Skip to main content

Anti-Carbohydrate HIV Vaccine Design

  • Chapter
  • First Online:
HIV glycans in infection and immunity
  • 735 Accesses

Abstract

HIV has evolved a number of strong defense mechanisms, including extensive glycosylation of its surface envelope glycoprotein, to evade host immune responses. Nevertheless, the discovery of a series of glycan-dependent broadly neutralizing antibodies (bNAbs) from HIV-infected individuals suggests that HIV’s “glycan shield” also represents a possible Achilles’ heel and thus an attractive target for vaccine design. In this chapter, we review current understanding of the glycan-associated epitopes of these bNAbs and discuss how this insight may translate into the engineering of a carbohydrate-based HIV vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams EW, Ratner DM, Bokesch HR, McMahon JB, O’Keefe BR, Seeberger PH (2004) Oligosaccharide and glycoprotein microarrays as tools in HIV glycobiology; glycan-dependent gp120/protein interactions. Chem Biol 11:875–881

    Article  PubMed  CAS  Google Scholar 

  • Agrawal-Gamse C, Luallen RJ, Liu B, Fu H, Lee FH, Geng Y, Doms RW (2011) Yeast-elicited cross-reactive antibodies to HIV Env glycans efficiently neutralize virions expressing exclusively high-mannose N-linked glycans. J Virol 85:470–480

    Article  PubMed  CAS  Google Scholar 

  • Anderluh M, Jug G, Svajger U, Obermajer N (2012) DC-SIGN antagonists, a potential new class of anti-infectives. Curr Med Chem 19:992–1007

    Article  PubMed  CAS  Google Scholar 

  • Astronomo RD, Burton DR (2010) Carbohydrate vaccines: developing sweet solutions to sticky situations? Nat Rev Drug Discov 9:308–324

    Article  PubMed  CAS  Google Scholar 

  • Astronomo RD, Lee HK, Scanlan CN, Pantophlet R, Huang CY, Wilson IA, Blixt O, Dwek RA, Wong CH, Burton DR (2008) A glycoconjugate antigen based on the recognition motif of a broadly neutralizing human immunodeficiency virus antibody, 2G12, is immunogenic but elicits antibodies unable to bind to the self glycans of gp120. J Virol 82:6359–6368

    Article  PubMed  CAS  Google Scholar 

  • Astronomo RD, Kaltgrad E, Udit AK, Wang SK, Doores KJ, Huang CY, Pantophlet R, Paulson JC, Wong CH, Finn MG, Burton DR (2010) Defining criteria for oligomannose immunogens for HIV using icosahedral virus capsid scaffolds. Chem Biol 17:357–370

    Article  PubMed  CAS  Google Scholar 

  • Avci FY, Kasper DL (2010) How bacterial carbohydrates influence the adaptive immune system. Annu Rev Immunol 28:107–130

    Article  PubMed  CAS  Google Scholar 

  • Avci FY, Li X, Tsuji M, Kasper DL (2011) A mechanism for glycoconjugate vaccine activation of the adaptive immune system and its implications for vaccine design. Nat Med 17:1602–1609

    Article  PubMed  CAS  Google Scholar 

  • Avery OT, Goebel WF (1929) Chemo-immunological studies on conjugated carbohydrate-proteins: I. Immunological specificity of synthetic sugar-protein antigens. J Exp Med 50:533–550

    Article  PubMed  CAS  Google Scholar 

  • Ballou CE (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Methods Enzymol 185:440–470

    Article  PubMed  CAS  Google Scholar 

  • Balzarini J (2006) Inhibition of HIV entry by carbohydrate-binding proteins. Antiviral Res 71:237–247

    Article  PubMed  CAS  Google Scholar 

  • Balzarini J (2007) Carbohydrate-binding agents: a potential future cornerstone for the chemotherapy of enveloped viruses? Antivir Chem Chemother 18:1–11

    PubMed  CAS  Google Scholar 

  • Barrientos LG, Gronenborn AM (2005) The highly specific carbohydrate-binding protein cyanovirin-N: structure, anti-HIV/Ebola activity and possibilities for therapy. Mini Rev Med Chem 5:21–31

    Article  PubMed  CAS  Google Scholar 

  • Bolmstedt A, Biller M, Hansen JE, Moore JP, Olofsson S (1997) Demonstration of peripheral fucose units in N-linked glycans of human immunodeficiency virus type 1 gp 120: effects on glycoprotein conformation. Arch Virol 142:2465–2481

    Article  PubMed  CAS  Google Scholar 

  • Bonomelli C, Doores KJ, Dunlop DC, Thaney V, Dwek RA, Burton DR, Crispin M, Scanlan CN (2011) The glycan shield of HIV is predominantly oligomannose independently of production system or viral clade. PLoS One 6:e23521

