Skip to main content

Transgenic Approaches for Phytoextraction of Heavy Metals

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

Large areas of developed as well as developing countries have been contaminated with high concentration of heavy metals resulting from emissions from combustion plants, oil, mining and other industrial processes, incinerators, and military and waste practices. These heavy metals are a health hazard to all forms of life and pose serious danger to public health by entering the food chain or by leaching into drinking water, besides having a negative impact on ecosystems and other natural resources. Phytoextraction refers to the removal of contaminants from soils by plants and their transportation and concentration in the harvestable parts. Several plant species are known that flourish in the presence of high concentration of metals in the soil and even hyperaccumulate them in their shoots. However, most of the metal-accumulating plants exhibit metal selectivity, show sluggish growth, produce little biomass, and cannot be utilized for remediation other than in their natural habitats. An interesting alternative can be the modification of a rapidly growing non-accumulator plant to achieve some of the features of the hyperaccumulators. Although conventional breeding approaches coupled with suitable agronomic practices can go a long way in enhancing the phytoextraction capacity, several anatomical constraints severely restrict sexual compatibility between taxa and pose serious limitations in developing hybrids with increased phytoextraction capability. Recombinant DNA technology has opened new gateways in phytoremediation technology by offering the opportunity for direct gene transfer that would overcome sexual incompatibility, if present. This approach of the development of transgenics having increased uptake, accumulation, and tolerance can be considered as a good alternative. The present work discusses various approaches used to develop transgenic plants having increased phytoextraction capacity and the future of transgenic technology for effective remediation of heavy metal-contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aken BV (2008) Transgenic plants for phytoremediation: helping nature to clean up environmental pollution. Trends Biotechnol 26:225–227

    PubMed  Google Scholar 

  • Alfvén T, Elinder CG, Carlsson MD, Grubb A, Hellström L, Persson B (2000) Low-level cadmium exposure and osteoporosis. J Bone Miner Res 15:1579–1586

    PubMed  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    PubMed  CAS  Google Scholar 

  • Andres-Colas N, Perea-Garcia A, Puig S, Penarrubia L (2010) Deregulated copper transport affects Arabidopsis development especially in the absence of environmental cycles. Plant Physiol 153:170–184

    PubMed  CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    PubMed  CAS  Google Scholar 

  • Arosio P, Levi S (2002) Ferritin, iron homeostasis, and oxidative damage. Free Radic Biol Med 33:457–463

    PubMed  CAS  Google Scholar 

  • ATSDR (2001) Agency for toxic substances and disease registry. CERLLA Comprehensive environmental response, compensation and liability act, priority list of hazardous substances

    Google Scholar 

  • Babula P, Adam V, Opatrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6:189–213

    CAS  Google Scholar 

  • Baker AJM (1981) Accumulators and excluders—strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM (1987) Metal tolerance. New Phytol 106:93–111

    CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Bereczky Z, Wang HY, Schubert V, Ganal M, Bauer P (2003) Differential regulation of Nramp and IRT metal transporter genes in wild type and iron uptake mutants of tomato. J Biol Chem 278:24697–24704

    PubMed  CAS  Google Scholar 

  • Bernal M, Testillano PS, Alfonso M, Del Carmen RM, Picorel R, Yruela I (2007) Identification and subcellular localization of the soybean copper P1B-ATPase GmHMA8 transporter. J Struct Biol 158:146–158

    Google Scholar 

  • Bhargava A, Shukla S, Srivastava J, Singh N, Ohri D (2008) Chenopodium: a prospective plant for phytoextraction. Acta Physiol Plant 30:111–120

    CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012a) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    PubMed  CAS  Google Scholar 

  • Bhargava A, Gupta VK, Singh AK, Gaur R (2012b) Microbes for heavy metal remediation. In: Gaur R, Mehrotra S, Pandey RR (eds) Microbial applications. IK International Publishing, New Delhi, pp 167–177

    Google Scholar 

  • Bizily S, Rugh CC, Meagher RB (2000) Phytoremediation of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    PubMed  CAS  Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methyl Hg lyase enhances its specific activity for organic Hg detoxification in plants. Plant Physiol 131:463–471

    PubMed  CAS  Google Scholar 

  • Blaylock MJ, Huang JW (2000) Phytoextraction of metals. In: Raskin I, Ensley B (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley-Interscience, Hoboken, NJ, pp 53–88

    Google Scholar 

  • Breckle CW (1991) Growth under heavy metals. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Dekker, New York, NY, pp 351–373

    Google Scholar 

  • Briat JF, Duc C, Ravet K, Gaymard F (2010a) Ferritins and iron storage in plants. Biochim Biophys Acta 1800:806–814

    PubMed  CAS  Google Scholar 

  • Briat JF, Ravet K, Arnaud N, Duc C, Boucherez J, Touraine B, Cellier F, Gaymard F (2010b) New insights into ferritin synthesis and function highlight a link between iron homeostasis and oxidative stress in plants. Ann Bot 105:811–822

    PubMed  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–57

    CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constitutes. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Park Ridge Noyes Data Corporation, London, pp 50–76

    Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    PubMed  CAS  Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li Y-M, Brewer EP, Chen K-Y, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60C:190–198

    Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    PubMed  CAS  Google Scholar 

  • Charles E, Thomas DS, Dewey D, Davey M, Ngallaba SE, Konje E (2013) A cross-sectional survey on knowledge and perceptions of health risks associated with arsenic and mercury contamination from artisanal gold mining in Tanzania. BMC Public Health 13:74

    PubMed  Google Scholar 

  • Che D, Meagher RB, Heaton AC, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotech J 1:311–319

    CAS  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    PubMed  CAS  Google Scholar 

  • Cho M, Chardonnens AN, Dietz KJ (2003) Differential heavy metal tolerance of Arabidopsis halleri and Arabidopsis thaliana: a leaf slice test. New Phytol 158:287–293

    CAS  Google Scholar 

  • Clements S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    PubMed  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Collins NC, Shirley NJ, Saeed M, Pallotta M, Gustafson JP (2008) An ALMT1 gene cluster controlling aluminum tolerance at the Alt4 locus of rye (Secale cereale L.). Genetics 179:669–682

    PubMed  CAS  Google Scholar 

  • Courbot M, Willems G, Motte P, Arvidsson S, Roosens N, Saumitou-Laprade P, Verbruggen N (2007) A major quantitative trait locus for Cd tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiol 144:1052–1065

    PubMed  CAS  Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. TIBTECH 13:393–397

    CAS  Google Scholar 

  • Czako M, Feng X, He Y, Liang D, Marton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110

    PubMed  CAS  Google Scholar 

  • DalCorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. Metallomics 5:1117–1132

    Google Scholar 

  • de Borne FD, Elmayan T, de Roton C, de Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4:83–90

    Google Scholar 

  • de Vos CHR, Schat H, De Waal MAM, Voojs R, Ernst WHO (1991) Increased resistance to copper-induced damage of root cell plasmalemma in copper tolerant Silene cucubalus. Physiol Plant 82:523–528

    Google Scholar 

  • Devez A, Achterberg E, Gledhill M (2009) Metal ion-binding properties of phytochelatins and related ligands. In: Sigel A, Sigel H, Sigel RKO (eds) Metallothioneins and related chelators. Royal Society of Chemistry, Cambridge, pp 441–481

    Google Scholar 

  • DiDonato RJ, Roberts LA, Sanderson T, Eisley RB, Walker EL (2004) Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes. Plant J 39:403–414

    PubMed  CAS  Google Scholar 

  • Dominguez-Solis JR, Gutierrez-Alcala G, Vega JM, Romero LC, Gotor C (2001) The cytosolic O-acetylserine (thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    PubMed  CAS  Google Scholar 

  • Dominguez-Solis JR, Lopez-Martin MC, Ager FJ, Ynsa MD, Romero LC, Gotor C (2004) Increased cysteine availability is essential for cadmium tolerance and accumulation in Arabidopsis thaliana. Plant Biotechnol J 2:469–476

    PubMed  CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Igwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Ernst WHO (2005) Phytoextraction of mine wastes e options and impossibilities. Chemie der Erde 65:29–42

    CAS  Google Scholar 

  • European Union (2002) Heavy metals in wastes. European Commission on Environment (http://ec.europa.eu/environment/waste/pdf/heavy_metalsreport.pdf)

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of pea metallothionein-like gene PsMTA function. Plant Mol Biol 20:1019–1028

    PubMed  CAS  Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminum-induced genes in transgenic Arabidopsis plants can ameliorate aluminum stress and/or oxidative stress. Plant Physiol 122:657–665

    PubMed  CAS  Google Scholar 

  • Ferner DJ (2001) Toxicity, heavy metals. eMed J 2:1

    Google Scholar 

  • Fosmire GJ (1990) Zinc toxicity. Am J Clin Nutr 51:225–227

    PubMed  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol 77:229–236

    PubMed  CAS  Google Scholar 

  • Gendre D, Czernic P, Conéjéro G, Pianelli K, Briat J-F, Lebrun M, Mari S (2006) TcYSL3, a member of the YSL gene family from the hyperaccumulator Thlaspi caerulescens, encodes a nicotianamine-Ni/Fe transporter. Plant J 49:1–15

    PubMed  Google Scholar 

  • Gisbert C, Ros R, Haro AD, Walker DJ, Bernal MP, Serrano R, Avino JN (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    PubMed  CAS  Google Scholar 

  • Godbold DL, Hüttermann A (1985) Effect of zinc, cadmium and mercury on root elongation of Picea abies (Karst.) seedlings, and the significance of these metals to forest die‐back. Environ Pollut 38:375–381

    CAS  Google Scholar 

  • Gonzaga MIS, Santos JAG, Ma LQ (2006) Arsenic phytoextraction and hyperaccumulation by fern species. Sci Agric (Piracicaba, Braz) 63:90–101

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soyabean ferritin gene. Transgenic Res 7:173–180

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    PubMed  CAS  Google Scholar 

  • Gratao PL, Prasad MNV, Cardoso PF, Lea PJ, Azevedo RA (2005) Phytoremediation: green technology for the cleanup of toxic metals in the environment. Braz J Plant Physiol 17:53–64

    CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J Biotech 81:45–53

    CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    PubMed  CAS  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    PubMed  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54:2601–2613

    PubMed  CAS  Google Scholar 

  • Hartley-Whitaker J, Ainsworth G, Vooijs R, Ten Brookum W, Schat H, Meharg AA (2001) Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiol 126:299–306

    PubMed  CAS  Google Scholar 

  • Hattori J, Labbe H, Miki BL (1994) Construction and expression of a metallothionein-β-glucuronidase gene fusion. Genome 37:508–512

    PubMed  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Towards detoxifying Hg-polluted aquatic sediments with rice genetically engineered for Hg resistance. Environ Toxicol Chem 22:2940–2947

    PubMed  CAS  Google Scholar 

  • Heiss S, Wachter A, Bogs J, Cobbett C, Rausch T (2003) Phytochelatin synthase (PCS) protein is induced in Brassica juncea leaves after prolonged Cd exposure. J Exp Bot 54:1833–1839

    PubMed  CAS  Google Scholar 

  • Hernández LE, Gárate A, Carpena-Ruiz RO (1997) Effects of cadmium on the uptake, distribution and assimilation of nitrate in Pisum sativum. Plant Soil 189:97–106

    Google Scholar 

  • Hesegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

    Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    PubMed  CAS  Google Scholar 

  • Holum JR (1983) Elements of general and biological chemistry. Wiley, New York, NY

    Google Scholar 

  • INECAR (Institute of Environmental Conservation and Research) (2000) Position paper against mining in Rapu-Rapu. INECAR, Ateneo de Naga University, Philippines

    Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    PubMed  CAS  Google Scholar 

  • Jin T, Nordberg GF, Ye T, Bo M, Wang H, Zhu G, Kong Q, Bernard A (2004) Osteoporosis and renal dysfunction in general population exposed to cadmium in China. Environ Res 96:353–359

    PubMed  CAS  Google Scholar 

  • John P, Ahmad P, Gadgil K, Sharma S (2009) Heavy metal toxicity: effect on plant growth, biochemical parameters and metal accumulation by Brassica juncea L. Int J Plant Prod 3:65–76

    CAS  Google Scholar 

  • Johri N, Jacquillet G, Unwin R (2010) Heavy metal poisoning: the effects of cadmium on the kidney. Biometals 23:783–792

    PubMed  CAS  Google Scholar 

  • Kamnev AA, van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    PubMed  CAS  Google Scholar 

  • Kantor D (2006) Guillain–Barre syndrome: the medical encyclopedia. National Library of Medicine and National Institute of Health, Bethesda, MD

    Google Scholar 

  • Kawachi M, Kobae Y, Mimura T, Maeshima M (2008) Deletion of a histidine-rich loop of AtMTP1, a vacuolar Zn2+/H+ antiporter of Arabidopsis thaliana, stimulates the transport activity. J Biol Chem 283:8374–8383

    PubMed  CAS  Google Scholar 

  • Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26:153–157

    PubMed  CAS  Google Scholar 

  • Kerkeb L, Mukherjee I, Chatterjee I, Lahner B, Salt DE, Connolly EL (2008) Iron-induced turnover of the Arabidopsis iron-regulated transporter1 metal transporter requires lysine residues. Plant Physiol 146:1964–1973

    PubMed  CAS  Google Scholar 

  • Kim S, Kang KH, Johnson-Green P, Lee EJ (2003) Investigation of heavy metal accumulation in Polygonum thunbergii for phytoextraction. Environ Pollut 126:235–243

    PubMed  CAS  Google Scholar 

  • Kim D, Gustin JL, Lahner B, Persans MW, Baek D, Yun DJ, Salt DE (2004) The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae. Plant J 39:237–251

    PubMed  CAS  Google Scholar 

  • Kim YO, Jung S, Kim K, Bae HJ (2013) Role of pCeMT, a putative metallothionein from Colocasia esculenta, in response to metal stress. Plant Physiol Biochem 64:25–32

    PubMed  CAS  Google Scholar 

  • Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    PubMed  Google Scholar 

  • Kramer U, Talke I, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    PubMed  Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    PubMed  CAS  Google Scholar 

  • Lamb DT, Ming H, Megharaj M, Naidu R (2010) Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead. Arch Environ Contam Toxicol 59:424–432

    PubMed  CAS  Google Scholar 

  • Lasat MM (2000) Phytoextraction of metals from contaminated sites- a critical review of plant/soil/metal interaction and assessment of pertinent agronomic issues. J Hazard Subst Res 2:1–25

    Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    PubMed  CAS  Google Scholar 

  • Lee S, Moon JS, Ko TS, Petros D, Goldsbrough PB, Korban SS (2003) Overexpression of Arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress. Plant Physiol 131:656–663

    PubMed  CAS  Google Scholar 

  • Lee S, Kim Y-Y, Lee Y, An G (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145:831–842

    PubMed  CAS  Google Scholar 

  • Li YM, Chaney RL, Schneiter AA, Miller JF (1995) Genotypic variation in kernel cadmium concentration in sunflower germplasm under varying soil conditions. Crop Sci 35:137–141

    Google Scholar 

  • Li C, Li Z, Li Y, Zhou J, Zhang C (2012) A ferritin from Dendrorhynchus zhejiangensis with heavy metals detoxification activity. PLoS ONE 7:e51428

    PubMed  CAS  Google Scholar 

  • Lidsky TI, Schneider JS (2003) Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain 126:5–19

    PubMed  Google Scholar 

  • Lin Z-Q, Schemenauer RS, Cervinka V, Zayed A, Lee A, Terry N (2000) Selenium volatilization from the soil- Salicornia bigelovii Torr. treatment system for the remediation of contaminated water and soil in the San Joaquin Valley. J Environ Qual 29:1048–1056

    CAS  Google Scholar 

  • Linacre NA, Whiting SN, Baker AJM, Angle JS, Ades PK (2003) Transgenics and phytoremediation: the need for an integrated risk strategy assessment, management and communication strategy. J Phytoremed 5:181–185

    Google Scholar 

  • Liu J, Zhu Q, Zhang Z, Xu J, Yang J, Wong MH (2005) Variations in cadmium accumulation among rice cultivars and types and the selection of cultivars for reducing cadmium in the diet. J Sci Food Agric 85:147–153

    CAS  Google Scholar 

  • Lopez-Millan AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol 54:583–596

    PubMed  CAS  Google Scholar 

  • Lugon-Moulin N, Zhang M, Gadani F, Rossi L, Koller D, Krauss M, Wagner GJ (2004) Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants. Adv Agron 83:111–180

    CAS  Google Scholar 

  • LWTAP (Lenntech Water Treatment and Air Purification) (2004) Water treatment. Lenntech, Rotterdamseweg

    Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two Hg resistance genes in Eastern cottonwood enhances the processing of organomercury. Plant Biotech J 5:254–262

    CAS  Google Scholar 

  • Maestri E, Marmiroli M, Visioli G, Marmiroli N (2010) Metal tolerance and hyperaccumulation: costs and trade-offs between trade and environment. Environ Exp Bot 68:1–13

    CAS  Google Scholar 

  • Mani D, Kumar C (2013) Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. Int J Environ Sci Technol. doi:10.1007/s13762-013-0299-8

  • Manousaki E, Kadukova J, Papadantonakis N, Kalogerakis N (2008) Phytoextraction and phytoexcretion of Cd by the leaves of Tamarix smyrnensis growing on contaminated non-saline and saline soils. Environ Res 106:326–332

    PubMed  CAS  Google Scholar 

  • Maracek I, Lazar L, Korenekova B, Choma J, David V (1998) Rezíduá t'ažkých kovov a výskyt chorobnosti reprodukèných orgánov kráv v spádovej oblasti hutníckeho kombinátu. Slovak Vet J 23:159–163

    Google Scholar 

  • McCluggage D (1991) Heavy metal poisoning, NCS Magazine. The Bird Hospital, Lakewood, CO

    Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    PubMed  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv Agronomy 75:1–56

    CAS  Google Scholar 

  • McKenna IM, Chaney RL (1991) Cadmium transfer to humans from food crops grown in sites contaminated with cadmium and zinc. In: Fechter LD (ed) Proceedings of the 4th international conference of combined effects of environmental factors, 1–3 Oct 1990, Johns Hopkins University School of Hygiene and Public Health, Baltimore, MD, pp 65–70

    Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of Hg pollution in soil and water using bacterial genes. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, FL, pp 201–221

    Google Scholar 

  • Memon AR, Schroder P (2009) Implications of metal accumulation mechanisms to phytoremediation. Environ Sci Pollut Res 16:162–175

    CAS  Google Scholar 

  • Mertens J, Luyssaert S, Verheyen K (2005) Use and abuse of trace metal concentrations in plant tissue for biomonitoring and phytoextraction. Environ Pollut 138:1–4

    PubMed  CAS  Google Scholar 

  • Mertens J, van Nevel L, De Schrijver A, Piesschaert F, Oosterbean A, Tack FMG, Verheyen K (2007) Tree species effect on the redistribution of soil metals. Environ Pollut 149:173–181

    PubMed  CAS  Google Scholar 

  • Miller S, Pallan S, Gangji AS, Lukic D, Clase CM (2013) Mercury-associated nephrotic syndrome: a case report and systematic review of the literature. Am J Kidney Dis 62:135–138

    Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    CAS  Google Scholar 

  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/NRAMP transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+ -transport abilities. Plant Physiol Biochem 43:793–801

    PubMed  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2008) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    PubMed  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nair A, Juwarkar AA, Singh SK (2007) Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water Air Soil Pollut 180:199–212

    CAS  Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. Int J Phytoremed 2:353–368

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy‐metal resistance. Appl Microbiol Biotechnol 51:730–750

    PubMed  CAS  Google Scholar 

  • Nikolic DB, Samardzic JT, Bratic AM, Radin IP, Gavrilovic SP, Rausch T, Maksimovic VR (2010) Buckwheat (Fagopyrum esculentum Moench) FeMT3 gene in heavy metal stress: protective role of the protein and inducibility of the promoter region under Cu2+ and Cd2+ treatments. J Agric Food Chem 58:3488–3494

    PubMed  CAS  Google Scholar 

  • Nolan K (2003) Copper toxicity syndrome. J Orthomol Psychiatry 12:270–282

    Google Scholar 

  • Oberschall A, Deak M, Torok K, Sass L, Vass I, Kovacs I, Feher A, Dudits D, Horvath GV (2000) A novel aldose/aldehyde reductase protects transgenic plants against lipid peroxidation under chemical and drought stresses. Plant J 24:437–446

    PubMed  CAS  Google Scholar 

  • Ogwuegbu MO, Ijioma MA (2003) Effects of certain heavy metals on the population due to mineral exploitation. In: International conference on scientific and environmental issues in the population, environment and sustainable development in Nigeria, University of Ado Ekiti, Nigerian, pp 8–10

    Google Scholar 

  • Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copper belt province of Zambia. J Environ 1:66–75

    Google Scholar 

  • Ohlendorf HM, Oldfield JE, Sarka K, Aldrich TW (1986) Embryonic mortality and abnormalities of aquatic birds: apparent impacts by selenium from irrigation drain water. Sci Total Environ 52:49–63

    CAS  Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyperaccumulation metals in plants. Plant Soil 184:105–126

    CAS  Google Scholar 

  • Pan AH, Yang M, Tie F, Li L, Che Z, Ru B (1994) Expression of mouse metallothionein-I gene confers Cd resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    PubMed  CAS  Google Scholar 

  • Perronnet K, Schwartz C, Gerard E, Morel JL (2000) Availability of Cd and Zn accumulated in the leaves of Thlaspi caerulescens incorporated into soil. Plant Soil 227:257–263

    CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005) Phytoremediation: molecular biology, requirements for application, environmental protection, public attention and feasibility. EMBO Rep 6:497–501

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    CAS  Google Scholar 

  • Pilon-Smits EAH, Zhu Y, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Physiol Plant 110:455–460

    CAS  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58:1717–1728

    PubMed  CAS  Google Scholar 

  • Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

    PubMed  CAS  Google Scholar 

  • Pollard AJ (2000) Metal hyperaccumulation. New Phytol 146:179–181

    Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–700

    CAS  Google Scholar 

  • Prasad MNV, Freitas H (2003) Metal hyperaccumulation in plants- biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:275–321

    Google Scholar 

  • EPA (Environmental Protection Agency) (1998) A citizen’s guide to phytoremediation. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response Washington, DC

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, NY, pp 193–229

    Google Scholar 

  • Richards T (2007) Guillain–Barre syndrome. Guillain–Barre syndrome fact sheet. National Institute of Neurological Disorders and Stroke, Bethesda, MD

    Google Scholar 

  • Rogers EE, Eide DJ, Guerinot ML (2000) Altered selectivity in an Arabidopsis metal transporter. Proc Natl Acad Sci USA 97:12356–12360

    PubMed  CAS  Google Scholar 

  • Roosens NH, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 13:208–215

    PubMed  CAS  Google Scholar 

  • Rosenfeld I, Beath OA (1964) Selenium: geobotany, biochemistry, toxicity and nutrition. Academic, New York, NY

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for Hg phytoremediation. Nat Biotechnol 16:925–928

    PubMed  CAS  Google Scholar 

  • Rugh CL, Bizily SP, Meagher RB (2000) Phytoreduction of environmental Hg pollution. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals- using plants to clean up the environment. Wiley, New York, NY, pp 151–171

    Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, Sano S, Kaise T (2007) Phytoextraction and phytovolatilization of arsenic from As-contaminated soils by Pteris vittata. In: Proceedings of the annual international conference on soils, sediments, water and energy, vol 12, Article 26

    Google Scholar 

  • Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology 13:468–475

    PubMed  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    PubMed  CAS  Google Scholar 

  • Samuelsen AI, Martin RC, Mok DWS, Machteld CM (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    PubMed  CAS  Google Scholar 

  • Sancenon V, Puig S, Mateu-Andres I, Dorcey E, Thiele DJ, Penarrubia L (2004) The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. J Biol Chem 279:15348–15355

    PubMed  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomes M, Romero-Puertas M, del Rio LA (2001) Cadmium- induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    PubMed  CAS  Google Scholar 

  • Schikora A, Thimm O, Linke B, Buckhout TJ, Müller M, Schmidt W (2006) Expression, localization, and regulation of the iron transporter LeIRT1 in tomato roots. Plant Soil 284:101–108

    CAS  Google Scholar 

  • Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  Google Scholar 

  • Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeon pea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72:131–139

    CAS  Google Scholar 

  • Shakya K, Chettri MK, Sawidis T (2008) Impact of heavy metals (copper, zinc, and lead) on the chlorophyll content of some mosses. Arch Environ Contam Toxicol 54:412–421

    PubMed  CAS  Google Scholar 

  • Sheng J, Liu K, Fan B, Yuan Y, Shen L, Ru B (2007) Improving zinc content and antioxidant activity in transgenic tomato plants with expression of mouse metallothionein-I by mt-1 gene. J Agric Food Chem 55:9846–9849

    PubMed  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Google Scholar 

  • Shingu Y, Kudo T, Ohsato S, Kimura M, Ono Y, Yamaguchi I, Hamamoto H (2005) Characterization of genes encoding metal tolerance proteins isolated from Nicotiana glauca and Nicotiana tabacum. Biochem Biophys Res Commun 331:675–680

    PubMed  CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    Google Scholar 

  • Sriprang R, Murooka Y (2007) Accumulation and detoxification of metals by plants and microbes. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer, Berlin

    Google Scholar 

  • Strehlow CD, Barltrop D (1988) The Shipham report- an investigation into cadmium concentrations and its implications for human health: health studies. Sci Total Environ 75:101–133

    PubMed  CAS  Google Scholar 

  • Summers AO (1986) Organization, expression, and evolution of genes for mercury resistance. Annu Rev Microbiol 40:607–634

    PubMed  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouche N, Arazi T, Dolev D, Talke IN, Maathuis FJM, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    PubMed  CAS  Google Scholar 

  • Talke I, Hanikenne M, Krämer U (2006) Zn dependent global transcriptional control, transcriptional de-regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    PubMed  CAS  Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes Cu uptake from contaminated soils. Biotechnol Prog 19:273–280

    PubMed  CAS  Google Scholar 

  • Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci 183:50–56

    PubMed  CAS  Google Scholar 

  • USDOL (United States Department of Labor) (2004) Occupational safety and health administration (OSHA): safety and health topics: heavy metals. USDOL Publication, Washington, DC

    Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land: a review. Environ Chem Lett 8:1–17

    CAS  Google Scholar 

  • van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and Zn homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    PubMed  Google Scholar 

  • van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H, Verkleij JAC, Ernst WHO, Karenlampi SO, Tervahauta AI (2001) Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiol 126:1519–1526

    PubMed  Google Scholar 

  • Vansuyt G, Mench M, Briat J-F (2000) Soil-dependent variability of leaf iron accumulation in transgenic tobacco overexpressing ferritin. Plant Physiol Biochem 38:499–506

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    PubMed  CAS  Google Scholar 

  • Wang AS, Angle JS, Chaney RL, Delorme TA, Reeves RD (2006) Soil pH effects on uptake of Cd and Zn by Thlaspi caerulescens. Plant Soil 281:325–337

    CAS  Google Scholar 

  • Watrud LS, Misra S, Gidamu L, Shiroyama T, Maggard S, Giovanni GD (2006) Ecological risk assessment of alfalfa (Medicago varia L.) genetically engineered to express a human metallothionein (hMT) gene. Water Air Soil Pollut 176:329–349

    CAS  Google Scholar 

  • Weast RC (1984) CRC handbook of chemistry and physics, 64th edn. CRC, Boca Raton, FL

    Google Scholar 

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    PubMed  CAS  Google Scholar 

  • Willems G, Drager DB, Courbot M, Gode C, Verbruggen N, Saumitou-Laprade P (2007) The genetic basis of Zn tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): an analysis of quantitative trait loci. Genetics 176:659–674

    PubMed  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    PubMed  CAS  Google Scholar 

  • Wood JM (1974) Biological cycles for toxic elements in the environment. Science 4129:1049–1052

    Google Scholar 

  • Wray G, Babbitt CC (2008) Enhancing gene regulation. Science 321:1300–1301

    PubMed  CAS  Google Scholar 

  • Xiao H, Yin L, Xu X, Li T, Han Z (2008) The iron-regulated transporter, MbNRAMP1, isolated from Malus baccata is involved in Fe, Mn and Cd trafficking. Ann Bot 102:881–889

    PubMed  CAS  Google Scholar 

  • Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Hou XL, Yao QH (2010) Cyanobacteria MT gene SmtA enhances zinc tolerance in Arabidopsis. Mol Biol Rep 37:1105–1110

    PubMed  CAS  Google Scholar 

  • Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229

    PubMed  CAS  Google Scholar 

  • Young RA (2005) Toxicity profiles: toxicity summary for cadmium; risk assessment information system. RAIS, University of Tennessee, Knoxville, TN

    Google Scholar 

  • Zagorchev L, Seal CE, Kranner I, Odjakova M (2013) A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 14:7405–7432

    PubMed  CAS  Google Scholar 

  • Zhang YW, Tam NFY, Wong YS (2004) Cloning and characterization of type 2 metallothionein-like gene from a wetland plant, Typha latifolia. Plant Sci 167:869–877

    CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L, Terry N (1999) Cd tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bhargava, A., Srivastava, S. (2014). Transgenic Approaches for Phytoextraction of Heavy Metals. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_3

Download citation

Publish with us

Policies and ethics