Skip to main content

Cyclic Nucleotides and Nucleotide Cyclases in Plants Under Stress

  • Chapter
  • First Online:

Abstract

Cyclic nucleotides, cAMP and cGMP, are important signaling molecules that control a range of cellular functions and modulate different reactions. The level of the cyclic nucleotides is elevated and decreased by nucleotide cyclases and phosphodiesterases, respectively. The adenylate and guanylate cyclases synthesize cAMP and cGMP from ATP and GTP, respectively, while phosphodiesterases hydrolyze the cyclic nucleotides to AMP and GMP. An important aspect of cyclic nucleotide signal transduction has been identified and characterized during research on their receptors, such as cyclic nucleotide-dependent protein kinases and cyclic nucleotide-gated ion channels. It was proved that these receptors are involved in mediation of many effects of cyclic nucleotides. In the last decade, the participation of cyclic nucleotides in plant resistance to abiotic and biotic stresses has been extensively studied. The results of this research have shown that cAMP and cGMP are involved in signal transduction in response to various environmental stresses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Hamid H, Chin K, Moeder W, Yoshioka K (2011) High through put chemical screening supports the involvement of Ca2+ in cyclic nucleotide-gated ion channel-mediated programmed cell death in Arabidopsis. Plant Signal Behav 11:1817–1819

    Google Scholar 

  • Abel S, Nürnberger T, Ahnert V, Krauss GJ, Glund K (2000) Induction of an extracellular cyclic nucleotide phosphodiesterase as an accessory ribonucleolytic activity during phosphate starvation of cultured tomato cells. Plant Physiol 122:543–552

    CAS  PubMed  Google Scholar 

  • Ahammed GJ, Zhang S, Shi K, Zhou Y, Yu JQ (2012) Brassinosteroid improves seed germination and early development of tomato seedling under phenanthrene stress. Plant Growth Regul 68:87–96

    CAS  Google Scholar 

  • Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–1095

    CAS  PubMed  Google Scholar 

  • Amrhein N (1974) Evidence against the occurrence of adenosine 3':5'-cyclic monophosphate in higher plants. Planta 118:241–258

    CAS  Google Scholar 

  • Anderson JA, Huprikar SS, Kochian LV, Lucas WJ, Gaber RF (1992) Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 89:3736–3740

    CAS  PubMed  Google Scholar 

  • Anthony RG, Khan S, Costa J, Pais MS, Bogre L (2006) The Arabidopsis protein kinase PTI1-2 is activated by convergent phosphatidic acid and oxidative stress signaling pathways downstream of PDK1 and OXI1. J Biol Chem 281:37536–37546

    CAS  PubMed  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma-membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601

    CAS  PubMed  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    CAS  PubMed  Google Scholar 

  • Ashton AR, Polya GM (1975) Higher plant cyclic nucleotide phosphodiesterases. Biochem J 149:329–339

    CAS  PubMed  Google Scholar 

  • Bagga S, Straney D (2000) Modulation of cAMP and phosphodiesterase activity by flavonoids which induce spore germination of Nectria haematococca MP VI (Fusarium solani). Physiol Mol Plant Pathol 56:51–61

    CAS  Google Scholar 

  • Bai F, Watson JC, Walling J, Weeden N, Santner AA, Demason DA (2005) Molecular characterization and expression of PsPK2, a PINOID-like gene from pea (Pisum sativum). Plant Sci 168:1281–1291

    CAS  Google Scholar 

  • Balagué C, Lin B, Alcon C, Flottes G, Malmstrøm S, Köhler C, Neuhaus G, Pelletier G, Gaymard F, Roby D (2003) HLM1, an essential signaling component in the hypersensitive response is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15:365–379

    PubMed  Google Scholar 

  • Barbafieri M, Tassi E (2011) Brassinosteroids for phytoremediation application. In: Hayat S, Ahmad A (eds) Brassinosteroids: a class of plant hormone. Springer, Netherlands, pp 403–437

    Google Scholar 

  • Bastian R, Dawe A, Meier S, Ludidi N, Bajic VB, Gehring C (2010) Gibberelic acid and cGMP-dependent transcriptional regulation in Arabidopsis thaliana. Plant Signal Behav 5:224–232

    CAS  PubMed  Google Scholar 

  • Beavo JA, Brunton LL (2002) Cyclic nucleotide research - still expanding after half a century. Nat Rev Mol Cell Biol 3:710–718

    CAS  PubMed  Google Scholar 

  • Berchtold M, Bachofen R (1977) Possible role of cyclic AMP in the synthesis of chlorophyll in Chlorella fusca. Arch Microbiol 112:173–177

    CAS  PubMed  Google Scholar 

  • Bock KW, Honys D, Ward JM, Padmanaban S, Nawrocki EP, Hirschi KD, Twell D, Sze H (2006) Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol 140:1151–1168

    CAS  PubMed  Google Scholar 

  • Bögre L, Okrész L, Henriques R, Anthony RG (2003) Growth signaling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci 8:424–431

    PubMed  Google Scholar 

  • Bolwell GP (1992) A role for phosphorylation in the down-regulation of phenylalanine ammonia-lyase in suspension-cultured cells of French bean. Phytochemistry 31:4081–4086

    CAS  Google Scholar 

  • Bolwell GP (1995) Cyclic AMP, the reluctant messenger in plants. Trends Biochem Sci 20:492–495

    CAS  PubMed  Google Scholar 

  • Boon EM, Huang HH, Marletta MA (2005) A molecular basis for NO selectivity in soluble guanylate cyclase. Nature Chem Biol 1:53–59

    CAS  Google Scholar 

  • Borsics T, Webb D, Andeme-Ondzighi C, Staehelin LA, Christopher DA (2007) The cyclic nucleotide-gated calmodulin binding channel AtCNGC10 localizes to the plasma membrane and influences numerous growth responses and starch accumulation in Arabidopsis thaliana. Planta 225:563–573

    CAS  PubMed  Google Scholar 

  • Bouché N, Yellin A, Snedden WA, Fromm H (2005) Plant-specific calmodulin-binding proteins. Annu Rev Plant Biol 56:435–466

    PubMed  Google Scholar 

  • Bowler C, Neuhaus G, Yamagata H, Chua NH (1994a) Cyclic GMP and calcium mediate phytochrome phototransduction. Cell 77:73–81

    CAS  PubMed  Google Scholar 

  • Bowler C, Yamagata H, Neuhaus G, Chua NH (1994b) Phytochrome signal transduction pathways are regulated by reciprocal control mechanism. Gene Dev 8:2188–2202

    CAS  PubMed  Google Scholar 

  • Brewin NJ, Northcote DH (1973) Partial purification of a cyclic AMP phosphodiesterase from soybean callus: isolation of a non-dialysable inhibitor. Biochim Biophys Acta 320:104–122

    CAS  PubMed  Google Scholar 

  • Brown EG, Edwards MJ, Newton RP, Smith CJ (1979) Plurality of cyclic nucleotide phosphodiesterases in Spinacia oleracea L.; subcellular distribution, partial purification and properties. Phytochemistry 18:1943–1948