    Article  PubMed  CAS  Google Scholar 

  • Burton DR (2002) Antibodies, viruses and vaccines. Nat Rev Immunol 2:706–713

    Article  PubMed  CAS  Google Scholar 

  • Burton DR, Desrosiers RC, Doms RW, Koff WC, Kwong PD, Moore JP, Nabel GJ, Sodroski J, Wilson IA, Wyatt RT (2004) HIV vaccine design and the neutralizing antibody problem. Nat Immunol 5:233–236

    Article  PubMed  CAS  Google Scholar 

  • Burton DR, Ahmed R, Barouch DH, Butera ST, Crotty S, Godzik A, Kaufmann DE, McElrath MJ, Nussenzweig MC, Pulendran B, Scanlan CN, Schief WR, Silvestri G, Streeck H, Walker BD, Walker LM, Ward AB, Wilson IA, Wyatt R (2012) A blueprint for HIV vaccine discovery. Cell Host Microbe 12:396–407

    Article  PubMed  CAS  Google Scholar 

  • Butters TD, Yudkin B, Jacob GS, Jones IM (1998) Structural characterization of the N-linked oligosaccharides derived from HIVgp120 expressed in lepidopteran cells. Glycoconj J 15:83–88

    Article  PubMed  CAS  Google Scholar 

  • Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA (2003) Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300:2065–2071

    Article  PubMed  CAS  Google Scholar 

  • Calarese DA, Lee HK, Huang CY, Best MD, Astronomo RD, Stanfield RL, Katinger H, Burton DR, Wong CH, Wilson IA (2005) Dissection of the carbohydrate specificity of the broadly neutralizing anti-HIV-1 antibody 2G12. Proc Natl Acad Sci U S A 102:13372–13377

    Article  PubMed  CAS  Google Scholar 

  • Calarota SA, Weiner DB (2003) Present status of human HIV vaccine development. AIDS 17(suppl 4):S73–S84

    Article  PubMed  Google Scholar 

  • Cao J, Sullivan N, Desjardin E, Parolin C, Robinson J, Wyatt R, Sodroski J (1997) Replication and neutralization of human immunodeficiency virus type 1 lacking the V1 and V2 variable loops of the gp120 envelope glycoprotein. J Virol 71:9808–9812

    PubMed  CAS  Google Scholar 

  • Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, Adler C, Dunn B, Dwight S, Riles L, Mortimer RK, Botstein D (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387:67–73

    Article  PubMed  CAS  Google Scholar 

  • Clark BE, Auyeung K, Fregolino E, Parrilli M, Lanzetta R, De Castro C, Pantophlet R (2012) A bacterial lipooligosaccharide that naturally mimics the epitope of the HIV-neutralizing antibody 2G12 as a template for vaccine design. Chem Biol 19:254–263

    Article  PubMed  CAS  Google Scholar 

  • Costantino P, Rappuoli R, Berti F (2011) The design of semi-synthetic and synthetic glycoconjugate vaccines. Expert Opin Drug Discov 6:1045–1066

    Article  PubMed  CAS  Google Scholar 

  • Davenport TM, Friend D, Ellingson K, Xu H, Caldwell Z, Sellhorn G, Kraft Z, Strong RK, Stamatatos L (2011) Binding interactions between soluble HIV envelope glycoproteins and quaternary-structure-specific monoclonal antibodies PG9 and PG16. J Virol 85:7095–7107

    Article  PubMed  CAS  Google Scholar 

  • De Castro C, Molinaro A, Lanzetta R, Silipo A, Parrilli M (2008) Lipopolysaccharide structures from Agrobacterium and Rhizobiaceae species. Carbohydr Res 343:1924–1933

    Article  PubMed  CAS  Google Scholar 

  • Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426:309–322

    Article  PubMed  CAS  Google Scholar 

  • Doores KJ, Burton DR (2010) Variable loop glycan dependency of the broad and potent HIV-1-neutralizing antibodies PG9 and PG16. J Virol 84:10510–10521

    Article  PubMed  CAS  Google Scholar 

  • Doores KJ, Bonomelli C, Harvey DJ, Vasiljevic S, Dwek RA, Burton DR, Crispin M, Scanlan CN (2010a) Envelope glycans of immunodeficiency virions are almost entirely oligomannose antigens. Proc Natl Acad Sci U S A 107:13800–13805

