Di Tullio MR, Sacco RL, Mihalatos D, Li Mandro G, Mohr JP. Characteristics of patent foramen ovale associated with cryptogenic stroke: a biplane transesophageal echocardiographic study. Stroke. 1994;25:582–6.

    PubMed  CAS  Google Scholar 

  12. Saremi F, Channual S, Raney A, et al. Imaging of patent foramen ovale with 64-section multidetector CT. Radiology. 2008;249(2):483–92.

    PubMed  Google Scholar 

  13. Ho SY, McCarthy KP, Rigby ML. Morphological features pertinent to interventional closure of patent oval foramen. J Interv Cardiol. 2003;16(1):33–8.

    PubMed  Google Scholar 

  14. Natanzon A, Goldman ME. Patent foramen ovale: anatomy versus pathophysiology – which determines stroke risk? J Am Soc Echocardiogr. 2003;16(1):71–6.

    PubMed  Google Scholar 

  15. Mohrs OK, Petersen SE, Erkapic D, Victor A, Schlosser T, Nowak B, Kauffmann G, Voigtlaender T, Kauczor HU. Dynamic contrast-enhanced MRI before and after transcatheter occlusion of patent foramen ovale. AJR Am J Roentgenol. 2007;188:844–9.

    PubMed  Google Scholar 

  16. Nusser T, Hoher M, Merkle N, et al. Cardiac magnetic resonance imaging and transesophageal echocardiography in patients with transcatheter closure of patent foramen ovale. J Am Coll Cardiol. 2006;48:322–9.

    PubMed  Google Scholar 

  17. Thomson LE, Crowley AL, Heitner JF, et al. Direct en face imaging of secundum atrial septal defects by velocity-encoded cardiovascular magnetic resonance in patients evaluated for possible transcatheter closure. Circ Cardiovasc Imaging. 2008;1(1):31–40.

    PubMed  Google Scholar 

  18. Sun JP, Stewart WJ, Hanna J, Thomas JD. Diagnosis of patent foramen ovale by contrast versus color Doppler by transesophageal echocardiography: relation to atrial size. Am Heart J. 1996;131(2):239–44.

    PubMed  CAS  Google Scholar 

  19. Kim YJ, Hur J, Shim CY, et al. Patent foramen ovale: diagnosis with multidetector CT – comparison with transesophageal echocardiography. Radiology. 2009;250(1):61–7.

    PubMed  Google Scholar 

  20. Koenig P, Cao QL, Heitschmidt M, Waight DJ, Hijazi ZM. Role of intracardiac echocardiographic guidance in transcatheter closure of atrial septal defects and patent foramen ovale using the Amplatzer device. J Interv Cardiol. 2003;16(1):51–62.

    PubMed  Google Scholar 

  21. Graham LN, Melton IC, MacDonald S, Crozier IG. Value of CT localization of the fossa ovalis prior to transseptal left heart catheterization for left atrial ablation. Europace. 2007;9(6):417–23.

    PubMed  Google Scholar 

  22. Chiari H. Uber Netzbildungcn im rechten Vorhof des Herzens. Beitr Pathol Anat. 1897;22:1–10.

    Google Scholar 

  23. Gresham GA. Networks in the right side of the heart. Br Heart J. 1957;19:381–6.

    PubMed  CAS  Google Scholar 

  24. Bhatnagar KP, Nettleton GS, Campbell FR, Wagner CE, Kuwabara N, Muresian H. Chiari anomalies in the human right atrium. Clin Anat. 2006;19(6):510–6.

    PubMed  Google Scholar 

  25. Goedde TA, Conetta D, Rumisek JD. Chiari network entrapment of thromboemboli: congenital inferior vena cava filter. Ann Thorac Surg. 1990;49:317–8.

    PubMed  CAS  Google Scholar 

  26. Schneider B, Hofmann T, Justen MH, Meinertz T. Chiari’s network: normal anatomic variant or risk factor for arterial embolic events? J Am Coll Cardiol. 1995;26(1):203–10.