    CAS  Google Scholar 

  • Brown EG, Edwards MJ, Newton RP, Smith CJ (1980) The cyclic nucleotide phosphodiesterases of spinach chloroplasts and microsomes. Phytochemistry 19:23–30

    CAS  Google Scholar 

  • Carricarte VC, Bianchini GM, Muschietti JP, Téllez-Iñón MT, Perticari A, Torres N, Flawiá MM (1988) Adenylate cyclase activity in a higher plant, alfalfa (Medicago sativa). Biochem J 249:807–811

    CAS  PubMed  Google Scholar 

  • Chaiwongsar S, Strohm AK, Roe JR, Godiwalla RY, Chan CW (2009) A cyclic nucleotide-gated channel is necessary for optimum fertility in high-calcium environments. New Phytologist 183:76–87

    CAS  PubMed  Google Scholar 

  • Chan CWM, Schorrak LM, Smith RK, Bent AF, Sussman MR (2003) A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol 132:728–731

    CAS  PubMed  Google Scholar 

  • Cheng L, Bucciarelli B, Liu J, Zinn K, Miller S, Patton-Vogt J, Allan D, Shen J, Vance CP (2011) White lupin cluster root acclimation to phosphorus deficiency and root hair development involve unique glycerophosphodiester phosphodiesterases. Plant Physiol 156:1131–1148

    CAS  PubMed  Google Scholar 

  • Chiatante D, Balconi C, Newton RP, Brown EG (1988) Immunoaffinity purification of cyclic nucleotide phosphodiesterase from Lactuca cotyledons. Phytochemistry 8:2477–2483

    Google Scholar 

  • Chiatante D, Newton RP, Crignola S, Levi M, Brown EG (1990) The 3′,5′-cyclic nucleotide phosphodiesterase of meristematic and differentiated tissues of pea roots. Phytochemistry 29:2815–2820

    CAS  Google Scholar 

  • Chin K, Moeder W, Yoshioka K (2009) Biological roles of cyclic- nucleotide-gated ion channels in plants: what we know and don’t know about this 20 member ion channel family. Botany 87:668–677

    CAS  Google Scholar 

  • Choi YE, Xu JR (2010) The cAMP signaling pathway in Fusarium verticillioides is important for conidiation, plant infection, and stress responses but not fumonisin production. Mol Plant Microbe Interact 23:522–533

    CAS  PubMed  Google Scholar 

  • Christopher DA, Borsics T, Yuen CY, Ullmer W, Andème-Ondzighi C, Andres MA (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol 7:48

    PubMed  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    CAS  PubMed  Google Scholar 

  • Clouse SD (2002) Arabidopsis mutants reveal multiple roles for sterols in plant development. Plant Cell 14:1995–2000

    CAS  PubMed  Google Scholar 

  • Clouse SD (2011) Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23:1219–1230

    CAS  PubMed  Google Scholar 

  • Cooke CJ, Smith CJ, Walton TJ, Newton RP (1994) Evidence that cyclic-AMP is involved in the hypersensitive response of Medicago sativa to a fungal elicitor. Phytochemistry 35:889–895

    CAS  Google Scholar 

  • Craig KL, Tyers M (1999) The F-box: a new motif for ubiquitin dependent proteolysis in cell cycle regulation and signal transduction. Prog Biophys Mol Biol 72:299–328

    CAS  PubMed  Google Scholar 

  • Craven KB, Zagotta WN (2006) CNG and HCN channels: two peas, one pod. Annu Rev Physiol 68:375–401

    CAS  PubMed  Google Scholar 

  • Cui F, Liu L, Zhao Q, Zhang Z, Li Q, Lin B, Wu Y, Tang S, Xiea Q (2012) Arabidopsis ubiquitin conjugase UBC32 is an ERAD component that functions in brassinosteroid-mediated salt stress tolerance. Plant Cell 24:233–244

    CAS  PubMed  Google Scholar 

  • Cukkemane A, Seifert R, Kaupp UB (2011) Cooperative and uncooperative cyclic-nucleotide-gated ion channels. Trends Biochem Sci 36:55–64

    CAS  PubMed  Google Scholar 

  • Curvetto N, Darjania L, Delmastro S (1994) Effect of two cAMP analogues on stomatal opening in Vicia faba: possible relationship with cytosolic calcium concentration. Plant Physiol Biochem 32:365–372

    CAS  Google Scholar 

  • Cyong JC, Takahashi M (1982) Identification of guanosine-3':5'-monophosphate in the fruits of Zizyphus jujuba. Phytochemistry 21:1871–1874

    CAS  Google Scholar 

  • Cyong JC, Takahashi M, Hanabusa K, Otsuka Y (1982) Guanosine 3',5'-monophosphate in fruits of Evodia rutaecarpa and E. officinalis. Phytochemistry 21:777–778

    CAS  Google Scholar 

  • de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–365. doi:10.1093/nar/gkl124

    PubMed  Google Scholar 

  • del Pozo O, Pedley KF, Martin GB (2004) MAPKKKalpha is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082

    PubMed  Google Scholar 

  • Devarenne TP, Ekengren SK, Pedley KF, Martin GB (2006) Adi3 is a Pdk1-interacting AGC kinase that negatively regulates plant cell death. EMBO J 25:255–265

    CAS  PubMed  Google Scholar 

  • DeYoung BJ, Innes RW (2006) Plant NBS-LRR proteins in pathogen sensing and host defense. Nat Immunol 7:1243–1249

    CAS  PubMed  Google Scholar 

  • Dietrich P, Anschütz U, Kugler A, Becker D (2010) Physiology and biophysics of plant ligand-gated ion channels. Plant Biol 12:80–93

    CAS  PubMed  Google Scholar 

  • Dixon RA, Paiva NL (1995) Stress-induced phenylopropanoid metabolism. Plant Cell 7:1085–1097

    CAS  PubMed  Google Scholar 

  • Donaldson L, Ludidi N, Knight MR, Gehring C, Denby K (2004) Salt and osmotic stress cause rapid increases in Arabidopsis thaliana cGMP levels. FEBS Lett 569:317–320

    CAS  PubMed  Google Scholar 

  • Dubovskaya LV, Bakakina YS, Kolesneva EV, Sodel DL, McAinsh MR, Hetherington AM, Volotovski ID (2011) cGMP-dependent ABA-induced stomatal closure in the ABA-insensitive Arabidopsis mutant abi1-1. New Phytologist 191:57–69

    CAS  PubMed  Google Scholar 

  • Dubovskaya LV, Molchanov OV, Volotovsky ID (2002) Cyclic GMP-binding activity in Avena sativa seedlings. Russian J Plant Physiol 2:216–220

    Google Scholar 

  • Dupon M, Van Onckelen HA, De Greef JA (1987) Characterization of cyclic nucleotide phosphodiesterase activity in Phaseolus vulgaris. Physiol Plant 69:361–365

    CAS  Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci U S A 95:10328–10333

    CAS  PubMed  Google Scholar 

  • Ehsan H, Reichheld JP, Roef L, Witters E, Lardon F, Van Bockstaele D, Van Montagu M, Inzé D, Van Onckelen H (1998) Effect of indomethacin on cell cycle dependent cyclic AMP fluxes in tobacco BY-2 cells. FEBS Lett 422:165–169