    Article  PubMed  CAS  Google Scholar 

  • Doores KJ, Fulton Z, Hong V, Patel MK, Scanlan CN, Wormald MR, Finn MG, Burton DR, Wilson IA, Davis BG (2010b) A nonself sugar mimic of the HIV glycan shield shows enhanced antigenicity. Proc Natl Acad Sci U S A 107:17107–17112

    Article  PubMed  CAS  Google Scholar 

  • Doores KJ, Huber M, Le KM, Wang SK, Doyle-Cooper C, Cooper A, Pantophlet R, Wong CH, Nemazee D, Burton DR (2013) 2G12-expressing B cell lines may aid in HIV carbohydrate vaccine design strategies. J Virol 87:2234–2241

    Article  PubMed  CAS  Google Scholar 

  • Dudkin VY, Orlova M, Geng X, Mandal M, Olson WC, Danishefsky SJ (2004) Toward fully synthetic carbohydrate-based HIV antigen design: on the critical role of bivalency. J Am Chem Soc 126:9560–9562

    Article  PubMed  CAS  Google Scholar 

  • Dunlop DC, Bonomelli C, Mansab F, Vasiljevic S, Doores KJ, Wormald MR, Palma AS, Feizi T, Harvey DJ, Dwek RA, Crispin M, Scanlan CN (2010) Polysaccharide mimicry of the epitope of the broadly neutralizing anti-HIV antibody, 2G12, induces enhanced antibody responses to self oligomannose glycans. Glycobiology 20:812–823

    Article  PubMed  CAS  Google Scholar 

  • Feinberg H, Mitchell DA, Drickamer K, Weis WI (2001) Structural basis for selective recognition of oligosaccharides by DC- SIGN and DC-SIGNR. Science 294:2163–2166

    Article  PubMed  CAS  Google Scholar 

  • Feinberg H, Castelli R, Drickamer K, Seeberger PH, Weis WI (2007) Multiple modes of binding enhance the affinity of DC-SIGN for high mannose N-linked glycans found on viral glycoproteins. J Biol Chem 282:4202–4209

    Article  PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597

    Article  PubMed  CAS  Google Scholar 

  • Geng X, Dudkin VY, Mandal M, Danishefsky SJ (2004) In pursuit of carbohydrate-based HIV vaccines, Part 2: the total synthesis of high-mannose-type gp120 fragments-evaluation of strategies directed to maximal convergence. Angew Chem Int Ed 43:2562–2565

    Article  CAS  Google Scholar 

  • Geyer H, Holschbach C, Hunsmann G, Schneider J (1988) Carbohydrates of human immunodeficiency virus. Structures of oligosaccharides linked to the envelope glycoprotein 120. J Biol Chem 263:11760–11767

    PubMed  CAS  Google Scholar 

  • Giaever G et al (2002) Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391

    Article  PubMed  CAS  Google Scholar 

  • Giannini G, Rappuoli R, Ratti G (1984) The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res 12:4063–4069

    Article  PubMed  CAS  Google Scholar 

  • Go EP, Irungu J, Zhang Y, Dalpathado DS, Liao HX, Sutherland LL, Alam SM, Haynes BF, Desaire H (2008) Glycosylation site-specific analysis of HIV envelope proteins (JR-FL and CON-S) reveals major differences in glycosylation site occupancy, glycoform profiles, and antigenic epitopes’ accessibility. J Proteome Res 7:1660–1674

    Article  PubMed  CAS  Google Scholar 

  • Go EP, Chang Q, Liao HX, Sutherland LL, Alam SM, Haynes BF, Desaire H (2009) Glycosylation site-specific analysis of clade C HIV-1 envelope proteins. J Proteome Res 8:4231–4242

    Article  PubMed  CAS  Google Scholar 

  • Go EP, Liao HX, Alam SM, Hua D, Haynes BF, Desaire H (2013) Characterization of host-cell line specific glycosylation profiles of early transmitted/founder HIV-1 gp120 envelope proteins. J Proteome Res 12:1223–1234

    Article  PubMed  CAS  Google Scholar 

  • Hansen JE, Clausen H, Nielsen C, Teglbjaerg LS, Hansen LL, Nielsen CM, Dabelsteen E, Mathiesen L, Hakomori SI, Nielsen JO (1990) Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies: peripheral glycosylation of HIV envelope glycoprotein gp120 may be a target for virus neutralization. J Virol 64:2833–2840

    PubMed  CAS  Google Scholar 

  • Hansen JE, Nielsen C, Arendrup M, Olofsson S, Mathiesen L, Nielsen JO, Clausen H (1991) Broadly neutralizing antibodies targeted to mucin-type carbohydrate epitopes of human immunodeficiency virus. J Virol 65:6461–6467

