Skip to main content

Immunology of Leishmania

  • Chapter
  • First Online:
Leishmania and Leishmaniasis

Part of the book series: SpringerBriefs in Immunology ((BRIEFSIMMUN,volume 3))

Abstract

In view of existing knowledge, lymphocytes, macrophages (MΦ) and antibody co-operation the major components of the immune system are necessary for protection against the leishmania infection. The death of the parasite occurs either by stimulation of the sensitized lymphocytes through antigen load or by activating macrophages. Active VL disease is characterized by the marked elevation of humoral immune response i.e. by the production of plenty of specific as well as non-specific antibodies (Ghose et al. 1980; Ghosh et al. 1995). Antibody titers, primarily IgG rise sharply during VL, but the antibodies so generated, are apparently not protective (Bryceson and Turk 1971; Bray and Lainson 1966; Evans et al. 1990). The enormous increase in serum immunoglobulin levels in active VL is due to polyclonal activation of immunoglobulin producing cells leading to increase biosynthesis of IgG and to a lesser extent of IgM. Most of the antibodies produced during infection are not parasite specific (Clinton et al. 1969; Bunn-Moreno et al. 1985; Evans et al. 1990), but the hyper-gammaglobulinemia may have diagnostic value, IgG may reach 50 g/l and comprise 50 % of total serum proteins (Stauber 1963).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander J, Bryson K (2005) T helper (h)1/Th2 and Leishmania: paradox rather than paradigm. Immunol Lett 99:17–23

    Article  PubMed  CAS  Google Scholar 

  • Bogitsh BJ, Middleton OL, Ribeiro-Rodrigues R (1999) Effects of the antitubulin drug trifluralin on the proliferation and metacyclogenesis of Trypanosoma cruzi epimastigotes. Parasitol Res 85:475–480

    Article  PubMed  CAS  Google Scholar 

  • Bray RS, Lainson R (1966) The immunology and serology of leishmanisis. IV. Results of Ouchterlony double diffusion tests. Trans R Soc Trop Med Hyg 60:605–609

    Article  PubMed  CAS  Google Scholar 

  • Bryceson AD, Turk JL (1971) The effect of prolonged treatment with antilymphocyte serum on the course of infections with BCG and Leishmania enriettii in the guinea-pig. J Pathol 104:153–165

    Article  PubMed  CAS  Google Scholar 

  • Bunn-Moreno MM, Madeira ED, Miller K, Menezes JA, Campos-Neto A (1985) Hypergammaglobulinaemia in Leishmania donovani infected hamsters: possible association with a polyclonal activator of B cells and with suppression of T cell function. Clin Exp Immunol 59:427–434

    PubMed  CAS  Google Scholar 

  • Clinton BA, Stauber LA, Palczuk NC (1969) Leishmania donovani: antibody response to chicken ovalbumin by infected golden hamsters. Exp Parasitol 25:171–180

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta B, Roychoudhury K, Ganguly S, Kumar Sinha P, Vimal S, Das P, Roy S (2003) Antileishmanial drugs cause up-regulation of IFN-γ receptor 1, not only in the monocytes of visceral leishmaniasis cases but also in cultured THP1 cells. Ann Trop Med Parasitol 97:245–257

    Article  PubMed  CAS  Google Scholar 

  • Evans TG, Smith D, Pearson RD (1990) Humoral factors and nonspecific immune suppression in Syrian hamsters infected with Leishmania donovani. J Parasitol 76:212–217

    Article  PubMed  CAS  Google Scholar 

  • Ghalib HW, Piuvezam MR, Skeiky YA, Siddig M, Hashim FA, el-Hassan AM, Russo DM, Reed SG (1993) Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J Clin Invest 92:324–329

    Article  PubMed  CAS  Google Scholar 

  • Ghose AC, Haldar JP, Pal SC, Mishra BP, Mishra KK (1980) Serological investigations on Indian kala-azar. Clin Exp Immunol 40:318–326

    PubMed  CAS  Google Scholar 

  • Ghosh MK, Nandy A, Addy M, Maitra TK, Ghose AC (1995) Subpopulations of T lymphocytes in the peripheral blood, dermal lesions and lymph nodes of post kala-azar dermal leishmaniasis patients. Scand J Immunol 41:11–17