    PubMed  CAS  Google Scholar 

  27. Schneider B, Hanrath P, Vogel P, Meinertz T. Improved morphologic characterization of atrial septal aneurysm by transesophageal echocardiography: relation to cerebrovascular events. J Am Coll Cardiol. 1990;16:1000–9.

    PubMed  CAS  Google Scholar 

  28. Zabalgoitia-Reyes M, Herrerra C, Ghandi DK, Mehlman DJ, McPherson DD, Talano JV. A possible mechanism for neurologic ischemic events in patients with atrial septal aneurysm. Am J Cardiol. 1990;66:761–4.

    PubMed  CAS  Google Scholar 

  29. Mattioli AV, Aquilina M, Oldani A, Longhini C, Mattioli G. Atrial septal aneurysm as a cardioembolic source in adult patients with stroke and normal carotid arteries. A multicentre study. Eur Heart J. 2001;22(3):261–8.

    PubMed  CAS  Google Scholar 

  30. Mugge A, Daniel WG, Angermann C, et al. Atrial septal aneurysm in adult patients. A multicenter study using transthoracic and transesophageal echocardiography. Circulation. 1995;91(11):2785–92.

    PubMed  CAS  Google Scholar 

  31. Schuchlenz HW, Weihs W, Horner S, Quehenberger F. The association between the diameter of a patent foramen ovale and the risk of embolic cerebrovascular events. Am J Med. 2000;109:456–62.

    PubMed  CAS  Google Scholar 

  32. Olivares-Reyes A, Chan S, Lazar EJ, et al. Atrial septal aneurysm: a new classification in two hundred five adults. J Am Soc Echocardiogr. 1997;10:644–56.

    PubMed  CAS  Google Scholar 

  33. Pearson AC, Nagelhout D, Castello R, Gomez CR, Labovitz AJ. Atrial septal aneurysm and stroke: a transesophageal echocardiographic study. J Am Coll Cardiol. 1991;18:1223–9, 99.

    PubMed  CAS  Google Scholar 

  34. Hanley PC, TajiK AJ, Hynes JK, et al. Diagnosis and classification of atrial septal aneurysm by two-dimensional echocardiography: report of 80 consecutive cases. J Am Coll Cardiol. 1985;6:1370–82.

    PubMed  CAS  Google Scholar 

  35. Schuchlenz HW, Saurer G, Weihs W, Rehak P. Persisting eustachian valve in adults: relation to patent foramen ovale and cerebrovascular events. J Am Soc Echocardiogr. 2004;17(3):231–3.

    PubMed  Google Scholar 

  36. Ley S, Ley-Zaporozhan J, Kreitner KF, et al. MR flow measurements for assessment of the pulmonary, systemic and bronchosystemic circulation: impact of different ECG gating methods and breathing schema. Eur J Radiol. 2007;61(1):124–9.

    PubMed  Google Scholar 

  37. Beerbaum P, Korperich H, Barth P, Esdorn H, Gieseke J, Meyer H. Noninvasive quantification of left-to-right shunt in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oximetry. Circulation. 2001;103:2476–82.

    PubMed  CAS  Google Scholar 

  38. O’Donnell M. NMR blood flow using multiecho, phase contrast sequences. Med Phys. 1985;12:59–64.

    PubMed  Google Scholar 

  39. Chatzimavroudis GP, Zhang H, Halliburton SS, et al. Clinical blood flow quantification with segmented k-space magnetic resonance phase velocity mapping. J Magn Reson Imaging. 2003;17:65–71.

    PubMed  Google Scholar 

  40. Boehrer JD, Lange RA, Willard JE, Grayburn PA, Hillis LD. Advantages and limitations of methods to detect, localize, and quantitate intracardiac left-to-right shunting. Am Heart J. 1992;124:448–55.

    PubMed  CAS  Google Scholar 

  41. Daniel WC, Lange RA, Willard JE, Landau C, Hillis LD. Oximetric versus indicator dilution techniques for quantitating intracardiac left-to-right shunting in adults. Am J Cardiol. 1995;75:199–200.

    PubMed  CAS  Google Scholar 

  42. Cigarroa RG, Lange RA, Hillis LD. Oximetric quantitation of intracardiac left-to-right shunting: limitations of the Qp/Qs ratio. Am J Cardiol. 1989;64:246–7.