    PubMed  CAS  Google Scholar 

  • Hansen JE, Jansson B, Gram GJ, Clausen H, Nielsen JO, Olofsson S (1996) Sensitivity of HIV-1 to neutralization by antibodies against O-linked carbohydrate epitopes despite deletion of O-glycosylation signals in the V3 loop. Arch Virol 141:291–300

    Article  PubMed  CAS  Google Scholar 

  • Herscovics A (1999) Processing glycosidases of Saccharomyces cerevisiae. Biochim Biophys Acta 1426:275–285

    Article  PubMed  CAS  Google Scholar 

  • Hessell AJ, Rakasz EG, Poignard P, Hangartner L, Landucci G, Forthal DN, Koff WC, Watkins DI, Burton DR (2009) Broadly neutralizing human anti-HIV antibody 2G12 is effective in protection against mucosal SHIV challenge even at low serum neutralizing titers. PLoS Pathog 5:e1000433

    Article  PubMed  CAS  Google Scholar 

  • Hoffenberg S, Powell R, Carpov A, Wagner D, Wilson A, Kosakovsky Pond S, Lindsay R, Arendt H, Destefano J, Phogat S, Poignard P, Fling SP, Simek M, Labranche C, Montefiori D, Wrin T, Phung P, Burton D, Koff W, King CR, Parks CL, Caulfield MJ (2013) Identification of an HIV-1 clade A envelope that exhibits broad antigenicity and neutralization sensitivity and elicits antibodies targeting three distinct epitopes. J Virol 87:5372–5383

    Article  PubMed  CAS  Google Scholar 

  • Hong PW, Flummerfelt KB, de Parseval A, Gurney K, Elder JH, Lee B (2002) Human immunodeficiency virus envelope (gp120) binding to DC-SIGN and primary dendritic cells is carbohydrate dependent but does not involve 2G12 or cyanovirin binding sites: implications for structural analyses of gp120-DC-SIGN binding. J Virol 76:12855–12865

    Article  PubMed  CAS  Google Scholar 

  • Ji X, Gewurz H, Spear GT (2005) Mannose binding lectin (MBL) and HIV. Mol Immunol 42:145–152

    Article  PubMed  CAS  Google Scholar 

  • Joyce JG, Krauss IJ, Song HC, Opalka DW, Grimm KM, Nahas DD, Esser MT, Hrin R, Feng M, Dudkin VY, Chastain M, Shiver JW, Danishefsky SJ (2008) An oligosaccharide-based HIV-1 2G12 mimotope vaccine induces carbohydrate-specific antibodies that fail to neutralize HIV-1 virions. Proc Natl Acad Sci U S A 105:15684–15689

    Article  PubMed  CAS  Google Scholar 

  • Julien JP, Lee JH, Cupo A, Murin CD, Derking R, Hoffenberg S, Caulfield MJ, King CR, Marozsan AJ, Klasse PJ, Sanders RW, Moore JP, Wilson IA, Ward AB (2013) Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci U S A 110:4351–4356

    Article  PubMed  CAS  Google Scholar 

  • Kabanova A, Adamo R, Proietti D, Berti F, Tontini M, Rappuoli R, Costantino P (2010) Preparation, characterization and immunogenicity of HIV-1 related high-mannose oligosaccharides-CRM197 glycoconjugates. Glycoconj J 27:501–513

    Article  PubMed  CAS  Google Scholar 

  • Kelly DF, Pollard AJ, Moxon ER (2005) Immunological memory: the role of B cells in long-term protection against invasive bacterial pathogens. JAMA 294:3019–3023

    Article  PubMed  CAS  Google Scholar 

  • Kim JH, Rerks-Ngarm S, Excler JL, Michael NL (2010) HIV vaccines: lessons learned and the way forward. Curr Opin HIV AIDS 5:428–434

    Article  PubMed  Google Scholar 

  • Kolchinsky P, Kiprilov E, Sodroski J (2001a) Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J Virol 75:2041–2050

    Article  PubMed  CAS  Google Scholar 

  • Kolchinsky P, Kiprilov E, Bartley P, Rubinstein R, Sodroski J (2001b) Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J Virol 75:3435–3443

    Article  PubMed  CAS  Google Scholar 

  • Krauss IJ, Joyce JG, Finnefrock AC, Song HC, Dudkin VY, Geng X, Warren JD, Chastain M, Shiver JW, Danishefsky SJ (2007) Fully synthetic carbohydrate HIV antigens designed on the logic of the 2G12 antibody. J Am Chem Soc 129:11042–11044

    Article  PubMed  CAS  Google Scholar 

  • Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    Article  PubMed  CAS  Google Scholar 