    Article  PubMed  CAS  Google Scholar 

  • Gomes RF, Macedo AM, Pena SD, Melo MN (1995) Leishmania (Viannia) braziliensis: genetic relationships between strains isolated from different areas of Brazil as revealed by DNA fingerprinting and RAPD. Exp Parasitol 80:681–687

    Article  PubMed  CAS  Google Scholar 

  • Goto H, Lindoso JA (2004) Immunity and immunosuppression in experimental visceral leishmaniasis. Braz J Med Biol Res 37:615–623

    Article  PubMed  CAS  Google Scholar 

  • Handman E (1997) Leishmania vaccines: old and new. Parasitol Today 13:236–238

    Article  PubMed  CAS  Google Scholar 

  • Heinzel FP, Sadick MD, Mutha SS, Locksley RM (1991) Production of interferon gamma, interleukin 2, interleukin 4, and interleukin 10 by CD4+ lymphocytes in vivo during healing and progressive murine leishmaniasis. Proc Natl Acad Sci USA 88:7011–7015

    Article  PubMed  CAS  Google Scholar 

  • Holaday BJ, Sadick MD, Wang ZE, Reiner SL, Heinzel FP, Parslow TG, Locksley RM (1991) Reconstitution of Leishmania immunity in severe combined immunodeficient mice using Th1- and Th2-like cell lines. J Immunol 147:1653–1658

    PubMed  CAS  Google Scholar 

  • Howard JG, Liew FY, Hale C, Nicklin S (1984) Prophylactic immunization against experimental leishmaniasis. II. Further characterization of the protective immunity against fatal Leishmania tropica infection induced by irradiated promastigotes. J Immunol 132:450–455

    PubMed  CAS  Google Scholar 

  • Karp CL, el-Safi SH, Wynn TA, Satti MM, Kordofani AM, Hashim FA, Hag-Ali M, Neva FA, Nutman TB, Sacks DL (1993) In vivo cytokine profiles in patients with kala-azar. Marked elevation of both interleukin-10 and interferon-gamma. J Clin Invest 91:1644–1648

    Article  PubMed  CAS  Google Scholar 

  • Kaye PM, Svensson M, Ato M, Maroof A, Polley R, Stager S, Zubairi S, Engwerda CR (2004) The immunopathology of experimental visceral leishmaniasis. Immunol Rev 201:239–253

    Article  PubMed  CAS  Google Scholar 

  • Kemp M, Kurtzhals JA, Bendtzen K, Poulsen LK, Hansen MB, Koech DK, Kharazmi A, Theander TG (1993) Leishmania donovani-reactive Th1- and Th2-like T-cell clones from individuals who have recovered from visceral leishmaniasis. Infect Immun 61:1069–1073

    PubMed  CAS  Google Scholar 

  • Lehn M, Kandil O, Arena C, Rein MS, Remold HG (1992) Interleukin-4 fails to inhibit interferon-gamma-induced activation of human colostral macrophages. Cell Immunol 141:233–242

    Article  PubMed  CAS  Google Scholar 

  • Leifso K, Cohen-Freue G, Dogra N, Murray A, McMaster WR (2007) Genomic and proteomic expression analysis of Leishmania promastigote and amastigote life stages: the Leishmania genome is constitutively expressed. Mol Biochem Parasitol 152:35–46

    Article  PubMed  CAS  Google Scholar 

  • Locksley RM, Louis JA (1992) Immunology of leishmaniasis. Curr Opin Immunol 4:413–418

    Article  PubMed  CAS  Google Scholar 

  • Manson-Bahr PE (1971) Leishmaniasis. Int Rev Trop Med 4:123–140

    PubMed  CAS  Google Scholar 

  • Medzihradszky KF, Campbell JM, Baldwin MA, Falick AM, Juhasz P, Vestal ML, Burlingame AL (2000) The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. Anal Chem 72:552–558

    Article  PubMed  CAS  Google Scholar 

  • Melby PC, Chandrasekar B, Zhao W, Coe JE (2001) The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J Immunol 166:1912–1920

    PubMed  CAS  Google Scholar 

  • Modabber F (1995) Vaccines against leishmaniasis. Ann Trop Med Parasitol 89(Suppl 1):83–88

    PubMed  CAS  Google Scholar 

  • Murray HW (1982) Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes. J Immunol 129:351–357