    PubMed  CAS  Google Scholar 

  43. Tang C, Blatter DD, Parker DL. Accuracy of phase-contrast flow measurements in the presence of partial volume effects. J Magn Reson Imaging. 1993;3:377–85.

    PubMed  CAS  Google Scholar 

  44. Lotz J, Meier C, Leppert A, Galanski M. Cardiovascular flow measurement with phase-contrast MR imaging: basic facts and implementation. Radiographics. 2002;22(3):651–71.

    PubMed  Google Scholar 

  45. Andersen AH, Kirsch JE. Analysis of noise in phase contrast MR imaging. Med Phys. 1996;23:857–69.

    PubMed  CAS  Google Scholar 

  46. Hundley WG, Li HF, Lange RA, et al. Assessment of left-to-right intracardiac shunting by velocity-encoded, phase-difference magnetic resonance imaging: a comparison with oximetric and indicator dilution techniques. Circulation. 1995;91:2955–60.

    PubMed  CAS  Google Scholar 

  47. Ley S, Fink C, Puderbach M, Zaporozhan J, et al. MRI Measurement of the hemodynamics of the pulmonary and systemic arterial circulation: influence of breathing maneuvers. AJR Am J Roentgenol. 2006;187(2):439–44.

    PubMed  Google Scholar 

  48. Stahlberg F, Thomsen C, Sondergaard L, Henriksen O. Pulse sequence design for MR velocity mapping of complex flow: notes on the necessity of low echo times. Magn Reson Imaging. 1994;12:1255–62.

    PubMed  CAS  Google Scholar 

  49. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB. Right and left ventricular stroke volume measurements with velocity en-coded cine MR imaging: in vitro and in vivo validation. AJR Am J Roentgenol. 1991;157:9–16.

    PubMed  CAS  Google Scholar 

  50. Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lotz J. Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and magnetic resonance imaging in patients with pulmonary hypertension. Chest. 2001;120:502–7.

    PubMed  CAS  Google Scholar 

  51. Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T. Comparison between phase-velocity cine magnetic resonance imaging and invasive oximetry for quantification of atrial shunts. Am J Cardiol. 2003;91:1523–5, A1529.

    PubMed  Google Scholar 

  52. Mohiaddin RH, Underwood R, Romeira L, et al. Comparison between cine magnetic resonance velocity mapping and first-pass radionuclide angiocardiography for quantitating intracardiac shunts. Am J Cardiol. 1995;75:529–32.

    PubMed  CAS  Google Scholar 

  53. Esmaeili A, Hohn R, Koch A, Vogl TJ, Hofstetter R, Abolmaali N. Assessment of shunt volumes in children with ventricular septal defects: comparative quantification of MR flow measurements and invasive oximetry. Clin Res Cardiol. 2006;95:523–30.

    PubMed  Google Scholar 

  54. Evans AJ, Iwai F, Grist TA, et al. Magnetic resonance imaging of blood flow with a phase subtraction technique. Invest Radiol. 1993;28:109–15.

    PubMed  CAS  Google Scholar 

  55. Goldberg A, Jha S. Phase-contrast MRI and applications in congenital heart disease. Clin Radiol. 2012;67(5):399–410.

    PubMed  CAS  Google Scholar 

  56. Mymin D, Sharma GP. Total and effective coronary blood flow in coronary and noncoronary heart disease. J Clin Invest. 1974;53:363–73.

    PubMed  CAS  Google Scholar 

  57. Debl K, Djavidani B, Buchner S, et al. Quantification of left-to-right shunting in adult congenital heart disease: phase-contrast cine MRI compared with invasive oximetry. Br J Radiol. 2009;82:386e91.

    Google Scholar 

  58. Blom NA, Ottenkamp J, Jongeneel TH, DeRuiter MC, Gittenberger-de Groot AC. Morphogenetic differences of secundum atrial septal defects. Pediatr Cardiol. 2005;26(4):338–43.