  • Kwong PD, Mascola JR, Nabel GJ (2011) Rational design of vaccines to elicit broadly neutralizing antibodies to HIV-1. Cold Spring Harb Perspect Biol 3:a007278

    Google Scholar 

  • Kwong PD, Mascola JR, Nabel GJ (2012) The changing face of HIV vaccine research. J Int AIDS Soc 15:17407

    Article  PubMed  Google Scholar 

  • Larkin M, Childs RA, Matthews TJ, Thiel S, Mizuochi T, Lawson AM, Savill JS, Haslett C, Diaz R, Feizi T (1989) Oligosaccharide-mediated interactions of the envelope glycoprotein gp120 of HIV-1 that are independent of CD4 recognition. AIDS 3:793–798

    Article  PubMed  CAS  Google Scholar 

  • Lavine CL, Lao S, Montefiori DC, Haynes BF, Sodroski JG, Yang X (2012) High-mannose glycan-dependent epitopes are frequently targeted in broad neutralizing antibody responses during human immunodeficiency virus type 1 infection. J Virol 86:2153–2164

    Article  PubMed  CAS  Google Scholar 

  • Lee WR, Yu XF, Syu WJ, Essex M, Lee TH (1992a) Mutational analysis of conserved N-linked glycosylation sites of human immunodeficiency virus type 1 gp41. J Virol 66:1799–1803

    PubMed  CAS  Google Scholar 

  • Lee WR, Syu WJ, Du B, Matsuda M, Tan S, Wolf A, Essex M, Lee TH (1992b) Nonrandom distribution of gp120 N-linked glycosylation sites important for infectivity of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 89:2213–2217

    Article  PubMed  CAS  Google Scholar 

  • Lee HK, Scanlan CN, Huang CY, Chang AY, Calarese DA, Dwek RA, Rudd PM, Burton DR, Wilson IA, Wong CH (2004) Reactivity-based one-pot synthesis of oligomannoses: defining antigens recognized by 2G12, a broadly neutralizing anti-HIV-1 antibody. Angew Chem Int Ed 43:1000–1003

    Article  CAS  Google Scholar 

  • Leonard CK, Spellman MW, Riddle L, Harris RJ, Thomas JN, Gregory TJ (1990) Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J Biol Chem 265:10373–10382

    PubMed  CAS  Google Scholar 

  • Li H, Wang LX (2004) Design and synthesis of a template-assembled oligomannose cluster as an epitope mimic for human HIV-neutralizing antibody 2G12. Org Biomol Chem 2:483–488

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Luo L, Rasool N, Kang CY (1993) Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J Virol 67:584–588

    PubMed  CAS  Google Scholar 

  • Li Y, Rey-Cuille MA, Hu SL (2001) N-linked glycosylation in the V3 region of HIV type 1 surface antigen modulates coreceptor usage in viral infection. AIDS Res Hum Retroviruses 17:1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Cleveland B, Klots I, Travis B, Richardson BA, Anderson D, Montefiori D, Polacino P, Hu SL (2008) Removal of a single N-linked glycan in human immunodeficiency virus type 1 gp120 results in an enhanced ability to induce neutralizing antibody responses. J Virol 82:638–651

    Article  PubMed  CAS  Google Scholar 

  • Luallen RJ, Lin J, Fu H, Cai KK, Agrawal C, Mboudjeka I, Lee FH, Montefiori D, Smith DF, Doms RW, Geng Y (2008) An engineered Saccharomyces cerevisiae strain binds the broadly neutralizing human immunodeficiency virus type 1 antibody 2G12 and elicits mannose-specific gp120-binding antibodies. J Virol 82:6447–6457

    Article  PubMed  CAS  Google Scholar 

  • Luallen RJ, Fu H, Agrawal-Gamse C, Mboudjeka I, Huang W, Lee FH, Wang LX, Doms RW, Geng Y (2009) A yeast glycoprotein shows high-affinity binding to the broadly neutralizing human immunodeficiency virus antibody 2G12 and inhibits gp120 interactions with 2G12 and DC-SIGN. J Virol 83:4861–4870

    Article  PubMed  CAS  Google Scholar 

  • Luallen RJ, Agrawal-Gamse C, Fu H, Smith DF, Doms RW, Geng Y (2010) Antibodies against Manalpha1,2-Manalpha1,2-Man oligosaccharide structures recognize envelope glycoproteins from HIV-1 and SIV strains. Glycobiology 20:280–286

    Article  PubMed  CAS  Google Scholar 

  • Malito E, Bursulaya B, Chen C, Lo Surdo P, Picchianti M, Balducci E, Biancucci M, Brock A, Berti F, Bottomley MJ, Nissum M, Costantino P, Rappuoli R, Spraggon G (2012) Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A 109:5229–5234