    CAS  PubMed  Google Scholar 

  • Ehsan H, Roef L, Witters E, Reichheld JP, Bockstaele DV, Inze D, Onckelen HV (1999) Indomethacin-induced G1/S phase arrest of the plant cell cycle. FEBS Lett 458:349–353

    CAS  PubMed  Google Scholar 

  • Endress R (1979) Allosteric regulation of phosphodiesterase from Portulaca callus by cGMP and papavarin. Phytochemistry 18:15–20

    CAS  Google Scholar 

  • Essah PA, Davenport R, Tester M (2003) Sodium influx and accumulation in Arabidopsis. Plant Physiol 133:307–318

    CAS  PubMed  Google Scholar 

  • Fedenko EP, Koksharova TA, Agamalova SR, Belyaeva EV (2004) Effect of vernalization and red light lllumination of seedlings of bread wheat (Triticum aestivum L.) on the temperature profile of cAMP phosphodiesterase activity. Biol Bull 31:239–243

    CAS  Google Scholar 

  • Finka A, Quendet AFH, Maathuis FJM, Saidi Y, Goloubinoff P (2012) Plasma membrane cyclic nucleotide gated calcium channels control land plant thermal sensing and acquired thermotolerance. Plant Cell 24:3333–3348

    CAS  PubMed  Google Scholar 

  • Fischer C, Kugler A, Hoth S, Dietrich P (2013) An IQ domain mediates the interaction with calmodulin in a plant cyclic nucleotide-gated channel. Plant Cell Physiol 54:573–584

    CAS  PubMed  Google Scholar 

  • Friedrich P, Curvetto N, Giusto N (1999) Cyclic AMP-dependent protein phosphorylation in guard cell protoplasts of Vicia faba L. Biocell 23:203–210

    CAS  Google Scholar 

  • Frietsch S, Wang YF, Sladek C, Poulsen LR, Romanowsky SM, Schroeder JI, Harper JF (2007) A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc Natl Acad Sci U S A 104:14531–14536

    CAS  PubMed  Google Scholar 

  • Gangwani L, Mikrut M, Galcheva-Gargova Z, Davis RJ (1991) Identification of 3´,5´-cyclic AMP in axenic cultures of Lemna paucicostata by high-performance liquid chromatography. Biochem Biophys Res Commun 178:1113–1119

    CAS  PubMed  Google Scholar 

  • Garcia AV, Al-Yousif M, Hirt H (2012) Role of AGC kinases in plant growth and stress responses. Cell Mol Life Sci 69:3259–3267

    CAS  PubMed  Google Scholar 

  • Gehring C (2010) Adenyl cyclases and cAMP in plant signaling – past and present. Cell Commun Signal 8:15

    PubMed  Google Scholar 

  • Gilman AL (1970) A protein binding assay for adenosine 3´:5´-cyclic monophosphate. Proc Natl Acad Sci U S A 67:305–312

    CAS  PubMed  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Gobert A, Park G, Amtmann A, Sanders D, Maathuis FJ (2006) Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J Exp Bot 57:791–800

    CAS  PubMed  Google Scholar 

  • Gomez-Cadenas A, Zentella A, Walker-Simmons M, Ho THD (2001) Gibberellin/abscisic acid antagonism in barley aleuronic cells: site of action of the protein kinase PKABAI in relation to gibberellins signaling molecules. Plant Cell 13:667–679

    CAS  PubMed  Google Scholar 

  • Gordillo FJ, Segovia M, López-Figueroa F (2004) Cyclic AMP levels in several macroalgae and their relation to light quantity and quality. J Plant Physiol 161:211–217

    CAS  PubMed  Google Scholar 

  • Grzegorzewska W, Swieżawska B, Śzewczuk P, Szmidt-Jaworska A (2012) Cyclic nucleotides are involved in the defense response against mechanical wounding and pathogen attack in Hippeastrum. Acta Biochim Pol 59(Suppl 3, P6.9):165

    Google Scholar 

  • Guo KM, Babourina O, Christopher DA, Borsics T, Rengel Z (2008) The cyclic nucleotide-gated channel, AtCNGC10, influences salt tolerance in Arabidopsis. Physiol Plant 134:499–507

    CAS  PubMed  Google Scholar 

  • Haddox MK, Stephens JH, Goldberg ND (1974) Cyclic GMP in meristematic and elongating regions of bean root. Fed Proc 33:522–526

    Google Scholar 

  • Hammond RW, Zhao Y (2000a) Characterisation of a tomato protein kinase gene induced by infection by potato spindle tuber viroid. Mol Plant Microbe Interact 13:903–910

    CAS  PubMed  Google Scholar 

  • Hammond RW, Zhao Y (2000b) Characterization of a tomato protein kinase gene induced by infection by potato spindle tuber viroid. Mol Plant Microbe Interact 13:903–910

    CAS  PubMed  Google Scholar 

  • Harper JF, Brooker G (1975) Femtomole sensitive radioimmunoassay for cyclic AMP and cyclic GMP after 2'0 acetylation by acetic anhydride in aqueous solution. J Cyclic Nucleotide Res 1:207–218

    CAS  PubMed  Google Scholar 

  • Haubrick LL, Assmann SM (2006) Brassinosteroids and plant function: some clues, more puzzles. Plant Cell Environ 29:446–457

    CAS  PubMed  Google Scholar 

  • Helmreich EJ, Zenner HP, Pfeuffer T (1976) Signal transfer from hormone receptor to adenylate cyclase. Curr Top Cell Regul 10:41–87

    CAS  PubMed  Google Scholar 

  • Heo WD, Lee SH, Kim MC, Kim JC, Chung WS, Chun HJ, Lee KJ, Park CY, Park HC, Choi JY, Cho MJ (1999) Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc Natl Acad Sci U S A 96:766–771

    CAS  PubMed  Google Scholar 

  • Hirt H, Garcia AV, Oelmüller R (2011) AGC kinases in plant development and defense. Plant Signal Behav 6:1–4

    Google Scholar 

  • Hofmann A, Tarasov S, Grella M, Ruvinov S, Nasr F, Filipowicz W, Wlodawer A (2002) Biophysical characterisation of cyclic nucleotide phosphodiesterases. Biochem Biophys Res Commun 291:875–883

    CAS  PubMed  Google Scholar 

  • Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003a) Plants do it differently: a new basis for potassium/sodium selectivity in the pore of anion channel. Plant Physiol 132:1353–1361

    CAS  PubMed  Google Scholar 

  • Hua BG, Mercier RW, Zielinski RE, Berkowitz GA (2003b) Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 41:945–954

    CAS  Google Scholar 

  • Huffaker A, Pearce G, Ryan CA (2006) An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc Natl Acad Sci U S A 103:10098–10103

    CAS  PubMed  Google Scholar 

  • Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proc Natl Acad Sci U S A 104:10732–10736

    CAS  PubMed  Google Scholar 

  • Inohara N, Chamaillard M, McDonald C, Nuñez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383