    PubMed  CAS  Google Scholar 

  59. Biben C, Weber R, Kesteven S, et al. Cardiac septal and valvular dysmorphogenesis in mice heterozygous for mutations in the homeobox gene Nkx2-5. Circ Res. 2000;87:888–9.

    PubMed  CAS  Google Scholar 

  60. Maeno YV, Benson LN, McLaughlin PR, Boutin C. Dynamic morphology of the secundum atrial septal defect evaluated by three dimensional transoesophageal echocardiography. Heart. 2000;83:673–7.

    PubMed  CAS  Google Scholar 

  61. Ferreira SMAG, Ho SY, Anderson RH. Morphological study of defects of the atrial septum within the oval fossa: implications for transcatheter closure of left-to-right shunt. Br Heart J. 1992;67:316–20.

    PubMed  CAS  Google Scholar 

  62. Ross DN. The sinus venosus type of atrial septal defect. Guy’s Hosp Rep. 1956;105:376–81.

    CAS  Google Scholar 

  63. Davia JE, Cheitlin MD, Bedynek JL. Sinus venosus atrial septal defect. Am Heart J. 1973;85:177–85.

    PubMed  CAS  Google Scholar 

  64. Brickner ME, Hillis LD, Lange RA. Congenital heart disease in adults- first of two parts. N Engl J Med. 2000;342:256–63.

    PubMed  CAS  Google Scholar 

  65. Van Praagh S, Carrera ME, Sanders SP, Mayer JE, Van Praagh R. Sinus venosus defects: unroofing of the right pulmonary veins-anatomic and echocardiographic findings and surgical treatment. Am Heart J. 1994;128:365–79.

    PubMed  Google Scholar 

  66. al Zaghal AM, Li J, Anderson RH, Lincoln C, Shore D, Rigby ML. Anatomical criteria for the diagnosis of sinus venosus defects. Heart. 1997;78(3):298–304.

    PubMed  Google Scholar 

  67. Butts RJ, Crean AM, Hlavacek AM, et al. Veno-venous bridges: the forerunners of the sinus venosus defect. Cardiol Young. 2011;21(6):623–30.

    PubMed  Google Scholar 

  68. Crystal MA, Al Najashi K, Williams WG, Redington AN, Anderson RH. Inferior sinus venosus defect: echocardiographic diagnosis and surgical approach. Thorac Cardiovasc Surg. 2009;137(6):1349–55.

    Google Scholar 

  69. Kafka H, Mohiaddin RH. Cardiac MRI and pulmonary MR angiography of sinus venosus defect and partial anomalous pulmonary venous connection in cause of right undiagnosed ventricular enlargement. AJR Am J Roentgenol. 2009;192:259–66.

    PubMed  Google Scholar 

  70. Swan HJC, Kirklin JW, Becu LM, Wood EH. Anomalous connection of right pulmonary veins to superior vena cava with interatrial communications. Hemodynamic data in eight cases. Circulation. 1957;16:54–66.

    PubMed  CAS  Google Scholar 

  71. Vogel M, Berger F, Kramer A, Alexi-Meshkishvili V, Lange PE. Incidence of secondary pulmonary hypertension in adults with atrial septal or sinus venosus defects. Heart. 1999;82:30–3.

    PubMed  CAS  Google Scholar 

  72. Kronzon I, Tunick PA, Freedberg RS, Trehan N, Rosenzweig BP, Schwinger ME. Transesophageal echocardiography is superior to transthoracic echocardiography in the diagnosis of sinus venosus atrial septal defect. J Am Coll Cardiol. 1991;17:537–42.

    PubMed  CAS  Google Scholar 

  73. Pascoe RD, Oh JK, Warnes CA, Danielson GK, Tajik AJ, Seward JB. Diagnosis of sinus venosus atrial septal defect with transesophageal echocardiography. Circulation. 1996;94:1049–55.

    PubMed  CAS  Google Scholar 

  74. Ferrari VA, Scott CH, Holland GA, Axel L, Sutton MS. Ultrafast three-dimensional contrast enhanced magnetic resonance angiography and imaging in the diagnosis of partial anomalous pulmonary venous drainage. J Am Coll Cardiol. 2001;37:1120–8.