    Article  PubMed  CAS  Google Scholar 

  • Mandal M, Dudkin VY, Geng X, Danishefsky SJ (2004) In pursuit of carbohydrate-based HIV vaccines, Part 1: the total synthesis of hybrid-type gp120 fragments. Angew Chem Int Ed 43:2557–2561

    Article  CAS  Google Scholar 

  • Marradi M, Di Gianvincenzo P, Enriquez-Navas PM, Martinez-Avila OM, Chiodo F, Yuste E, Angulo J, Penades S (2011) Gold nanoparticles coated with oligomannosides of HIV-1 glycoprotein gp120 mimic the carbohydrate epitope of antibody 2G12. J Mol Biol 410:798–810

    Article  PubMed  CAS  Google Scholar 

  • Mascola JR, Stiegler G, VanCott TC, Katinger H, Carpenter CB, Hanson CE, Beary H, Hayes D, Frankel SS, Birx DL, Lewis MG (2000) Protection of macaques against vaginal transmission of a pathogenic HIV- 1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat Med 6:207–210

    Article  PubMed  CAS  Google Scholar 

  • McLellan JS et al (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480:336–343

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Fadden AJ, Drickamer K (2001) A novel mechanism of carbohydrate recognition by the C-type lectins DC- SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 276:28939–28945

    Article  PubMed  CAS  Google Scholar 

  • Mizuochi T, Spellman MW, Larkin M, Solomon J, Basa LJ, Feizi T (1988) Carbohydrate structures of the human-immunodeficiency-virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells. Biochem J 254:599–603

    PubMed  CAS  Google Scholar 

  • Mizuochi T, Matthews TJ, Kato M, Hamako J, Titani K, Solomon J, Feizi T (1990) Diversity of oligosaccharide structures on the envelope glycoprotein gp 120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N- acetylglucosamine residues. J Biol Chem 265:8519–8524

    PubMed  CAS  Google Scholar 

  • Moldt B, Rakasz EG, Schultz N, Chan-Hui PY, Swiderek K, Weisgrau KL, Piaskowski SM, Bergman Z, Watkins DI, Poignard P, Burton DR (2012) Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc Natl Acad Sci U S A 109:18921–18925

    Article  PubMed  CAS  Google Scholar 

  • Moore PL, Gray ES, Wibmer CK, Bhiman JN, Nonyane M, Sheward DJ, Hermanus T, Bajimaya S, Tumba NL, Abrahams MR, Lambson BE, Ranchobe N, Ping L, Ngandu N, Abdool Karim Q, Abdool Karim SS, Swanstrom RI, Seaman MS, Williamson C, Morris L (2012) Evolution of an HIV glycan-dependent broadly neutralizing antibody epitope through immune escape. Nat Med 18:1688–1692

    Article  PubMed  CAS  Google Scholar 

  • Mouquet H, Scharf L, Euler Z, Liu Y, Eden C, Scheid JF, Halper-Stromberg A, Gnanapragasam PN, Spencer DI, Seaman MS, Schuitemaker H, Feizi T, Nussenzweig MC, Bjorkman PJ (2012) Complex-type N-glycan recognition by potent broadly neutralizing HIV antibodies. Proc Natl Acad Sci U S A 109:E3268–E3277

    Article  PubMed  CAS  Google Scholar 

  • Nabel GJ (2001) Challenges and opportunities for development of an AIDS vaccine. Nature 410:1002–1007

    Article  PubMed  CAS  Google Scholar 

  • Ni J, Song H, Wang Y, Stamatos NM, Wang LX (2006) Toward a carbohydrate-based HIV-1 vaccine: synthesis and immunological studies of oligomannose-containing glycoconjugates. Bioconjug Chem 17:493–500

    Article  PubMed  CAS  Google Scholar 

  • Pal R, Hoke GM, Sarngadharan MG (1989) Role of oligosaccharides in the processing and maturation of envelope glycoproteins of human immunodeficiency virus type 1. Proc Natl Acad Sci U S A 86:3384–3388

    Article  PubMed  CAS  Google Scholar 

  • Peeters JM, Hazendonk TG, Beuvery EC, Tesser GI (1989) Comparison of four bifunctional reagents for coupling peptides to proteins and the effect of the three moieties on the immunogenicity of the conjugates. J Immunol Methods 120:133–143

    Article  PubMed  CAS  Google Scholar 

  • Pejchal R et al (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334:1097–1103

    Article  PubMed  CAS  Google Scholar 

  • Perrin C, Fenouillet E, Jones IM (1998) Role of gp41 glycosylation sites in the biological activity of human immunodeficiency virus type 1 envelope glycoprotein. Virology 242:338–345