    CAS  PubMed  Google Scholar 

  • Irving HR, Kwezi L, Wheeler JI, Gehring C (2012) Moonlighting kinases with guanylate cyclase activity can tune regulatory signal networks. Plant Signal Behav 7:201–204

    CAS  PubMed  Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photo avoidance in Euglena gracilis. Nature 415:1047–1051

    CAS  PubMed  Google Scholar 

  • Ishioka N, Tanimoto S (1990) Involvement of cyclic AMP in adventitious bud initiation of Torenia stem segments. Plant Cell Physiol 31:91–97

    CAS  Google Scholar 

  • Isner JC, Maathuis FJM (2011) Measurement of cellular cGMP in plant cells and tissue using the endogenous fluorescent reporter FlincG. Plant J 65:329–334

    CAS  PubMed  Google Scholar 

  • Isner JC, Nühse T, Maathuis FJM (2012) The cyclic nucleotide cGMP is involved in plant hormone signalling and alters phosphorylation of Arabidopsis thaliana root proteins. J Exp Bot 63:3199–3205

    CAS  PubMed  Google Scholar 

  • Janistyn B (1983) Gas chromatographic-mass spectroscopic identification and quantification of cyclic guanosine-3':5' monophosphate in maize seedlings (Zea mays). Planta 159:382–385

    CAS  Google Scholar 

  • Janistyn B (1989) cAMP promoted protein phosphorylation of dialysed coconut milk. Phytochemistry 28:329–331

    CAS  Google Scholar 

  • Jiang J, Fan LW, Wu WH (2005) Evidences for involvement of endogenous cAMP in Arabidopsis defense responses to Verticillium toxins. Cell Res 15:585–592

    CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    CAS  PubMed  Google Scholar 

  • Joudoia T, Shichiria Y, Kamizonoa N, Akaikeb T, Sawab T, Yoshitakeb J, Yamadac N, Iwaia S (2013) Nitrated cyclic GMP modulates guard cell signaling in Arabidopsis. Plant Cell 25:558–571

    Google Scholar 

  • Junker S, Verbeek-Wyndaele R, Truelsen TA (1977) Characterization of cyclic nucleotide phosphodiesterase activity in sunflower callus. Physiol Plant 39:45–50

    CAS  Google Scholar 

  • Jurkowski GI, Smith RK Jr, Yu IC, Ham JH, Sharma SB, Klessig DF, Fengler KA, Bent AF (2004) Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the “defense, no death” phenotype. Mol Plant Mic Interact 17:511–520

    CAS  Google Scholar 

  • Jusoh M, Okamoto H, Fricker M, McWatters H (2010) The role of cyclic adenosine monophosphate (cAMP) in Arabidopsis thaliana. 21st International Conference on Arabidopsis Research, Yokohama, Japan, p 101

    Google Scholar 

  • Kaplan B, Sherman T, Fromm H (2007) Cyclic nucleotide-gated channels in plants. FEBS Lett 581:2237–2246

    CAS  PubMed  Google Scholar 

  • Kato R, Uno L, Ishikawa T, Fujii T (1983) Effects of cAMP on the activity of soluble protein kinases in Lemna paucicostata. Plant Cell Physiol 24:841–848

    CAS  Google Scholar 

  • Kaupp UB, Seifert R (2002) Cyclic nucleotide-gated ion channels. Physiol Rev 82:769–824

    CAS  PubMed  Google Scholar 

  • Khersonsky O, Tawfik DS (2010) Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79:471–505

    CAS  PubMed  Google Scholar 

  • Kim YJ, Lin NC, Martin GB (2002) Two distinct Pseudomonas effector proteins interact with the Pto kinase and activate plant immunity. Cell 109:589–598

    CAS  PubMed  Google Scholar 

  • Kobayashi M, Ohura I, Kawakita K, Yokota N, Fujiwara M, Shimamoto K, Doke N, Yoshioka H (2007) Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell 19:1065–1080

    CAS  PubMed  Google Scholar 

  • Köhler C, Merkle T, Neuhaus G (1999) Characterization of a novel gene family of putative cyclic nucleotide and calmodulin-regulated ion channels in Arabidopsis thaliana. Plant J 18:97–104

    PubMed  Google Scholar 

  • Köhler C, Merkle T, Roby D, Neuhaus G (2001) Developmentally regulated expression of cyclic nucleotide-gated ion channel from Arabidopsis indicates its involvement in programmed cell death. Planta 213:327–332

    PubMed  Google Scholar 

  • Köhler C, Neuhaus G (2000) Characterization of calmodulin binding to cyclic nucleotide-gated ion channels from Arabidopsis thaliana. FEBBS Lett 4710:133–136

    Google Scholar 

  • Komatsu S, Hirano H (1993) Protein kinase activity and protein phosphorylation in rice (Oryza sativa L.) leaf. Plant Sci 94:127–137

    CAS  Google Scholar 

  • Krupa A, Anamika A, Srinvasan N (2006) Genome-wide comparative analyses of domain organization of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene 380:1–13

    CAS  PubMed  Google Scholar 

  • Kuo JF, Greengard P (1970) Cyclic nucleotide-dependent protein kinases. VI. Isolation and partial purification of a protein kinase activated by guanosine 3',5'- monophosphate. J Biol Chem 245:2493–2498

    CAS  PubMed  Google Scholar 

  • Kuo MM, Saimi Y, Kung C, Choe S (2007) Patch clamp and phenotypic analyses of a prokaryotic cyclic nucleotide-gated K+ channel using Escherichia coli as a host. J Biol Chem 282:24294–24301

    CAS  PubMed  Google Scholar 

  • Kurosaki F, Kaburaki H (1995) Phosphodiesterase isoenzymes in extracts of cultured carrot. Phytochemistry 40:685–689

    CAS  Google Scholar 

  • Kurosaki F, Nishi A (1993) Stimulation of calcium influx and calcium cascade by cyclic AMP in cultured carrot cells. Arch Biochem Biophys 302:144–151

    CAS  PubMed  Google Scholar 

  • Kurosaki F, Tsurusawa Y, Nishi A (1987) The elicitation of phytoalexins by Ca2+ and cyclic-AMP in carrot cells. Phytochemistry 26:1919–1923

    CAS  Google Scholar 

  • Kwezi L, Meier S, Mungur L, Ruzvidzo O, Irving H, Gehring C (2007) The Arabidopsis thaliana brassinosteroid receptor (AtBRI1) contains a domain that functions as a guanylyl cyclase in vitro. PLoS ONE 2(5):e449. doi:10.1371/journal.pone.0000449

    PubMed  Google Scholar 

  • Kwezi L, Ruzvidzo O, Wheeler JI, Govender K, Iacuone S, Thompson PE, Gehring C, Irving HR (2011) The phytosulfokine (PSK) receptor is capable of guanylate cyclase activity and enabling cyclic GMP-dependent signaling in plants. J Biol Chem 286:22580–22588

    CAS  PubMed  Google Scholar 

  • Lariguet P, Dunand C (2005) Plant photoreceptors: phylogenetic overview. J Mol Evol 61:559–569