    PubMed  CAS  Google Scholar 

  75. Valente AM, Sena L, Powell AJ, Del Nido PJ, Geva T. Cardiac magnetic resonance imaging evaluation of sinus venosus defects: comparison to surgical findings. Pediatr Cardiol. 2007;28:51–6.

    PubMed  Google Scholar 

  76. Plymale J, Kolinski K, Frommelt P, Bartz P, Tweddell J, Earing MG. Inferior sinus venosus defects: anatomic features and echocardiographic correlates. Pediatr Cardiol. 2013;34:322–6.

    PubMed  Google Scholar 

  77. Anderson RH, Ho SY, Falcao S, et al. The diagnostic features of atrioventricular septal defect with common atrioventricular junction. Cardiol Young. 1998;8(1):33–49.

    PubMed  CAS  Google Scholar 

  78. Smallhorn JF. Cross-sectional echocardiographic assessment of atrioventricular septal defect: basic morphology and preoperative risk factors. Echocardiography. 2001;18:415–32.

    PubMed  CAS  Google Scholar 

  79. Arisawa J, Morimoto S, Ikezoe J, et al. Cross sectional echocardiographic anatomy of common atrioventricular valve in atrial isomerism. Br Heart J. 1989;62(4):291–7.

    PubMed  CAS  Google Scholar 

  80. De Tommasi S, Daliento L, Ho SY, Macartney FJ, Anderson RH. Analysis of atrioventricular junction, ventricular mass, and ventriculoarterial junction in 43 specimens with atrial isomerism. Br Heart J. 1981;45(3):236–47.

    PubMed  Google Scholar 

  81. Parsons JM, Baker EJ, Anderson RH, et al. Morphological evaluation of atrioventricular septal defects by magnetic resonance imaging. Br Heart J. 1990;64(2):138–45.

    PubMed  CAS  Google Scholar 

  82. Quaegebeur J, Kirklin JW, Pacifico AD, Bargeron Jr LM. Surgical experience with unroofed coronary sinus. Ann Thorac Surg. 1979;27(5):418–25.

    PubMed  CAS  Google Scholar 

  83. Ootaki Y, Yamaguchi M, Yoshimura N, Oka S, Yoshida M, Hasegawa T. Unroofed coronary sinus syndrome: diagnosis, classification, and surgical treatment. J Thorac Cardiovasc Surg. 2003;126(5):1655–6.

    PubMed  Google Scholar 

  84. Attenhofer Jost CH, Connolly HM, Danielson GK, Dearani JA, Warnes CA, Jamil Tajik A. Clinical features and surgical outcome in 25 patients with fenestrations of the coronary sinus. Cardiol Young. 2007;17(6):592–600.

    PubMed  Google Scholar 

  85. Matsuwaka R, Tomokuni T, Ishikawa S, Watanabe F, Matsushita T, Matsuda H. Partially unroofed coronary sinus associated with tricuspid atresia: an important associated lesion in the Fontan operation. Eur J Cardiothorac Surg. 1987;1:180–2.

    PubMed  CAS  Google Scholar 

  86. Brancaccio G, Miraldi F, Ventriglia F, Michielon G, Di Donato RM, De Santis M. Multidetector-row helical computed tomography imaging of unroofed coronary sinus. Int J Cardiol. 2003;91:251–3.

    PubMed  Google Scholar 

  87. Chaturvedi A, Dubinsky TJ, Maki JH. MR findings of a rare defect, coronary sinus ASD. Int J Cardiovasc Imaging. 2012;28(2):429–30.

    PubMed  Google Scholar 

  88. Du ZD, Koenig P, Cao QL, et al. Comparison of transcatheter closure of secundum atrial septal defect using the Amplatzer septal occluder associated with deficient versus sufficient rims. Am J Cardiol. 2002;90:865–9.

    PubMed  Google Scholar 

  89. Fischer G, Stieh J, Uebing A, et al. Experience with transcatheter closure of secundum atrial septal defects using the Amplatzer septal occluder: a single centre study in 236 consecutive patients. Heart. 2003;89:199–204.