    Article  PubMed  CAS  Google Scholar 

  • Phalipon A, Tanguy M, Grandjean C, Guerreiro C, Belot F, Cohen D, Sansonetti PJ, Mulard LA (2009) A synthetic carbohydrate-protein conjugate vaccine candidate against Shigella flexneri 2a infection. J Immunol 182:2241–2247

    Article  PubMed  CAS  Google Scholar 

  • Pollard AJ, Perrett KP, Beverley PC (2009) Maintaining protection against invasive bacteria with protein-polysaccharide conjugate vaccines. Nat Rev Immunol 9:213–220

    Article  PubMed  CAS  Google Scholar 

  • Raska M, Takahashi K, Czernekova L, Zachova K, Hall S, Moldoveanu Z, Elliott MC, Wilson L, Brown R, Jancova D, Barnes S, Vrbkova J, Tomana M, Smith PD, Mestecky J, Renfrow MB, Novak J (2010) Glycosylation patterns of HIV-1 gp120 depend on the type of expressing cells and affect antibody recognition. J Biol Chem 285:20860–20869

    Article  PubMed  CAS  Google Scholar 

  • Reitter JN, Means RE, Desrosiers RC (1998) A role for carbohydrates in immune evasion in AIDS. Nat Med 4:679–684

    Article  PubMed  CAS  Google Scholar 

  • Sanders RW, Venturi M, Schiffner L, Kalyanaraman R, Katinger H, Lloyd KO, Kwong PD, Moore JP (2002) The mannose-dependent epitope for neutralizing antibody 2G12 on human immunodeficiency virus type 1 glycoprotein gp120. J Virol 76:7293–7305

    Article  PubMed  CAS  Google Scholar 

  • Scanlan CN, Pantophlet R, Wormald MR, Ollmann Saphire E, Stanfield R, Wilson IA, Katinger H, Dwek RA, Rudd PM, Burton DR (2002) The broadly neutralizing anti-human immunodeficiency virus type 1 antibody 2G12 recognizes a cluster of alpha1→2 mannose residues on the outer face of gp120. J Virol 76:7306–7321

    Article  PubMed  CAS  Google Scholar 

  • Scanlan CN, Ritchie GE, Baruah K, Crispin M, Harvey DJ, Singer BB, Lucka L, Wormald MR, Wentworth P Jr, Zitzmann N, Rudd PM, Burton DR, Dwek RA (2007) Inhibition of mammalian glycan biosynthesis produces non-self antigens for a broadly neutralising, HIV-1 specific antibody. J Mol Biol 372:16–22

    Article  PubMed  CAS  Google Scholar 

  • Schneerson R, Barrera O, Sutton A, Robbins JB (1980) Preparation, characterization, and immunogenicity of Haemophilus influenzae type b polysaccharide-protein conjugates. J Exp Med 152:361–376

    Article  PubMed  CAS  Google Scholar 

  • Shepherd VL, Lee YC, Schlesinger PH, Stahl PD (1981) L-Fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages. Proc Natl Acad Sci U S A 78:1019–1022

    Article  PubMed  CAS  Google Scholar 

  • Shilatifard A, Merkle RK, Helland DE, Welles JL, Haseltine WA, Cummings RD (1993) Complex-type N-linked oligosaccharides of gp120 from human immunodeficiency virus type 1 contain sulfated N-acetylglucosamine. J Virol 67:943–952

    PubMed  CAS  Google Scholar 

  • Snyder GA, Ford J, Torabi-Parizi P, Arthos JA, Schuck P, Colonna M, Sun PD (2005) Characterization of DC-SIGN/R interaction with human immunodeficiency virus type 1 gp120 and ICAM molecules favors the receptor’s role as an antigen-capturing rather than an adhesion receptor. J Virol 79:4589–4598

    Article  PubMed  CAS  Google Scholar 

  • Stahl PD, Rodman JS, Miller MJ, Schlesinger PH (1978) Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci U S A 75:1399–1403

    Article  PubMed  CAS  Google Scholar 

  • Stamatatos L, Morris L, Burton DR, Mascola JR (2009) Neutralizing antibodies generated during natural HIV-1 infection: good news for an HIV-1 vaccine? Nat Med 15:866–870

    PubMed  CAS  Google Scholar 

  • Su SV, Hong P, Baik S, Negrete OA, Gurney KB, Lee B (2004) DC-SIGN binds to HIV-1 glycoprotein 120 in a distinct but overlapping fashion compared with ICAM-2 and ICAM-3. J Biol Chem 279:19122–19132