    CAS  PubMed  Google Scholar 

  • Lee SH, Johnson JD, Wlash MP, Van Lierop JE, Sutherland C, Xu AD, Snedden WA, Kosk-Kosiska D, Fromm H, Narayanan N, Cho MJ (2000) Differential regulation of Ca2+/calmodulin dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem J 350:299–306

    CAS  PubMed  Google Scholar 

  • Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusual phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28

    CAS  PubMed  Google Scholar 

  • Lemtiri-Chlieh F, Berkowitz GA (2004) Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. J Biol Chem 279:35306–35312

    CAS  PubMed  Google Scholar 

  • Lemtiri-Chlieh F, Thomas L, Marondedze C, Irving H, Gehring C (2011) Cyclic nucleotides and nucleotide cyclases in plant stress responses. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress response in plants-physiological, biochemical and genetic perspectives. InTech, Rijeka, pp 137–182

    Google Scholar 

  • Leng Q, Mercier RW, Hua BG, Fromm H, Berkowitz GA (2002) Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol 128:400–410

    CAS  PubMed  Google Scholar 

  • Li J, Jia H (2013) cGMP modulates Arabidopsis lateral root formation through regulation of polar auxin transport. Plant Physiol Biochem 66:105–117

    CAS  PubMed  Google Scholar 

  • Li X, Borsics T, Harrington HM, Christopher DA (2005) Arabidopsis AtCNGC10 rescues potassium channel mutants of E. coli, yeast, and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E. coli. Func Plant Biol 32:643–653

    Google Scholar 

  • Lin PP, Varner JE (1972) Cyclic nucleotide phosphodiesterase in pea seedlings. Biochim Biophys Acta 276:454–474

    CAS  PubMed  Google Scholar 

  • Liu JQ, Leggewie G, Varotto S (1999) Characterisation of an anther-expressed protein kinase gene in the potato Solanum berthaultii and its antisense inhibition in transgenic plants. Sex Plant Reprod 11:336–346

    CAS  Google Scholar 

  • Liu P, Meng LJ, Zhang HX, Chen J, Wang XC (2002) Involvement of cAMP in ABA signal transduction in tobacco suspension cells. Acta Bot Sin 44:1432–1437

    CAS  Google Scholar 

  • Liu Y, Ruoho AE, Rao VD, Hurley JH (1997) Catalytic mechanism of the adenylyl and guanylyl cyclases: modeling and mutational analysis. Proc Natl Acad Sci U S A 94:13414–13419

    CAS  PubMed  Google Scholar 

  • Lomovatskaya LA, Romanenko AS, Filinova NV, Dudareva LV (2011) Determination of cAMP in plant cells by a modified enzyme immunoassay method. Plant Cell Rep 30:125–132

    CAS  PubMed  Google Scholar 

  • Lomovatskaya LA, Romanenko AS, Krivolapova NV (2005) A simplified method to determination of cAMP in plants using modified enzyme immunoassay. Biol Bull 32:567–570

    CAS  Google Scholar 

  • Ludidi N, Gehring C (2003) Identification of a novel protein with guanylyl cyclase activity in Arabidopsis thaliana. J Biol Chem 278:6490–6494

    CAS  PubMed  Google Scholar 

  • Lundeen CV, Wood HN, Braun AC (1973) Intracellular levels of cyclic nucleotides during cell enlargement and cell division in excised tobacco pith tissues. Differentiation 1:255–260

    CAS  Google Scholar 

  • Lusini P, Trabalzini L, Franchi GG, Bovalini L, Martelli P (1991) Adenylate cyclase in roots of Ricinus communis: stimulation by GTP and Mn2+. Phytochemistry 30:109–111

    CAS  Google Scholar 

  • Ma W (2011) Roles of Ca2+ and cyclic nucleotide gated channel in plant innate immunity. Plant Sci 181:342–346

    CAS  PubMed  Google Scholar 

  • Ma W, Ali R, Berkowitz GA (2006) Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol Biochem 44:494–505

    CAS  PubMed  Google Scholar 

  • Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA (2009a) Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci U S A 106:20995–21000

    CAS  PubMed  Google Scholar 

  • Ma W, Smigel A, Tsai YC, Braam J, Berkowitz GA (2008) Innate immunity signaling: cytosolic Ca2+ elevation is linked to downstream nitric oxide generation through the action of calmodulin or a calmodulin-like protein. Plant Physiol 148:818–828

    CAS  PubMed  Google Scholar 

  • Ma W, Smigel A, Verma R, Berkowitz GA (2009b) Cyclic nucleotide gated channels and related signaling components in plant innate immunity. Plant Signal Behav 4:277–282

    CAS  PubMed  Google Scholar 

  • Ma W, Yoshioka K, Gehring CA, Berkowitz GA (2010) The function of cyclic nucleotide gated channels in biotic stress. In: Demidchikand V, Maathuis FJM (eds) Ion channels and plant stress responses. Springer, Berlin, pp 159–174

    Google Scholar 

  • Maathuis FJ, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R, Forde BG, Palmgren MG, Rea PA, Williams LE, Sanders D, Amtmann A (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J 35:675–692

    CAS  PubMed  Google Scholar 

  • Maathuis FJM (2006) cGMP modulates gene transcription and cation transport in Arabidopsis roots. Plant J 45:700–711

    CAS  PubMed  Google Scholar 

  • Maathuis FJM, Sanders D (2001) Sodium uptake in Arabidopsis roots is regulated by cyclic nucleotides. Plant Physiol 127:1617–1625

    CAS  PubMed  Google Scholar 

  • Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJM, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    PubMed  Google Scholar 

  • Matsui H, Miyao A, Takahashi A, Hirochika H (2010) Pdk1 kinase regulates basal disease resistance through the OsOxi1-OsPti1a phosphorylation cascade in rice. Plant Cell Physiol 51:2082–2091

    CAS  PubMed  Google Scholar 

  • Matulef K, Zagotta WN (2003) Cyclic nucleotide-gated ion channels. Annu Rev Cell Dev Biol 19:23–44

    CAS  PubMed  Google Scholar 

  • McCue LA, McDonough KA, Lawrence CE (2000) Functional classification of cNMP-binding proteins and nucleotide cyclases with implications for novel regulatory pathways in Mycobacterium tuberculosis. Genome Res 10:204–219

    CAS  PubMed  Google Scholar 

  • Meier S, Madeo L, Ederli L, Donaldson L, Pasqualini S, Gehring C (2009) Deciphering cGMP signatures and cGMP-dependent pathways in plant defence. Plant Signal Behav 4:307–309

    CAS  PubMed  Google Scholar 

  • Meier S, Ruzvidzo O, Morse M, Donaldson L, Kwezi L, Gehring C (2010) The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS ONE 5(1):e8904. doi:10.1371/journal.pone.0008904

    PubMed  Google Scholar 

  • Meyers BC, Kozik A, Griego A, Kuang H, Michelmore RW (2003) Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15:809–834

    CAS  PubMed  Google Scholar 

  • Moeder W, Urquharta W, Unga H, Yoshiokaa K (2011) The role of cyclic nucleotide-gated ion channels in plant immunity. Mol Plant 4:442–452