    PubMed  CAS  Google Scholar 

  90. Veldtman GR, Razack V, Siu S, El-Hajj H, Walker F, Webb GD, Benson LN, McLaughlin PR. Right ventricular form and function after percutaneous atrial septal defect device closure. J Am Coll Cardiol. 2001;37:2108–13.

    PubMed  CAS  Google Scholar 

  91. Rickers C, Jerosch-Herold M, Hu X, et al. Magnetic resonance image-guided transcatheter closure of atrial septal defects. Circulation. 2003;107(1):132–8.

    PubMed  Google Scholar 

  92. Lee T, Tsai IC, Fu YC, Jan SL, Wang CC, Chang Y, Chen MC. MDCT evaluation after closure of atrial septal defect with an Amplatzer septal occluder. AJR Am J Roentgenol. 2007;188(5):W431–9.

    PubMed  Google Scholar 

  93. Murphy JG, Gersh BJ, McGoon MD, et al. Long-term outcome after surgical repair of isolated atrial septal defect: follow-up at 27 to 32 years. N Engl J Med. 1990;323:1645–50.

    PubMed  CAS  Google Scholar 

  94. Somerville J, Williams RG, Webb GD. Task force 1: the changing profile of congenital heart disease in adult life. J Am Coll Cardiol. 2001;37:1170–5.

    PubMed  Google Scholar 

  95. Hoffman JI, Kaplan S, Liberthson RR. Prevalence of congenital heart disease. Am Heart J. 2004;147:425–39.

    PubMed  Google Scholar 

  96. Warnes CA, Williams RG, Bashore TM. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to develop guidelines on the management of adults with congenital heart disease). Developed in collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2008;52(23):e143–263.

    PubMed  Google Scholar 

  97. Anderson RH, Ho HY, Becker AE. Anatomy of the human atrioventricular junctions revisited. Anat Rec. 2000;260:81–91.

    PubMed  CAS  Google Scholar 

  98. Saremi F, Krishnan S. Cardiac conduction system: anatomic landmarks relevant to interventional electrophysiologic techniques demonstrated with 64-detector CT. Radiographics. 2007;27(6):1539–65.

    PubMed  Google Scholar 

  99. Tandon R, Edwards JE. Aneurysm like formations in relation to membranous ventricular septum. Circulation. 1973;47:1089–97.

    PubMed  CAS  Google Scholar 

  100. Langer C, Horstkotte D, Piper C. Aneurysm of the membranous septum causes pre-syncopes and transient bilateral blindness. Eur Heart J. 2007;28(7):784.

    PubMed  Google Scholar 

  101. Cheema OM, Patel AA, Chang SM, Shah DJ. Gerbode ventricular septal defect diagnosed at cardiac MR imaging: case report. Radiology. 2009;252(1):50–2.

    PubMed  Google Scholar 

  102. Panduranga P, Mukhaini M. A rare type of Gerbode defect. Echocardiography. 2011;28(6):E118–20.

    PubMed  Google Scholar 

  103. Becu LM, Fontana RS, DuShane JW, Kirklin JW, Burchell HB, Edwards JE. Anatomic and pathologic studies in ventricular septal defects. Circulation. 1956;14:349–64.

    PubMed  CAS  Google Scholar 

  104. Moulaert AJ. Anatomy of ventricular septal defect. In: Anderson RH, Shineboume EA, editors. Paediatric cardiology 1977. Edinburgh/London: Churchill Livingstone; 1978. p. 113–24.

    Google Scholar 

  105. Soto B, Becker AE, Moulaert AJ, Lie JT, Anderson RH. Classification of ventricular septal defects. Br Heart J. 1980;43:332–43.

    PubMed  CAS  Google Scholar 

  106. Sutherland GR, Godman MJ, Smallhorn JF, Guiterras P, Anderson RH, Hunter S. Ventricular septal defects: two dimensional echocardiographic and morphological correlations. Br Heart J. 1982;47:316–28.

    PubMed  CAS  Google Scholar 

  107. Lue HC, Sung TC, Hou SH, et al. Ventricular septal defect in Chinese with aortic valve prolapse and aortic regurgitation. Heart Vessels. 1986;2(2):111–6.