    PubMed  CAS  Google Scholar 

  • Murray HW, Rubin BY, Rothermel CD (1983) Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes. Evidence that interferon-gamma is the activating lymphokine. J Clin Invest 72:1506–1510

    Article  PubMed  CAS  Google Scholar 

  • Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  PubMed  CAS  Google Scholar 

  • Passos S, Carvalho LP, Orge G, Jeronimo SM, Bezerra G, Soto M, Alonso C, Carvalho EM (2005) Recombinant leishmania antigens for serodiagnosis of visceral leishmaniasis. Clin Diagn Lab Immunol 12:1164–1167

    PubMed  CAS  Google Scholar 

  • Reiner SL, Locksley RM (1995) The regulation of immunity to Leishmania major. Annu Rev Immunol 13:151–177

    Article  PubMed  CAS  Google Scholar 

  • Rezai HR, Ardehali SM, Amirhakimi G, Kharazmi A (1978) Immunological features of kala-azar. Am J Trop Med Hyg 27:1079–1083

    PubMed  CAS  Google Scholar 

  • Sacks DL, Lal SL, Shrivastava SN, Blackwell J, Neva FA (1987) An analysis of T cell responsiveness in Indian kala-azar. J Immunol 138:908–913

    PubMed  CAS  Google Scholar 

  • Saha S, Mondal S, Banerjee A, Ghose J, Bhowmick S, Ali N (2006) Immune responses in kala-azar. Indian J Med Res 123:245–266

    PubMed  CAS  Google Scholar 

  • Santos WR, de Lima VM, de Souza EP, Bernardo RR, Palatnik M, Palatnik de Sousa CB (2002) Saponins, IL12 and BCG adjuvant in the FML-vaccine formulation against murine visceral leishmaniasis. Vaccine 21:30–43

    Article  PubMed  CAS  Google Scholar 

  • Scott P (2003) Development and regulation of cell-mediated immunity in experimental leishmaniasis. Immunol Res 27:489–498

    Article  PubMed  CAS  Google Scholar 

  • Scott DA, Coombs GH, Sanderson BE (1987) Effects of methotrexate and other antifolates on the growth and dihydrofolate reductase activity of Leishmania promastigotes. Biochem Pharmacol 36:2043–2045

    Article  PubMed  CAS  Google Scholar 

  • Soto M, Requena JM, Quijada L, Perez MJ, Nieto CG, Guzman F, Patarroyo ME, Alonso C (1999) Antigenicity of the Leishmania infantum histones H2B and H4 during canine viscerocutaneous leishmaniasis. Clin Exp Immunol 115:342–349

    Article  PubMed  CAS  Google Scholar 

  • Stauber LA (1963) Immunity to leishmania. Ann NY Acad Sci 113:409–417

    Article  PubMed  CAS  Google Scholar 

  • Sternberg J, Turner CM, Wells JM, Ranford-Cartwright LC, Le Page RW, Tait A (1989) Gene exchange in African trypanosomes: frequency and allelic segregation. Mol Biochem Parasitol 34:269–279

    Article  PubMed  CAS  Google Scholar 

  • Stobie L, Gurunathan S, Prussin C, Sacks DL, Glaichenhaus N, Wu CY, Seder RA (2000) The role of antigen and IL-12 in sustaining Th1 memory cells in vivo: IL-12 is required to maintain memory/effector Th1 cells sufficient to mediate protection to an infectious parasite challenge. Proc Natl Acad Sci USA 97:8427–8432

    Article  PubMed  CAS  Google Scholar 

  • Suffia I, Ferrua B, Stien X, Mograbi B, Marty P, Rousseau D, Fragaki K, Kubar J (2000) A novel Leishmania infantum recombinant antigen which elicits interleukin 10 production by peripheral blood mononuclear cells of patients with visceral leishmaniasis. Infect Immun 68:630–636

    Article  PubMed  CAS  Google Scholar 

  • Waitumbi JN, Murphy NB (1993) Inter- and intra-species differentiation of trypanosomes by genomic fingerprinting with arbitrary primers. Mol Biochem Parasitol 58:181–185

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, A. (2013). Immunology of Leishmania . In: Leishmania and Leishmaniasis. SpringerBriefs in Immunology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8869-9_2

Download citation

Publish with us

Policies and ethics