    CAS  PubMed  Google Scholar 

  • Morita Y, Kyozuka J (2007) Characterization of OsPID, the rice ortholog of PINOID, and its possible involvement in the control of polar auxin transport. Plant Cell Physiol 48:540–549

    CAS  PubMed  Google Scholar 

  • Moutinho A, Hussey PJ, Trewavas AJ, Malhó R (2001) cAMP acts as a second messenger in pollen tube growth and reorientation. Proc Natl Acad Sci U S A 98:10481–10486

    CAS  PubMed  Google Scholar 

  • Mulaudzi T, Ludidi N, Ruzvidzo O, Morse M, Hendricks N, Iwuoha E, Gehring C (2011) Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett 585:2693–2697

    CAS  PubMed  Google Scholar 

  • Neill SJ, Desikan R, Clarke A, Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128:13–16

    CAS  PubMed  Google Scholar 

  • Neuhaus G, Bowler C, Hiratsuka K, Yamagata H, Chua NH (1997) Phytochrome-regulated repression of gene expression requires calcium and cGMP. EMBO J 16:2554–2564

    CAS  PubMed  Google Scholar 

  • Newton RP (1996) Mass spectrometric analysis of cyclic nucleotides and related enzymes. In: Newton RP, Walton TJ (eds) Applications of modern mass spectrometry in plant science research. Oxford Science, Oxford, pp 159–181

    Google Scholar 

  • Newton RP, Chiatante D, Ghosh D, Brenton AG, Walton TJ, Harris FM, Brown EG (1989) Identification of cyclic-nucleotide constituents of meristematic and nonmeristematic tissue of Pisum sativum roots. Phytochemistry 28:2243–2254

    CAS  Google Scholar 

  • Newton RP, Gibbs N, Moyse CD, Wiebers JL, Brown EG (1980) Mass spectrometric identification of adenosine 3´,5´-cyclic monophosphate isolated from a higher plant tissue. Phytochemistry 19:1909–1911

    CAS  Google Scholar 

  • Newton RP, Kingston EE, Evans DE, Younis LM, Brown EG (1984) Occurrence of guanosine 3',5'-cyclic-monophosphate (cyclic-GMP) and associated enzyme systems in Phaseolus vulgaris. Phytochemistry 23:1367–1372

    CAS  Google Scholar 

  • Newton RP, Smith CJ (2004) Cyclic nucleotides. Phytochemistry 65:2423–2437

    CAS  PubMed  Google Scholar 

  • Nimigean CM, Shane T, Miller C (2004) A cyclic nucleotide modulated prokaryotic K+ channel. J Gen Physiol 124:203–210

    CAS  PubMed  Google Scholar 

  • Pacini B, Petrigliano A, Diffley P, Paffetn A, Brown EG, Martelli P, Trabalzini L, Bovalini L, Lhusini P, Newton RP (1993) Adenylyl cyclase activity in roots of Pisum sativum. Phytochemistry 34:899–903

    CAS  Google Scholar 

  • Pagnussat GC, Lanteri ML, Lamattina L (2003) Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process. Plant Physiol 132:1241–1248

    CAS  PubMed  Google Scholar 

  • Pasqualini S, Meier S, Gehring C, Madeo L, Fornaciari M, Romano B, Ederli L (2009) Ozone and nitric oxide induce cGMP-dependent and -independent transcription of defence genes in tobacco. New Phytol 181:860–870

    CAS  PubMed  Google Scholar 

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295

    CAS  PubMed  Google Scholar 

  • Penson SP, Schuurink RC, Fath A, Gubler F, Jacobsen JV, Jones RL (1996) cGMP is required for gibberellic acid-induced gene expression in barley aleurone. Plant Cell 8:2325–2333

    CAS  PubMed  Google Scholar 

  • Petersen LN, Ingle RA, Knight MR, Denby KJ (2009) OXI1 protein kinase is required for plant immunity against Pseudomonas syringae in Arabidopsis. J Exp Bot 60:3727–3235

    CAS  PubMed  Google Scholar 

  • Pfeiffer S, Janistyn B, Jessner G, Pichorner H, Ebermann R (1994) Gaseous nitricoxide stimulates guanosine-3',5'-cyclic monophosphate (cGMP) formation in spruce needles. Phytochemistry 36:259–262

    CAS  Google Scholar 

  • Pharmawati M, Billington T, Gehring CA (1998) Stomatal guard cell responses to kinetin and natriuretic peptides are cGMP-dependent. Cell Mol Life Sci 54:272–276

    CAS  PubMed  Google Scholar 

  • Pharmawati M, Maryani MM, Nikolakopoulos T, Gehring CA, Irving HR (2001) Cyclic GMP modulates stomatal opening induced by natriuretic peptides and immunoreactive analogues. Plant Physiol Biochem 39:385–394

    CAS  Google Scholar 

  • Pietrowska-Borek M, Nuc K, Chadzinikolau T, Lechowska K (2012) Cadmium stress causes accumulation of cAMP and this signal molecule induces phenylpropanoid pathway in Arabidopsis thaliana seedlings. Acta Biochim Pol 59(Suppl 3, P4.30):134

    Google Scholar 

  • Pislariu CI, Dickstein R (2007) An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of developing root nodules in Medicago truncatula. Plant Physiol 144:682–694

    CAS  PubMed  Google Scholar 

  • Polya GM, Chung R, Menting J (1991) Resolution of a higher plant protein kinase similar to the catalytic subunit of cyclic AMP-dependent protein kinase. Plant Sci 79:37–45

    CAS  Google Scholar 

  • Qi Z, Verma R, Gehring C, Yamaguchi Y, Zhao Y, Ryan CA, Berkowitz GA (2010) Ca2+ signaling by plant Arabidopsis thaliana Pep peptides depends on AtPepR1, a receptor with guanylyl cyclase activity, and cGMP-activated Ca2+ channels. Proc Natl Acad Sci U S A 107:21193–21198

    CAS  PubMed  Google Scholar 

  • Rademacher EH, Offringa R (2012) Evolutionary adaptations of plant AGC kinases: from light signaling to cell polarity regulation. Front Plant Sci 3:1–16

    Google Scholar 

  • Rehmann H, Wittinghofer A, Bos JL (2007) Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Nat Rev 8:63–73

    CAS  Google Scholar 

  • Reichler SA, Torres J, Rivera AL, Cintolesi VA, Clark G, Roux SJ (2009) Intersection of two signalling pathways: extracellular nucleotides regulate pollen germination and pollen tube growth via nitric oxide. J Exp Bot 60:2129–2138

    CAS  PubMed  Google Scholar 

  • Rentel MC, Lecourieux D, Ouaked F, Usher SL, Petersen L, Okamoto H, Knight H, Peck SC, Grierson CS, Hirt H, Knight MR (2004) OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427:858–561

    CAS  PubMed  Google Scholar 

  • Richards H, Das S, Smith CJ, Pereira L, Geisbrecht A, Devitt NJ, Games DE, van Geyschem J, Brenton AG, Newton RP (2002) Cyclic nucleotide content of tobacco BY-2 cells. Phytochemistry 61:531–537