    PubMed  CAS  Google Scholar 

  108. Capelli H, Andrade JL, Somerville J. Classification of the site of ventricular septal defect by 2-dimensional echocardiography. Am J Cardiol. 1983;51(9):1474–80.

    PubMed  CAS  Google Scholar 

  109. Baker EJ, Leung MP, Anderson RH, Fischer DR, Zuberbuhler JR. The cross sectional anatomy of ventricular septal defects: a reappraisal. Br Heart J. 1988;59(3):339–51.

    PubMed  CAS  Google Scholar 

  110. Macé L, Dervanian P, Le Bret E, et al. “Swiss cheese” septal defects: surgical closure using a single patch with intermediate fixings. Ann Thorac Surg. 1999;67(6):1754–8.

    PubMed  Google Scholar 

  111. Kirklin JK, Castaneda AR, Keane JF, Fellows KE, Norwood WI. Surgical management of multiple ventricular septal defects. J Thorac Cardiovasc Surg. 1980;80:485–93.

    PubMed  CAS  Google Scholar 

  112. Griffin ML, Sullivan ID, Anderson RH, Macartney FJ. Doubly committed subarterial ventricular septal defect: new morphological criteria with echocardiographic and angiocardiographic correlation. Br Heart J. 1988;59(4):474–9.

    PubMed  CAS  Google Scholar 

  113. Ozkutlu S, Saraçlar M, Alehan D, Yurdakul Y, Firat P, Tokel K. Subpulmonary and subaortic ridges in doubly committed subarterial ventricular septal defect: an echocardiographic study. Eur Heart J. 1996;17(6):935–9.

    PubMed  CAS  Google Scholar 

  114. Newfeld EA, Muster AJ, Paul MH, Idriss FS, Riker WL. Discrete subvalvular aortic stenosis in childhood: study of 51 patients. Am J Cardiol. 1976;38:53–61.

    PubMed  CAS  Google Scholar 

  115. al-Marsafawy HM, Ho SY, Redington AN, Anderson RH. The relationship of the outlet septum to the aortic outflow tract in hearts with interruption of the aortic arch. J Thorac Cardiovasc Surg. 1995;109(6):1225–36.

    PubMed  CAS  Google Scholar 

  116. Niwa K, Perloff JK, Kaplan S, Child JS, Miner PD. Eisenmenger syndrome in adults: ventricular septal defect, truncus arteriosus, univentricular heart. J Am Coll Cardiol. 1999;34:223–32.

    PubMed  CAS  Google Scholar 

  117. Neumayer U, Stone S, Somerville J. Small ventricular septal defects in adults. Eur Heart J. 1998;19(10): 1573–82.

    PubMed  CAS  Google Scholar 

  118. Backer CL, Winters RC, Zales VR, et al. Restrictive ventricular septal defect: how small is too small to close? Ann Thorac Surg. 1993;56:1014–8.

    PubMed  CAS  Google Scholar 

  119. Mongeon FP, Burkhart HM, Ammash NM, et al. Indications and outcomes of surgical closure of ventricular septal defect in adults. JACC Cardiovasc Interv. 2010;3(3):290–7.

    PubMed  Google Scholar 

  120. Lun K, Li H, Leung MP, Chau AK, Yung T, Chiu CS, Cheung Y. Analysis of indications for surgical closure of subarterial ventricular septal defect without associated aortic cusp prolapse and aortic regurgitation. Am J Cardiol. 2001;87:1266–70.

    PubMed  CAS  Google Scholar 

  121. Fu Y-C, Bass J, Amin Z, et al. Transcatheter closure of perimembranous ventricular septal defects using the new Amplatzer membranous VSD occluder: result of the U.S. phase I trial. J Am Coll Cardiol. 2006;47:319–25.

    PubMed  Google Scholar 

  122. Tomita H, Arakaki Y, Ono Y, Yamada O, Yagihara T, Echigo S. Impact of noncoronary cusp prolapse in addition to right coronary cusp prolapse in patients with a perimembranous ventricular septal defect. Int J Cardiol. 2005;101(2):279–83.