    Article  PubMed  CAS  Google Scholar 

  • Trkola A, Purtscher M, Muster T, Ballaun C, Buchacher A, Sullivan N, Srinivasan K, Sodroski J, Moore JP, Katinger H (1996) Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 70:1100–1108

    PubMed  CAS  Google Scholar 

  • Vaccari M, Poonam P, Franchini G (2010) Phase III HIV vaccine trial in Thailand: a step toward a protective vaccine for HIV. Expert Rev Vaccines 9:997–1005

    Article  PubMed  CAS  Google Scholar 

  • Walker LM et al (2009) Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326:285–289

    Article  PubMed  CAS  Google Scholar 

  • Walker LM, Simek MD, Priddy F, Gach JS, Wagner D, Zwick MB, Phogat SK, Poignard P, Burton DR (2010) A limited number of antibody specificities mediate broad and potent serum neutralization in selected HIV-1 infected individuals. PLoS Pathog 6:e1001028

    Article  PubMed  CAS  Google Scholar 

  • Walker LM, Sok D, Nishimura Y, Donau O, Sadjadpour R, Gautam R, Shingai M, Pejchal R, Ramos A, Simek MD, Geng Y, Wilson IA, Poignard P, Martin MA, Burton DR (2011a) Rapid development of glycan-specific, broad, and potent anti-HIV-1 gp120 neutralizing antibodies in an R5 SIV/HIV chimeric virus infected macaque. Proc Natl Acad Sci U S A 108:20125–20129

    Article  PubMed  CAS  Google Scholar 

  • Walker LM et al (2011b) Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477:466–470

    Article  PubMed  CAS  Google Scholar 

  • Walsh G, Jefferis R (2006) Post-translational modifications in the context of therapeutic proteins. Nat Biotechnol 24:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Wang LX (2006) Toward oligosaccharide- and glycopeptide-based HIV vaccines. Curr Opin Drug Discov Devel 9:194–206

    PubMed  CAS  Google Scholar 

  • Wang LX, Ni J, Singh S, Li H (2004) Binding of high-mannose-type oligosaccharides and synthetic oligomannose clusters to human antibody 2G12: implications for HIV-1 vaccine design. Chem Biol 11:127–134

    PubMed  Google Scholar 

  • Wang J, Li H, Zou G, Wang LX (2007) Novel template-assembled oligosaccharide clusters as epitope mimics for HIV-neutralizing antibody 2G12. Design, synthesis, and antibody binding study. Org Biomol Chem 5:1529–1540

    Article  PubMed  CAS  Google Scholar 

  • Wang SK, Liang PH, Astronomo RD, Hsu TL, Hsieh SL, Burton DR, Wong CH (2008) Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc Natl Acad Sci U S A 105:3690–3695

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Decker JM, Wang S, Hui H, Kappes JC, Wu X, Salazar-Gonzalez JF, Salazar MG, Kilby JM, Saag MS, Komarova NL, Nowak MA, Hahn BH, Kwong PD, Shaw GM (2003) Antibody neutralization and escape by HIV-1. Nature 422:307–312

    Article  PubMed  CAS  Google Scholar 

  • Winzeler EA et al (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  PubMed  CAS  Google Scholar 

  • Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888

    Article  PubMed  CAS  Google Scholar 

  • Wyatt R, Moore J, Accola M, Desjardin E, Robinson J, Sodroski J (1995) Involvement of the V1/V2 variable loop structure in the exposure of human immunodeficiency virus type 1 gp120 epitopes induced by receptor binding. J Virol 69:5723–5733

    PubMed  CAS  Google Scholar 

  • Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG (1998) The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393:705–711

    Article  PubMed  CAS  Google Scholar 

  • Yeh JC, Seals JR, Murphy CI, van Halbeek H, Cummings RD (1993) Site-specific N-glycosylation and oligosaccharide structures of recombinant HIV-1 gp120 derived from a baculovirus expression system. Biochemistry 32:11087–11099

    Article  PubMed  CAS  Google Scholar 

  • Zhu X, Borchers C, Bienstock RJ, Tomer KB (2000) Mass spectrometric characterization of the glycosylation pattern of HIV- gp120 expressed in CHO cells. Biochemistry 39:11194–11204

    Article  PubMed  CAS  Google Scholar 

  • Zolla-Pazner S (2004) Identifying epitopes of HIV-1 that induce protective antibodies. Nat Rev Immunol 4:199–210

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lai-Xi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, LX., Costantino, P., Geng, Y., Zhang, H. (2014). Anti-Carbohydrate HIV Vaccine Design. In: Pantophlet, R. (eds) HIV glycans in infection and immunity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8872-9_6

Download citation

Publish with us

Policies and ethics