    CAS  PubMed  Google Scholar 

  • Robert HS, Offringa R (2008) Regulation of auxin transport polarity by AGC kinases. Curr Opin Plant Biol 11:495–502

    CAS  PubMed  Google Scholar 

  • Rosenberg N, Pines M, Sela I (1982) Adenosine 3'-5'-cyclic monophosphate - its release in a higher plant by an exogenous stimulus as detected by radioimmunoassay. FEBS Lett 137:105–107

    CAS  Google Scholar 

  • Rostoks N, Schmierer D, Mudie S, Drader T, Brueggeman R, Caldwell DG, Waugh R, Kleinhofs A (2006) Barley necrotic locus nec1 encodes the cyclic nucleotide-gated ion channel 4 homologous to the Arabidopsis HLM1. Mol Genet Genomics 275:159–168

    CAS  PubMed  Google Scholar 

  • Rubio F, Flores P, Navarro JM, Martinez V (2003) Effects of Ca2+, K+ and cGMP on Na+ uptake in pepper plants. Plant Sci 165:1043–1049

    CAS  Google Scholar 

  • Ryan CA, Huffaker A, Yamaguchi Y (2007) New insights into innate immunity in Arabidopsis. Cell Microbiol 9:1902–1908

    CAS  PubMed  Google Scholar 

  • Santner AA, Watson JC (2006) The WAG1 and WAG2 protein kinases negatively regulate root waving in Arabidopsis. Plant J 45:752–764

    CAS  PubMed  Google Scholar 

  • Schaap P (2005) Guanylyl cyclases across the tree of life. Front Biosci 10:1485–1498

    CAS  PubMed  Google Scholar 

  • Schuurink PC, Chan PV, Jones RL (1996) Modulation of calmodulin mRNA and protein levels in barley aleurone. Plant Physiol 111:371–380

    CAS  PubMed  Google Scholar 

  • Segovia M, Gordillo FJ, Schaap P, Figueroa FL (2001) Light regulation of cyclic-AMP levels in the red macroalga Porphyra leucosticta. J Photochem Photobiol B 64:69–74

    CAS  PubMed  Google Scholar 

  • Sharma I, Pati PK, Bhardwaj R (2011) Effect of 28-homobrassinolide on antioxidant defence system in Raphanus sativus L. under chromium toxicity. Ecotoxicology 20:862–874

    CAS  PubMed  Google Scholar 

  • Sharma P, Bhardwaj R, Arora HK, Arora N, Kumar A (2008) Effects of 28-homobrassinolide on nickel uptake, protein content and antioxidative defence system in Brassica juncea. Biol Plant 52:767–770

    CAS  Google Scholar 

  • Sherman T, Fromm H (2009) Physiological roles of cyclic nucleotide gated channels in plants. In: Baluška F, Mancuso S (eds) Signaling in plants. Springer, Berlin, pp 91–106

    Google Scholar 

  • Smith CJ, Roef L, Walton TJ, Games DE, Bayliss M, Wilikins A, Oliver M, Witters E, Geisbrecht A, Van Geyschem J, Vaughan JM, Diffley PE, Van Onckelen H, Van Cleef J, Harris FM, Brenton AG, Newton RP (2001) Variation in isomeric products of a phosphodiesterase from the chloroplasts of Phaseolus vulgaris in response to cations. Plant Biosyst 135:143–156

    Google Scholar 

  • Spoel SH, Johnson JS, Dong X (2007) Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc Natl Acad Sci U S A 104:18842–18847

    CAS  PubMed  Google Scholar 

  • Stroiński A, Floryszak-Wieczorek J (1985a) Adenosine 3′:5′-cyclic monophosphate changes during germination of Hordeum vulgare. Acta Physiol Plant 7:35–43

    Google Scholar 

  • Stroiński A, Floryszak-Wieczorek J (1985b) Guanosine 3′:5′-cyclic monophosphate changes during germination of Hordeum vulgare. Plant Sci 42:1–4

    Google Scholar 

  • Suita K, Kiryu T, Sawada M, Mitsui M, Nakagawa M, Kanamaru K, Yamagata H (2009) Cyclic GMP acts as a common regulator for the transcriptional activation of the flavonoid biosynthetic pathway in soybean. Planta 229:403–413

    CAS  PubMed  Google Scholar 

  • Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    CAS  PubMed  Google Scholar 

  • Suzuki N, Choe HR, Nishida Y, Yamawaki-Kataoka Y, Ohnishi S, Tamaoki T, Kataoka T (1990) Leucine-rich repeats and carboxyl terminus are required for interaction of yeast adenylate cyclase with RAS proteins. Proc Natl Acad Sci U S A 87:8711–8715

    CAS  PubMed  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008a) Involvement of cyclic GMP in phytochrome-controlled flowering of Pharbitis nil. J Plant Physiol 165:858–867

    CAS  PubMed  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2008b) Effect of light on soluble guanylyl cyclase activity in Pharbitis nil seedlings. J Photochem Photobiol B 93:9–15

    CAS  PubMed  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Kopcewicz J (2009) Cyclic GMP stimulates flower induction of Pharbitis nil via its influence on cGMP regulated protein kinase. Plant Growth Regul 57:115–126

    CAS  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J (2003) Biochemical evidence for a cGMP-regulated protein kinase in Pharbitis nil. Phytochemistry 63:635–642

    CAS  PubMed  Google Scholar 

  • Szmidt-Jaworska A, Jaworski K, Tretyn A, Kopcewicz J (2004) The involvement of cyclic GMP in the photoperiodic flower induction of Pharbitis nil. J Plant Physiol 161:277–284

    CAS  PubMed  Google Scholar 

  • Takabatake R, Karita E, Seo S, Mitsuhara I, Kuchitsu K, Ohashi Y (2007) Pathogen-induced calmodulin isoforms in basal resistance against bacterial and fungal pathogens in tobacco. Plant Cell Physiol 48:414–423

    CAS  PubMed  Google Scholar 

  • Takahashi N, Ejiri S, Katsumata T (1978) Changes of cyclic-AMP and cyclic-GMP levels during germination of pine pollen. Agricult Biol Chem 42:1605–1606

    CAS  Google Scholar 

  • Talke IN, Blaudez D, Maathuis FJ, Sanders D (2003) CNGCs: prime targets of plant cyclic nucleotide signalling? Trends Plant Sci 8:286–293

    CAS  PubMed  Google Scholar 

  • Teng Y, Xu W, Ma M (2010) cGMP is required for seed germination in Arabidopsis thaliana. J Plant Physiol 167:885–889

    CAS  PubMed  Google Scholar 

  • Terakado J, Fujihara S, Yoneyama T (2003) Changes in cyclic nucleotides during nodule formation. Soil Sci Plant Nutr 49:459–462

    CAS  Google Scholar 

  • Terakado J, Okamura M, Fujihara S, Ohmori M, Yoneyama T (1997) Cyclic AMP in rhizobia and symbiotic nodules. Ann Bot 80:499–503

    CAS  Google Scholar 

  • The UniProt Consortium (2012) Reorganizing the protein space at the Universal Protein Resource (UniProt). Nucleic Acids Res 40:D71–D75

    Google Scholar 

  • Thomas L, Marondedze C, Ederli L, Pasqualini S, Gehring C (2013) Proteomic signatures implicate cAMP in light and temperature responses in Arabidopsis thaliana. J Proteom 83:47–59

    CAS  Google Scholar 

  • Trewavas AJ (1997) Plant cyclic AMP comes in from the cold. Nature 390:657–658

    CAS  PubMed  Google Scholar 

  • Tsuruhara A, Tezuka T (2001) The relationship between the self-incompatibility and cAMP level in Lilium longiflorum. Plant Cell Physiol 42:1234–1238

    CAS  PubMed  Google Scholar 

  • Tunc-Ozdemir M, Tang C, Ishka MR, Brown E, Groves NR, Candace T, Myers CT, Rato C, Poulsen LR, McDowell S, Miller G, Mittler R, Harper JF (2013) A cyclic nucleotide-gated channel (CNGC16) in pollen is critical for stress tolerance in pollen reproductive development. Plant Physiol 161:1010–1020

    CAS  PubMed  Google Scholar 

  • Turner BL, Haygarth PM (2005) Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Sci Total Environ 344:27–36

    CAS  PubMed  Google Scholar 

  • Uematsu K, Fukui Y (2008) Role and regulation of cAMP in seed germination of Phacelia tanacetifolia. Plant Physiol Biochem 46:768–774

    CAS  PubMed  Google Scholar 

  • Uematsu K, Nakajima M, Yamaguchi I, Yoneyama K, Fukui Y (2007) Role of cAMP in Gibberellin Promotion of Seed Germination in Orobanche minor Smith. J Plant Growth Reg 26:245–254

    CAS  Google Scholar 

  • Van der Rest B, Boisson AM, Gout E, Bligny R, Douce R (2002) Glycerophosphocholine metabolism in higher plant cells: evidence of a new glyceryl-phosphodiester phosphodiesterase. Plant Physiol 130:244–255

    PubMed  Google Scholar 

  • Vandepeute J, Huffaker RC, Alvarez R (1973) Cyclic nucleotide phosphodiesterase activity in barley seeds. Plant Physiol 52:278–282

    CAS  PubMed  Google Scholar 

  • Vlot AC, Klessig DF, Park SW (2008) Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol 11:436–442

    CAS  PubMed  Google Scholar 

  • Volotovsky ID, Dubovskaya LV, Molchan OV (2003) Photoreceptor phytochrome regulates the cyclic guanosine 3´,5´-monophosphate synthesis in Avena sativa L. cells. Bulg J Plant Physiol 29:3–12

    Google Scholar 

  • Volotovsky ID, Sokolovsky SG, Molchan OV, Knight MR (1998) Second messengers mediate increases in cytosolic calcium in tobacco protoplasts. Plant Physiol 117:1023–1030

    Google Scholar 

  • Wang Y (2012) Functional characterization of plant ion channels in heterologous expression systems. In: Alexander GV (ed) Plant Electrophysiology. Methods and cell electrophysiology. Springer, Berlin, pp 301–321

    Google Scholar 

  • Ward JM, Mäser P, Schroeder JI (2009) Plant ion channels: gene families, physiology, and functional genomics analyses. Annu Rev Physiol 71:59–82

    CAS  PubMed  Google Scholar 

  • Witters E, Quanten L, Bloemen J, Valcke R, van Onckelen H (2004) Product identification and adenylyl cyclase activity in chloroplasts of Nicotiana tabacum. Rapid Commun Mass Spectrom 17:2188–2194

    Google Scholar 

  • Witters E, RoefL NRP, VanDongen W, Esmans EL, Van Onckelen HA (1996) Quantitation of cyclic nucleotides in biological samples by negative electrospray tandem mass spectrometry coupled to ion suppression liquid chromatography. Rapid Commun Mass Spectr 10:225–231

    CAS  Google Scholar 

  • Witters E, Valcke R, van Onckelen H (2005) Cytoenzymological analysis of adenylyl cyclase activity and 3´:5´-cAMP immunolocalization in chloroplasts of Nicotiana tabacum. New Phytol 168:99–108

    CAS  PubMed  Google Scholar 

  • Witters E, VanDongen W, Esmans EL, VanOnckelen HA (1997) Ion pair liquid chromatography-electrospray mass spectrometry for the analysis of cyclic nucleotides. J Chromatogr B 694:55–63

    CAS  Google Scholar 

  • Xu W, Huang J, Li B, Li J, Wang Y (2008) Is kinase activity essential for biological functions of BRI1? Cell Res 18:472–478

    CAS  PubMed  Google Scholar 

  • Yoshioka K, Moeder W, Kang HG, Kachroo P, Masmoudi K, Berkowitz G, Klessig DF (2006) The chimeric Arabidopsis cyclic nucleotide-gated ion channel 11/12 activates multiple pathogen resistance responses. Plant Cell 18:747–763

    CAS  PubMed  Google Scholar 

  • Young EC, Krougliak N (2004) Distinct structural determinants of efficacy and sensitivity in the ligand-binding domain of cyclic nucleotide-gated channels. J Biol Chem 279:3553–3562

    CAS  PubMed  Google Scholar 

  • Yu I, Fengler KA, Clough SJ, Bent AF (2000) Identification of Arabidopsis mutants exhibiting an altered hypersensitive response in gene-for-gene disease resistance. Mol Plant Mic Interact 13:277–286

    CAS  Google Scholar 

  • Yuen CCY, Christopher DA (2013) The group IV-A cyclic nucleotide-gated channels, CNGC19 and CNGC20, localize to the vacuole membrane in Arabidopsis thaliana. AoB PLANTS 5:plt012. doi:10.1093/aobpla/plt012

    Google Scholar 

  • Yuen CYL, Christopher DA (2010) The role of cyclic nucleotide-gated channels in cation nutrition and abiotic stress. In: Demidchik V, Maathuis F (eds) Signaling in plants. Springer, Berlin, pp 137–159

    Google Scholar 

  • Zagotta WN, Siegelbaum SA (1996) Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 19:235–263

    CAS  PubMed  Google Scholar 

  • Zelman AK, Dawe A, Gehring C, Berkowitz AA (2012) Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels. Front Plant Sci 29:1–13

    Google Scholar 

  • Zhang J, Zhou JM (2010) Plant immunity triggered by microbial molecular signatures. Mol Plant 3:783–793

    CAS  PubMed  Google Scholar 

  • Zhao J, Guo Y, Fujita K, Sakai K (2003) Involvement of cAMP signaling in elicitor-induced phytoalexin accumulation in Cupressus lusitanica cell cultures. New Phytol 161:723–733

    Google Scholar 

  • Zhao J, Wu C, Yuan S, Yin L, Sun W, Zhao Q, Zhao B, Li X (2013) Kinase activity of OsBRI1 is essential for brassinosteroids to regulate rice growth and development. Plant Sci 199–200:113–120

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Pietrowska-Borek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pietrowska-Borek, M., Chadzinikolau, T., Borek, S. (2014). Cyclic Nucleotides and Nucleotide Cyclases in Plants Under Stress. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_6

Download citation

Publish with us

Policies and ethics