    PubMed  Google Scholar 

  123. Kumar K, Lock JE, Geva T. Apical muscular ventricular septal defects between the left ventricle and the right ventricular infundibulum. Diagnostic and interventional considerations. Circulation. 1997;95(5):1207–13.

    PubMed  CAS  Google Scholar 

  124. Cassels DE. The ductus arteriosus. Springfield: Charles C. Thomas; 1973.

    Google Scholar 

  125. Lloyd TR, Beekman III RH. Clinically silent patent ductus arteriosus. Am Heart J. 1994;127:1664–5.

    PubMed  CAS  Google Scholar 

  126. Cerruto G, Mancuso L. Systemic and pulmonary embolization in a patient with patent ductus arteriosus. Eur J Echocardiogr. 2005;6(5):376–8.

    PubMed  Google Scholar 

  127. Krichenko A, Benson LN, Burrows P, Moes CA, McLaughlin P, Freedon RM. Angiographic classification of the isolated, persistently patent ductus arteriosus and implications for percutaneous catheter occlusion. Am J Cardiol. 1989;63:877–9.

    PubMed  CAS  Google Scholar 

  128. Andrade A, Vargas-Barron J, Rijlaarsdam M, Romero-Cardenas A, Keirns C, Espinola N. Utility of transesophageal echocardiography in the examination of adult patients with patent ductus arteriosus. Am Heart J. 1995;130(3 Pt 1):543–6.

    PubMed  CAS  Google Scholar 

  129. Li YL, Wong DT, Wei W, Liu J. A new method for detecting the proximal aortic arch and innominate artery by transesophageal echocardiography. Anesthesiology. 2006;105:226–7.

    PubMed  Google Scholar 

  130. Moore JW, George L, Kirkpatrick SE, et al. Percutaneous closure of the small patent ductus arteriosus using occluding spring coils. J Am Coll Cardiol. 1994;23:759–65.

    PubMed  CAS  Google Scholar 

  131. Morgan-Jughes GJ, Marshall AJ, Roobottome C. Morphologic assessment of patent ductus arteriosus in adults using retrospectively ECG-gated multidetector CT. Am J Roentgenol. 2003;181:749–54.

    Google Scholar 

  132. Celermajer DS, Sholler GF, Hughes CF, Baird DK. Persistent ductus arteriosus in adults: a review of surgical experience with 25 patients. Med J Aust. 1991;155:233–6.

    PubMed  CAS  Google Scholar 

  133. Wang JK, Liau CS, Huang JJ, Hsu KL, Lo PH, Hung JS, et al. Transcatheter closure of patent ductus arteriosus using Gianturco coils in adolescents and adults. Catheter Cardiovasc Interv. 2002;55:513–8.

    PubMed  Google Scholar 

  134. Roques F, Hennequin JL, Sanchez B, Ridarch A, Rousseau H. Aortic stent-graft for patent ductus arteriosus in adults: the aortic exclusion technique. Ann Thorac Surg. 2001;71:1708–9.

    PubMed  CAS  Google Scholar 

  135. Hayabuchi Y, Mori K, Kagami S. Virtual endoscopy using multidetector-row CT for coil occlusion of patent ductus arteriosus. Catheter Cardiovasc Interv. 2007;70(3):434–9.

    PubMed  Google Scholar 

  136. Thai WE, Harper RW, Seneviratne S. Dynamic volume 320-slice CT in the assessment of patent ductus arteriosus for percutaneous closure. Heart. 2010;96(4):321.

    PubMed  Google Scholar 

  137. Taneja K, Gulati M, Jain M, Saxena A, Das B, Rajani M. Ductal arteriosus aneurysm in the adult: role of computed tomography in diagnosis. Clin Radiol. 1997;52:231–4.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farhood Saremi MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Saremi, F. (2014). Cardiac Shunts: ASD, VSD, PDA. In: Saremi, F. (eds) Cardiac CT and MR for Adult Congenital Heart Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8875-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8875-0_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8874-3

  • Online ISBN: 978-1-4614-8875-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics