Skip to main content

Induced Mutagenesis for the Improvement of Pulse Crops with Special Reference to Mung Bean: A Review Update

  • Chapter
  • First Online:
Improvement of Crops in the Era of Climatic Changes

Abstract

In the era of burgeoning human population, the ghosts of hunger are making its impact among millions of people all around. The conditions are worse at present due to growing undernourishment (FAO, The state of food insecurity in the world economic crises—impacts and lessons learned. Tenth progress report on world hunger, FAO, United Nations, Rome, 2009). The rescue lies in tailoring the better varieties of crop plants, rich in nutrition and high in yield. Pulses are cherished for their lavishness in proteins which make them indispensable in daily human diet. The breeding of pulses by traditional methods has been practiced for centuries; however, these conventional methods are now insufficient to make any further breakthrough to cope with the world’s mounting food demand. The major constraint in the development of improved varieties is the limited genetic variability among the existing genotypes. Induced mutagenesis is one of those novel techniques, which impart variation in subject crops through sustainable approach. A vast amount of genetic variability of both quantitative and qualitative traits has been generated through experimental mutagenesis in the past 30 years. Characterization of mutated traits has greatly advanced our understanding of the underlying mechanisms of important traits. Considering the fact that mutations are generally deleterious, the number of mutant cultivars released globally in major food crops especially pulses with novel traits is still impressive. Although the crop improvement work on mung bean (Vigna radiata (L.) Wilczek) and other legumes has been in progress for the past several years at different state agriculture universities and ICAR institutes in India, the programs lack organized and coordinated efforts in achieving the desired goals.

In recent times, the pulse crops started receiving substantial impel under the All India Coordinated Programme on Improvement of Pulses (AICPIP). Mutagenic agents, physical as well as chemical, singly or in combination, are used to induce mutations and generate variation from which desired mutants may be selected. However, basic information on effectiveness and efficiency of various mutagens, their mutation rates, and possible role in generating polygenic variability is scanty among the pulses in general and mung bean in particular. Therefore, the present review enfolds various aspects of contemporary knowledge of pulse crop improvement programs through induced mutations, biotechnological approaches, molecular advances, and new parameters of selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aastveit K, Gaul H (1967) Variation and selection of micromutants. Rad Bot 1:353–361

    Google Scholar 

  • Abo-Hegazi AMT (1980) Seed protein and other characters in M4 generation of chickpea. Indian J Genet 40(1):122–126

    Google Scholar 

  • Ahloowalia BS (1998) In-vitro techniques and mutagenesis for the improvement of vegetatively propagated plants. In: Jain SM, Brar DS, Ahloowalia BS (eds) Somaclonal variation and induced mutations for crop improvement. Kluwer Academic, Dordrecht, pp 293–309

    Google Scholar 

  • Ahloowalia BS, Maluszynski M (2001) Induced mutations-a new paradigm in plant breeding. Euphytica 118:167–173

    CAS  Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1977) Invention bridges and meiotic behavior in species hybrids of soybeans. J Hered 68:360–364

    Google Scholar 

  • Ahmad QN, Britten EJ, Byth DE (1984) Effects of interacting genetic factors and temperature on meiosis and fertility in soybean Glycine soja hybrids. Can J Genet Cytol 26:50–56

    Google Scholar 

  • Ahmad S, Godward MBE (1981) Comparison of radio resistant with a radiosensitive cultivar of Cicer arietinum L. II. Difference in the number of chromosome aberrations at the same dose. Environ Exp Bot 21:143–151

    Google Scholar 

  • Akao S, Kouchi H (1992) A supernodulating mutant isolated from soybean cultivar Enrei. Soil Sci Plant Nutr 38:183–187

    Google Scholar 

  • Akbar M, Inoue M, Hasegawa H (1976) Comparative radiosensitivity in Indica and Japonica rice. Nucleus 13:25–29

    Google Scholar 

  • Al-Achkar W, Sabatier L, Dutrillaux B (1989) How are sticky chromosomes formed? Ann Genet 32:10–15

    PubMed  CAS  Google Scholar 

  • Alexiava A (1991) A dwarf soybean mutative strain with vertically arranged leaves and increased protein content. C R Acad Bulg Sci 44(9):93–95

    Google Scholar 

  • Ali M, Kumar S (2006) Pulses production in India: present status and future strategies. Yojana (Sept Issue): 13–15

    Google Scholar 

  • Amarnath S, Prasad AB (2000) Induced mutations in homozygous and heterozygous genotypes of tobacco. Indian J Genet 60(2):171–176

    Google Scholar 

  • Ananthaswamy HN, Vakil UK, Srinivasan A (1971) Biochemical and physiological changes in gamma irradiated wheat during germination. Rad Bot 11:1–12

    CAS  Google Scholar 

  • Ando A, Tulmann Neto A (1979) A comparison of sodium azide mutagenicity in rice seeds with radiations and some alkylating compounds. In: 6th International congress of radiation research, Tokyo, p 278

    Google Scholar 

  • Arora R, Kaul MLH (1989) Mutagen induced chlorophyll deficiency in Pisum sativum. Cytobios 57:189–199

    CAS  Google Scholar 

  • Ashburner M (1990) Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Atta BM, Ahsan-ul-Haq M, Shah TM, Sadiq M, Hassan M, Syed H (2003) Induced flower colour mutations in chickpea. Int Chickpea Pigeonpea Newsl 10:6–7

    Google Scholar 

  • Auerbach C, Robson JM (1942) Experiments on the action of mustard gas in Drosophila. Production of sterility and mutation. Report to Ministry of Supply, p 3979

    Google Scholar 

  • Awan MA, Konzak CF, Rutger JN, Nilan RA (1980) Mutagenic effects of sodium azide in rice. Crop Sci 20:663–668

    CAS  Google Scholar 

  • Bahl PN (1988) Chickpea. In: Baldev B et al (eds) Pulse crops. Oxford & IBH Publishers, New Delhi, India, pp 95–131

    Google Scholar 

  • Bajaj YPS, Dhanju MS (1979) Regeneration of plants from apical meristem tips of some legumes. Curr Sci 48:906–907

    Google Scholar 

  • Barshile JD, Auti SG, Dalve SC, Apparao BJ (2006) Mutagenic sensitivity studies in chickpea employing SA, EMS and gamma rays. Indian J Pulses Res 19(1):43–46

    Google Scholar 

  • Baur E (1924) Untersuchungen Uber das Wasen, die Entstehung und die Vererbung von Rassenunterre hieden bei Antirrhinum majus. Bibl Genet 4:1–170

    Google Scholar 

  • Beadle GW (1932) A gene for sticky chromosomes in Zea mays. Mol Genet 63:195–217

    Google Scholar 

  • Berger H, Haas FL, Wyss O, Stone WS (1953) Effect of sodium azide on radiation damage and photoreactivation. J Bacteriol 65:538–543

    PubMed  CAS  Google Scholar 

  • Bhadra SK (1982) Studies on the genetic improvement of black gram (Vigna mungo (L.) Hepper) through induced mutations. PhD Thesis, IARI, New Delhi, India

    Google Scholar 

  • Bhat M, Khan S, Kozgar MI (2012) Studies on frequency of chlorophyll and morphological mutants in chickpea. J Funct Environ Bot 2(1):27–32

    Google Scholar 

  • Bhat TA, Khan AH, Parveen S (2005a) Comparative analysis of meiotic abnormalities induced by gamma rays, EMS and MMS in Vicia faba L. J Indian Bot Soc 84:45–48

    Google Scholar 

  • Bhat TA, Khan AH, Parveen S, Ganai FA (2005b) Clastogenic effect of EMS and MMS in Vicia faba L. J Cytol Genet 6:7–122

    Google Scholar 

  • Bhat TA, Khan AH, Parveen S, Ganai FA (2006a) Studies on the effects of EMS on meiosis and pollen fertility in Vicia faba L. Ad Plant Sci 19:243–247

    Google Scholar 

  • Bhat TA, Parveen S, Khan AH (2006b) MMS induced cytomixis in pollen mother cells of broad bean (Vicia faba L.). Turk J Bot 30:273–279

    Google Scholar 

  • Bhatia CR, Thakane RG, Pawar SE, Kale DM, Kitto PH (2001) Induced mutations for yield and yield components showing altered partitioning of dry matter. Plant mutation breeding for crop improvement. In: Proceedings of the international symposium on the contribution of plant mutation breeding to crop improvement, vol 2. FAO/IAEA, Vienna, 18–22 June, pp 43–53

    Google Scholar 

  • Bhattacharjee SK (1953) Cytogenetics of Lens esculenta Moncsch. Caryologia 5:159–166

    Google Scholar 

  • Blixt S (1970) Studies of induced mutations in peas. XXVI Genetically conditioned differences in radiation sensitivity. Agric Hortic Genet 28:55–116

    CAS  Google Scholar 

  • Blixt S, Gottschalk W (1975) Mutation in the leguminosae. Agric Hortic Genet 33:33–85

    Google Scholar 

  • Bolbhat SN, Bhoge VD, Dhumal KN (2012) Induced mutations in horsegram (Macrotyloma uniflorum (Lam.)Verdc): chlorophyll mutations, mutagenic efficiency and effectiveness. Int J Life Sci Pharma Res 2(4):159–168

    Google Scholar 

  • Brock RD (1965) Induced mutations affecting quantitative characters. The use of induced mutations in plant breeding. Rad Bot 5(Suppl):451–464

    Google Scholar 

  • Brock RD (1967) Quantitative variation in Arabidopsis thaliana induced by ionizing radiations. Rad Bot 7:193–203

    Google Scholar 

  • Brown DM, Mc Naught AD, Schell P (1966) The chemical basis of hydrazine mutagenesis. Biochem Biophys Res Commun 24:967–971

    PubMed  CAS  Google Scholar 

  • Bykovets AG, Vasykiv NM (1971) The use of chemical mutagens in breeding peas and other pulse crops. Provktika Khim Mutageneza (Moscow) Nauka, pp 106–111

    Google Scholar 

  • Caetano-Pereira CM, Pagliarini MS (1997) Cytomixis in maize microsporocytes. Cytologia 62:351–355

    Google Scholar 

  • Caetano-Pereira CM, Pagliarini MS, Brasil EM, Martins EN (1995) Influence of aluminium in causing chromosome stickiness in maize microsporocytes. Maydica 40:325–330

    Google Scholar 

  • Casiva PV, Saidman BO, Vilardi JC, Cialdella AM (2002) First comparative phonetic studies of Argentinean species of Acacia (Fabaceae), using morphometric isozymal and RAPD approaches. Am J Bot 89:843–853

    PubMed  CAS  Google Scholar 

  • Chakraborty RK, Bhomik A, Hossain T, Mian MAK (1998) Induction of mutation in mungbean (Vigna radiata) through gamma irradiation. Ann Bangladesh Agric 8(2):129–136

    Google Scholar 

  • Chaturvedi SN, Singh VP (1980) Gamma rays induced quantitative variations in mungbean. J Cytol Genet 15:64–67

    Google Scholar 

  • Cheema AA, Atta BM (2003) Radiosensitivity studies in basmati rice. Pak J Bot 35(2):197–207

    CAS  Google Scholar 

  • Cherry JH, Hagemann RH, Hanson JB (1962) Effect of X-irradiation on nucleic acids in Zea mays. II. On the level of ribonuclease activity in growing seedlings. Rad Res 17:740–754

    CAS  Google Scholar 

  • Chopra VL (2005) Mutagenesis: investigating the process and processing the outcome for crop improvement. Curr Sci 89(2):353–359

    CAS  Google Scholar 

  • Chrispeels MJ, Varner JE (1967) Gibberellic acid induced synthesis and release of L-amylase and ribonuclease by isolated barley aleurone layers. Plant Physiol 42:396–406

    Google Scholar 

  • Dadke RD, Kothekar VS (2005) Mutation breeding: a novel technique for quality improvement of winged bean (Psophocarpus tetragonolobus (L.) DC). In: Datta SK (ed) Role of classical mutation breeding in crop improvement. Daya Publishing House, New Delhi, India, pp 119–131

    Google Scholar 

  • Dahiya BS (1978) Mutation breeding in mungbean. In: Ist International Mungbean symposium, Taiwan, AVRDC 3:253–258

    Google Scholar 

  • Das PK, Kundagrami S (2000) Frequency and spectrum of chlorophyll mutations in grass pea induced by gamma rays. Indian J Genet 60(2):239–241

    Google Scholar 

  • Datta AK, Sengupta K (2002) Induced viable macro mutants in coriander (Coriandrum sativum L.). Indian J Genet 62(3):273–274

    Google Scholar 

  • Datta SK, Goel VL (2005) Improvement of a value added medicinal herb (Trigonella foenum-graecum L.). In: Datta SK (ed) Role of classical mutation breeding in crop improvement. Daya Publishing House, New Delhi, India, pp 60–72

    Google Scholar 

  • Evans HJ (1962) Chromosome aberrations induced by ionising radiations. Int Rev Cytol 13:221–232

    CAS  Google Scholar 

  • Fahmy OG, Fahmy MJ (1957) Comparison of chemically and X-ray induced mutations in Drosophila melanogaster. Nature 177:996–997

    Google Scholar 

  • FAO (2009) The state of food insecurity in the world economic crises—impacts and lessons learned. In: Tenth progress report on world hunger, FAO, United Nations, Rome

    Google Scholar 

  • Farooq SAF, Nizam J (1979) Mutagenic sensitivity of base specific chemicals in chickpea. Indian J Bot 2:12–16

    Google Scholar 

  • Fishbein L, Flamm WG, Falk HL (1970) Chemical mutagens. Academic, New York, pp 259–261

    Google Scholar 

  • Frey KJ (1969) Release of mutagen induced genetic variability in oats by outcrossing. Jpn J Breed 44:396–403

    Google Scholar 

  • Fujimoto M, Yamagata H (1982) Studies on the utility of artificial mutations in plant breeding. XIII Mutagenicity of several alkylating agents in rice. Jpn J Breed 32(1):17–25

    CAS  Google Scholar 

  • Gaibriyal ML, Toms B, Smith S (2009) Induced chlorophyll mutations in blackgram. Asian J Agric Sci 1(1):1–3

    Google Scholar 

  • Gaikwad NB, Kothekar VS (2004) Mutagenic effectiveness and efficiency of ethylmethane sulphonate and sodium azide in lentil (Lens culinaris Medik.). Indian J Genet 64(1):73–74

    Google Scholar 

  • Gates RR (1908) A study of reduction in Oenothera rubrinervis. Bot Gaz 46:1–34

    Google Scholar 

  • Gaul H (1964) Mutations in plant breeding. Rad Bot 4:155–232

    Google Scholar 

  • Gaul H (1965) The concept of macro and micromutations in barley. Rad Bot 5:407–428

    Google Scholar 

  • Gaul H, Aestveit A (1966) Induced variability of culm length in different genotypes of hexaploid wheat following X-irradiation and EMS treatment. Contemp Agric 11–12:263–276

    Google Scholar 

  • Gaulden ME (1987) Hypotheses: some mutagens directly alter specific chromosomal proteins thus produce chromosome stickiness. Mutagenesis 2:357–365

    PubMed  CAS  Google Scholar 

  • Gaur PM, Jukanti AK, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Google Scholar 

  • Gautam AS, Sood KC, Richaria AK (1992) Mutagenic effectiveness and efficiency of gamma rays, ethylmethane sulphonate and their synergistic effects in black gram (Vigna mungo L.). Cytologia 57:85–89

    CAS  Google Scholar 

  • Geeta K, Vaidyanthan P (1997) Studies on mutagenic effectiveness and efficiency in soybean. J Cytol Genet 32:17–20

    Google Scholar 

  • George GP, Nayar GG (1973) Early dwarf mutant in linseed induced by gamma rays. Curr Sci 42:137–138

    Google Scholar 

  • Girija M, Dhanavel D (2013a) Induced chlorophyll mutation in cowpea (Vigna unguiculata L Walp.). Int J Curr Trends Res 2(1):136–140

    Google Scholar 

  • Girija M, Dhanavel D (2013b) Effect of gamma rays on quantitative traits of cowpea in M1 generation. Int J Res Biol Sci 3(2):84–87

    Google Scholar 

  • Girija M, Dhanavel D, Gnanamurthy S (2013) Gamma rays and EMS induced flower color and seed mutants in cowpea (Vigna unguiculata L. Walp). Adv Appl Sci Res 4(2):134–139

    CAS  Google Scholar 

  • Gnanamurthy S, Dhanavel D, Girija M (2013a) Effect of gamma irradiation on the morphological characters of cowpea (Vigna unguiculata (L.)Walp). Int J Curr Trends Res 2(1):38–43

    Google Scholar 

  • Gnanamurthy S, Girija M, Dhanavel D, Pavadai P, Bharathi (2013b) Enhancement of quantitative traits, genetic variability, heritability and genetic advance as percent of mean in maize (Zea mays (L.) induced by mutation. Int J Curr Trends Res 2(1):44–50

    Google Scholar 

  • Gottschalk W (1990) Experimental mutagenesis in Pisum. In: Nizam J, Khan IA, Farook SA (eds) Genetic improvement of pulse crops. Premier Publishing House, Hyderabad, India, p 337

    Google Scholar 

  • Gottschalk W, Muller HP (1982) Seed protein of Pisum mutants and recombinants. Qualitas Plant 31:296–306

    Google Scholar 

  • Gottschalk W, Wolf G (1983) Induced mutations in plant breeding. Springer, Heidelberg, p 238

    Google Scholar 

  • Goud JV (1967) Induced mutations in bread wheat. Indian J Genet 27:40–45

    Google Scholar 

  • Goud JV, Nayar KMD (1968) Effect of irradiation on seedlings of methi. Mysore J Agric Sci 11:53–55

    Google Scholar 

  • Goyal S, Khan S (2009) A comparative study of chromosomal aberrations in Vigna mungo induced by ethylmethane sulphonate and hydrazine hydrate. Thai J Agric Sci 42:117–122

    Google Scholar 

  • Goyal S, Khan S (2010) Induced mutagenesis in urdbean (Vigna mungo (L.) Hepper): a review. Int J Bot 6(3):194–206

    Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  Google Scholar 

  • Grewal KR, Lulsdorf M, Croser J, Ochatt S, Vandenberg A, Warkentin TD (2009) Double haploid production in chickpea (Cicer arietinum L.): role of stress treatments. Plant Cell Rep 28:1289–1299

    PubMed  CAS  Google Scholar 

  • Grover IS, Tejpaul SK (1982) Cytogenetical effects of gamma rays and maleic hydrazide in mungbean. Acta Bot Indica 10:210–216

    Google Scholar 

  • Grover IS, Virk GS (1986) A comparative study of gamma rays and some chemical mutagens on the induction of chromosomal aberrations in mungbean (Vigna radiata (L.)Wilczek). Acta Bot Indica 14:170–180

    Google Scholar 

  • Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetics and plant breeding with emphasis on bread wheat. Euphytica 113:163–185

    CAS  Google Scholar 

  • Harlan JR, De-Wet JMJ (1975) On a winge and a prayer: the origin of polyploidy. Bot Rev 41:361–390

    Google Scholar 

  • Hasegawa H, Inoue M (1980) Mutagenic effects of sodium azide in barley. Jpn J Breed 30:11–19

    Google Scholar 

  • Husain S, Kozgar MI, Jafrey IF, Khan S (2013) Meiotic changes in Vicia faba L. subsequent to treatments of hydrazine hydrate and maleic hydrazide. J Biosci Biotechnol 2(1):33–38

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:E25

    PubMed  CAS  Google Scholar 

  • Jain UK, Ramkrishana K, Jain SK (2013) Comparative mutagenic efficiency, effectiveness and induced polygenic variability in mothbean (Vigna aconitifolia L.). Indian J Genet 73(1):57–63

    Google Scholar 

  • Jana MK, Roy K (1973) Induced quantitative mutations in rice. Rad Bot 13:245–257

    CAS  Google Scholar 

  • Jayabalan N, Rao GR (1987) Gamma radiation induced cytological abnormalities in Lycopersicon esculentum Mill Var Pusa Ruby. Cytologia 52:1–4

    Google Scholar 

  • Johnson HW, Robinson HF, Comstock RE (1955) Estimates of genetic and environmental variability in soybeans. Agron J 47:314–318

    Google Scholar 

  • Joshi P, Verma RC (2004) Radiation induced pod and seed mutants in faba bean (Vicia faba L.). Indian J Genet 64(2):155–156

    Google Scholar 

  • Karpechenko GD (1925) Chromosome of Phaseolinae. Bull Appl Bot Leningard 14:143–148

    Google Scholar 

  • Kaul MLH (1989) Mutation research in dilemma. In: Bir SS, Saggo MIS (eds) Perspectives in plant sciences in India. Today and Tomorrow Printers and Publishers, New Delhi, India, pp 93–108

    Google Scholar 

  • Kaul MLH, Bhan AK (1977) Mutagenic effectiveness and efficiency of EMS, DES and gamma rays in rice. Theor Appl Genet 50:241–246

    CAS  Google Scholar 

  • Kaul MLH, Kumar V (1983) Mutation genetic studies in rice IV. Variability components and genetic parameters. Biol Zbl 102:559–566

    Google Scholar 

  • Khalatkar AS, Bhatia CR (1975) Synergistic effect of combined treatments of gamma radiation and ethylmethane sulphonate in barley. Rad Bot 15:223–229

    CAS  Google Scholar 

  • Khamankar YG (1984) Differential sensitivity of tomato genes to chemical and physical mutagens. Indian J Genet 44(1):80–83

    CAS  Google Scholar 

  • Khan IA (1986) Evaluation of quantitative characters in the single and combination treatment of EMS and gamma rays in mungbean (Vigna radiata (L.) Wilczek). In: Manna GK, Singh U (eds) Perspectives in cytology and genetics. Proc 5th AICCG, Kalyani University, India, pp 297–301

    Google Scholar 

  • Khan MH, Tyagi SD (2009) Cytogenetical effects of different mutagens in soybean (Glycine max (L.) Merrill). Front Agric China 3:397–401

    Google Scholar 

  • Khan S (1990) Studies on chemical mutagenesis in mungbean (Vigna radiata (L.) Wilczek). PhD Thesis, Aligarh Muslim University, Aligarh

    Google Scholar 

  • Khan S, Parveen K, Goyal S (2011) Induced mutations in chickpea-morphological mutants. Front Agric China 5(1):35–39

    Google Scholar 

  • Khan S, Siddiqui BA (1992) Mutagenic effectiveness and efficiency of chemical mutagens in Vigna radiata (L.) Wilczek. Thai J Agric Sci 25:291–297

    CAS  Google Scholar 

  • Khan S, Siddiqui BA, Rehman MU, Azad SA (1998) Response of green gram Vigna radiata (L.) Wilczek to maleic hydrazide. J Indian Bot Soc 77:95–98

    Google Scholar 

  • Khan S, Wani MR (2005) Genetic variability and correlations studies in chickpea mutants. J Cytol Genet 6:155–160

    Google Scholar 

  • Khan S, Wani MR, Bhat MD, Parveen K (2005) Induced chlorophyll mutations in chickpea (Cicer arietinum L.). Int J Agric Biol 7(5):764–767

    Google Scholar 

  • Khan S, Wani MR, Parveen K (2004) Induced genetic variability for quantitative traits in Vigna radiata (L.) Wilczek. Pak J Bot 36(4):845–850

    Google Scholar 

  • Khan S, Wani MR, Parveen K (2006) Sodium azide induced high yielding early mutant in lentil. Agric Sci Digest 26(1):65–66

    Google Scholar 

  • Khan TN, Claydon A (1975) Role of induced mutation in the improvement of potential new source of protein-winged bean (Psophocarpus tetragonolobus). In: Panel proceeding series (IAEA), research coordination meeting of the seed protein improvement programme. 3, Hahnenklee, Germany, 5 May/FAO, Vienna, Austria

    Google Scholar 

  • Kharkwal MC (1983) New selection technique for micro mutations. Abstract XV international congress of genetics. New Delhi, India, p 298

    Google Scholar 

  • Kharkwal MC (1998a) Induced mutations in chickpea (Cicer arietinum L.) I. Comparative mutagenic effectiveness and efficiency of physical and chemical mutagens. Indian J Genet 58(2):159–167

    CAS  Google Scholar 

  • Kharkwal MC (1998b) Induced mutations for improvement of protein in chickpea (Cicer arietinum L.). Indian J Genet 58(1):61–68

    CAS  Google Scholar 

  • Kharkwal MC (2003) Induced mutations in chickpea (Cicer arietinum L.) VI. Significance of induced altered correlations. Indian J Genet 63(3):219–224

    Google Scholar 

  • Kharkwal MC, Shu QY (2009) The role of induced mutations in world food security. In: Shu QY (ed) Induced plant mutations in the genomics era. Food and Agriculture Organization of the United Nations, Rome, pp 33–38

    Google Scholar 

  • Khazanehdari KA, Jones GH (1997) The causes and consequences of meiotic irregularity in the leek (Allium ampeloprasum sp. Porrum): implications for fertility, quality and uniformity. Euphytica 93:313–319

    Google Scholar 

  • Kimball RF (1977) The mutagenicity of hydrazine and some of its derivatives. Mutat Res 39(1–4):111–126

    PubMed  CAS  Google Scholar 

  • Kleinhofs A, Owais WM, Nilan RA (1978) Azide. Mutat Res 55:165–195

    PubMed  CAS  Google Scholar 

  • Kleinhofs A, Sander C, Nilan RA, Konzak CF (1974) Azide mutagenicity-mechanism and nature of mutants produced. In: Proceedings of IAEA meeting Bari, Italy

    Google Scholar 

  • Koduru PRK, Rao MK (1981) Cytogenetics of synaptic mutants in higher plants. Theor Appl Genet 59:197–214

    Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–203

    PubMed  CAS  Google Scholar 

  • Kokubun M, Akao S (1994) Inheritance of supernodulation in soybean mutant En6500. Soil Sci Plant Nutr 40:715–718

    Google Scholar 

  • Koli NR, Ramkrishna K (2002) Frequency and spectrum of induced mutations and mutagenic effectiveness and efficiency in fenugreek (Trigonella foenum-graecum L.). Indian J Genet 62(4):365–366

    Google Scholar 

  • Konzak CF, Nilan RA, Wagner J, Foster RJ (1965) Efficient chemical mutagenesis. Rad Bot 5(Suppl):49–70

    Google Scholar 

  • Konzak CF, Wickham IM, Dekock MJ (1972) Advances in methods of mutagen treatment. In: Induced mutations and plant improvement. IAEA Vienna, pp 95–119

    Google Scholar 

  • Kousar M, Babu GS (2010) Mutagenic effectiveness and efficiency of gamma rays, sodium azide and their synergistic effects in urdbean (Vigna mungo L.). World J Agric Sci 6(2):234–237

    Google Scholar 

  • Kozgar MI, Khan S, Wani MR (2012) Variability and correlations studies for total iron and manganese content of chickpea (Cicer arietinum L.) high yielding mutants. Am J Food Technol 7(7):437–444

    CAS  Google Scholar 

  • Kozgar MI, Wani MR, Khan S (2013) Role of ATICS and OMICS for business oriented development programmes of micropropagated plants. Adv Biotechnol 12(9):11–16

    Google Scholar 

  • Krishnaswami S, Rathnaswamy R, Veeraswamy R (1977) Studies on induction of mutations in green gram (Phaseolus aureus Roxb) through physical mutagens. Madras Agric J 64(2):74–79

    Google Scholar 

  • Kumar L, Arora PP (1991) Basis of selection in chickpea. Int Chickpea Newsl 24:14–15

    Google Scholar 

  • Kumar R, Mani SC (1997) Chemical mutagenesis in Manhar variety of rice (Oryza sativa L.). Indian J Genet 57(2):120–126

    CAS  Google Scholar 

  • Kumar S, Dubey DK (1998) Induced morphological mutations in Lathyrus sativus L. J Cytol Genet 33:131–137

    Google Scholar 

  • Kurobane IH, Yamaguchi H, Sander C, Nilan RA (1979) The effects of gamma irradiation on the production and secretion of enzymes and enzymatic activities in barley. Environ Exp Bot 19:75–84

    CAS  Google Scholar 

  • Lagoda PJL (2004) Second research coordination meeting on “Effects of mutagenic agents on the DNA sequence in plants”. Plant Breed Genet Newsl 14:5–6

    Google Scholar 

  • Lawrence CW (1965) Radiation induced polygenic mutations. The use of induced mutations in plant breeding. Rad Bot 5(Suppl):491–496

    Google Scholar 

  • Lee SH, Ashley DA, Boerma HR (1991) Regulation of nodule development in super nodulating mutant and wild type soybean. Crop Sci 31(3):688–693

    Google Scholar 

  • Lineberger RD, Pogany M, Malinich T, Druckenbrod M, Warnr A (1993). In: Schiva T, Mercuri A (eds) Proceedings of the XVIIth Eucarpia symposium, creating genetic variation in ornamentals. Sanremo, Italy, pp 83–92

    Google Scholar 

  • Loveless A (1959) The influence of radiomimetic substances on deoxyribose nucleic acid synthesis and function studies in Escherichia coli phage system III. Mutation of T-2 bacteriophages as a consequence of alkylation in vitro, the uniqueness of ethylation. Proc R Soc Ser B 150:497–507

    CAS  Google Scholar 

  • Mahamune SE, Kothekar VS (2012) Induced mutagenic frequency and spectrum of chlorophyll mutants in french bean. Int Multidiscip Res J 2(3):30–32

    CAS  Google Scholar 

  • Mahapatra BK (1983) Studies on comparative spectrum and frequency of induced genetic variability in green gram (Vigna radiata (L.) Wilczek). PhD Thesis, IARI, New Delhi

    Google Scholar 

  • Malik IA (1988) High yielding and early maturing mutants in mungbean (Vigna radiata (L.) Wilczek). Mutat Breed Newsl 32:7–8

    Google Scholar 

  • Malik IA, Ali Y, Sarwar G, Saleem M (1999) Serrated leaf mutants in mungbean (Vigna radiata (L.) Wilczek). Mutat Breed Newsl 2:11–12

    Google Scholar 

  • Mathew H, Bhatia CR (1983) In vitro regeneration of plants from cotyledons in grain legumes. Mutat Breed Newsl 22:11–12

    Google Scholar 

  • Mathew H, Rao PS, Bhatia CR (1986) Somaclonal variation in cotyledonary plants of mungbean. Z Pflanzenzunchtung 96:169–173

    Google Scholar 

  • Mathur DS, Lal SK (1999) Chemical induction of male sterility in chickpea. Indian J Genet 59(3):379–380

    CAS  Google Scholar 

  • Mc Callum CM, Comai L, Greene EA, Henikoff S (2000a) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    CAS  Google Scholar 

  • Mc Callum CM, Comai L, Greene EA, Henikoff S (2000b) Targeting induced local lesions in genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    CAS  Google Scholar 

  • Meherchandani M (1975) Effect of gamma radiation on dormant seeds of Avena sativa L. Rad Bot 15:439–445

    Google Scholar 

  • Mejri S, Mabrouk Y, Voisin M, Delavault P, Simier P, Saidi M, Belhadj O (2012) Variation in quantitative characters of faba bean after seed irradiation and associated molecular changes. Afr J Biotechnol 11(33):8388–8390

    Google Scholar 

  • Micke A (1999) Mutations in plant breeding. In: Siddiqui BA, Khan S (eds) Breeding in crop plants: mutations and in vitro mutation breeding. Kalyani Publishers, Ludhiana, India, pp 1–19

    Google Scholar 

  • Misra RC (1995) Multivariate analysis of genetic divergence in micro mutants developed from black gram variety T-9. Environ Ecol 13(3):508–512

    Google Scholar 

  • Mohanasundaram M, Thamburaj S, Natarajan S (2001) Observation on gamma ray induced viable mutations in vegetable cowpea. Mutat Breed Newsl 45:37–38

    Google Scholar 

  • Mouli C, Patil SH (1976) Gamma ray induced mutant with suppressed branches in the peanut. J Hered 67:322–324

    Google Scholar 

  • Mubeen R, Khan IA, Anwar SY (2007) Correlation studies in treated population of Vigna mungo (L.) Hepper. Indian J Appl Pure Biol 22(1):123–128

    Google Scholar 

  • Muller HJ (1927) Artificial transmutation of gene. Science 66:84

    PubMed  CAS  Google Scholar 

  • Munk L (1964) Plant breeding and nutritional value in cereals. Hereditas 52:151–165

    Google Scholar 

  • Naik BS, Singh B, Kole C (2002) A promising mungbean (Vigna radiata (L.) Wilczek) genotype with high protein content and seed yield. Indian J Genet 62(4):342–344

    Google Scholar 

  • Natarajan AT, Shiva Shankar G (1965) Studies on modification of mutation responses of barley seeds to ethylmethane sulphonate. Z Vererburgstehre 43:69–76

    Google Scholar 

  • Nerker YS (1976) Mutation studies in Lathyrus sativus. Indian J Genet 36:323–329

    Google Scholar 

  • Nilan RA (1967) Nature of induced mutations in higher plants. Induced mutations and their utilization. In: Proc Symp Erawim Baur Gedachtnis Orle Singen IV 1966. Acverlag, Berlin, pp 5–20

    Google Scholar 

  • Nilan RA, Sideris EG, Kleinhofs A, Sander C, Konzak CF (1973) Azide-a potent mutagen. Mutat Res 17:142–144

    CAS  Google Scholar 

  • Odeigah PGC, Osanyienpeju AO, Myers GO (1998) Induced mutations in cowpea (Vigna unguiculata (Leguminosae). Revista de Biologic Tropical 46(3):579–586

    Google Scholar 

  • Pagliarini MS, Pereira MAS (1992) Meiotic studies in Pilocarpus pennatifolius Lem. (Rutaceae). Cytologia 57:231–235

    Google Scholar 

  • Pagliarini MS, Pissinatti MB, Silva N (1993) Chromosomal behavior and seed production in Chlorophytum comosum (Liliaceae). Cytologia 58:433–437

    Google Scholar 

  • Pandey RN (2002) Radiation induced self-incompatibility and its inheritance in cowpea (Vigna unguiculata (L.) Walp). Indian J Genet 62(3):265–266

    Google Scholar 

  • Payez JF, Deering RA (1972) Synergistic and antagonistic effects of caffeine on two strains of cellular slime mold treated with alkylating agents. Mutat Res 16:318–321

    CAS  Google Scholar 

  • Poehlman JM (1991) The mungbean. Oxford and IBH, New Delhi, India, pp 1–363

    Google Scholar 

  • Raghuvanshi SS, Pathak CS, Singh AK (1978) Effects of pre-irradiation colchicine treatment on mutation spectrum of Phaseolus aureus Roxb. Cytologia 43:143–151

    CAS  Google Scholar 

  • Rai R (1985) Studies on associative nitrogen fixation by antibiotic resistant mutants of Azospirillum brasilense with genotypes of lentil (Lens culinaris). Rhizobium strains in calcareous soil. J Agric Sci 104(1):207–215

    Google Scholar 

  • Rajput MA (1974) Increased variability in the M2 of gamma irradiated mungbean (P. aureus Roxb). Rad Bot 14:85–89

    Google Scholar 

  • Rakshit S, Singh VP, Rakshit S (2001) Chemosensitivity studies in mungbean and urdbean. Indian J Pulses Res 14(2):112–115

    Google Scholar 

  • Rao GM, Siddiq EA (1976) Studies on induced variability for amylose content with reference to yield components and protein characteristics in rice. Environ Exp Bot 16:177–188

    CAS  Google Scholar 

  • Rao JD, Reddy GM (1992) Tissue culture studies in chickpea. In: Moss JP (ed) Biotechnology and crop improvement in Asia. ICRISAT, Patancheru, Andhra Pradesh, India, p 167

    Google Scholar 

  • Rao MA (1929) Cytology of some crop plants in India. Prentice Hall of India Pvt Ltd, New Delhi, India, pp 248–268

    Google Scholar 

  • Rapoport IA (1966) Peculiarities and mechanisms of action of super mutagens. Super Mutagens Publishing House, Nawka, Moscow, pp 9–23

    Google Scholar 

  • Ratnaparkhe MB, Tekeoglu M, Muehlbauer FJ (1998) Intersimple sequence repeat (ISSR) polymorphisms are useful for finding markers associated with disease resistance gene clusters. Theor Appl Genet 97:515–519

    CAS  Google Scholar 

  • Ravi JL, Minocha, Singh A (1979) Induced mutations for quantitative traits in lentil. In: Proceedings of the BARC symposium on role of induced mutations in crop improvement, Hyderabad, pp 414–419

    Google Scholar 

  • Ravikesavan R, Kalaimagal T, Rathnaswamy R (2001) An extra early mutant of pigeon pea. Mutat Breed Newsl 45:19–20

    Google Scholar 

  • Reddy VRK, Annadurai M (1992) Cytological effects of different mutagens in lentil (Lens culinaris Medik). Cytologia 57:213–216

    CAS  Google Scholar 

  • Reddy VRK, Thresiamma PJ, Edwin R (1993) A comparative study of microsperma and macrosperma lentils I. Chlorophyll mutations. J Indian Bot Soc 72:25–28

    Google Scholar 

  • Rehman MU, Siddiqui BA, Khan S, Mehraj-ud-din (2001) Hydrazine hydrate induced dwarf bold seeded mutant in black gram cultivar ‘PU-19’. Mutat Breed Newsl 45:24–25

    Google Scholar 

  • Risueno MC, Gimenez-Martin G, Lopez-Saez JP, Garcia MIR (1969) Connections between meiocytes in plants. Cytologia 34:262–272

    Google Scholar 

  • Sagan M, Gresshoff PM (1996) Developmental mapping of nodulation events in pea (Pisum sativum L.) using supernodulating plant genotypes and bacterial variability reveals both plant and Rhizobium control of nodulation regulation. Plant Sci 117:167–179

    CAS  Google Scholar 

  • Sander C, Nilan RA, Kleinhofs A, Vig BK (1978) Mutagenic and chromosome breaking effects of azide in barley and human leucocytes. Mutat Res 50:67–75

    PubMed  CAS  Google Scholar 

  • Sangsiri C, Sorajjapinun W, Srinives P (2005) Gamma radiation induced mutations in mungbean. Sci Asia 31:251–255

    Google Scholar 

  • Sarker A, Sharma B (1988) Efficiency of early generation selection for induced polygenic mutations in lentil (Lens culinaris Medik). Indian J Genet 48(2):155–159

    Google Scholar 

  • Sato M, Gaul H (1967) Effect of ethylmethane sulphonate on the fertility of barley. Rad Bot 7:7–15

    CAS  Google Scholar 

  • Satpute RA, Fultambkar RV (2012) Mutagenic effectiveness and efficiency of gamma rays and EMS in soybean (Glycine max (L.) Merrill). Curr Bot 3(2):18–20

    Google Scholar 

  • Satya Sundaram I (2010) India needs a pulse revolution. Facts for You (Dec Issue):10–12

    Google Scholar 

  • Saylor LG, Smith BN (1996) Meiotic irregularities in species of interspecific hybrids in Pisum. Am J Bot 53:453–468

    Google Scholar 

  • Scossiroli RE (1968) Selection experiments in a population of Triticum durum irradiated with X-rays. In: Mutation in plant breeding. IAEA, Vienna, pp 205–217

    Google Scholar 

  • Sengupta K, Roy PN, Kaley NK (1986) Genotype-environment interaction in chickpea (Cicer arietinum L.). Indian Agric 30(1):63–66

    Google Scholar 

  • Shah D, Singh RR, Kaur A (1992) Gamma rays induced nucleolar behavior and mitotic anomalies in Vigna mungo. Acta Bot Indica 20:300–302

    Google Scholar 

  • Shah TM, Atta BM, Mirza JI, Haq MA (2011) Induced genetic variability in chickpea (Cicer arietinum L.) III. Frequency of morphological mutations. Pak J Bot 43(4):2039–2043

    Google Scholar 

  • Shaikh MAQ, Ahmed ZU, Majid MA, Wadud MA (1982) A high yielding and high protein mutant of chickpea (Cicer arietinum L.) derived through mutation breeding. Environ Exp Bot 22(4):483–489

    Google Scholar 

  • Sharma A (1985) Chemical mutagens. In: Advances in chromosome and cell genetics. Oxford and IBH Pub Co., New Delhi, India, pp 255–293

    Google Scholar 

  • Sharma AK, Singh VP, Sharma MK (2007) Induced seed and pod colour mutations in urdbean (Vigna mungo (L.) Hepper). Indian J Genet 67(3):270–271

    Google Scholar 

  • Sharma B (2001) Mutagenicity of a new dimethyl nitroso compound in pea (Pisum sativum L.). Indian J Genet 61(3):235–237

    CAS  Google Scholar 

  • Sharma RP (1977) Induction of mutations for quantitative and qualitative characters in lentil (Lens culinaris L.). Ph D Thesis, IARI, New Delhi, India

    Google Scholar 

  • Sharma RP, Chopra VL (1994) Mutation breeding. In: Chopra VL (ed) Plant breeding: theory and practice. Oxford and IBH Pub. Co, New Delhi, India, pp 409–466

    Google Scholar 

  • Sidorova KK (1981) Influence of genotypic background on the expressivity of mutant genes of pea. Pulse Crops Newsl 1(3):23–24

    Google Scholar 

  • Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its comparison with maps of pea and lentil. J Hered 88:115–119

    CAS  Google Scholar 

  • Singh AK, Gupta RK, Singh IP (2011) Role of induced mutations for the improvement of pulse crops with special reference to mungbean. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, India, pp 104–125

    Google Scholar 

  • Singh BR, Mahapatra BK, Nanda PR (1997) Digitomin as an enhancer of mutagenicity of ethylmethane sulphonate in blackgram. Environ Ecol 15(2):352–354

    CAS  Google Scholar 

  • Singh C, Olejniczak J (1983) Modification of mutagenic efficiency of sodium azide. Cytologia 48:437–444

    CAS  Google Scholar 

  • Singh G, Sareen PK, Saharan RP, Singh A (2001) Induced variability in mungbean (Vigna radiata (L.) Wilczek). Indian J Genet 61(3):281–282

    Google Scholar 

  • Singh KB, Begiga G, Malhotra RS (1990) Association of some characters with seed yield in chickpea collection. Euphytica 49:83–88

    Google Scholar 

  • Singh M, Singh VP (2001) Genetic analysis of certain mutant lines of urdbean for yield and quality traits in M4 generation. Indian J Pulses Res 14(1):60–62

    Google Scholar 

  • Singh O (1988) Induced mutations and cytogenetic studies in chickpea (Cicer arietinum L.). Ph D Thesis, Meerut University, Meerut, India

    Google Scholar 

  • Singh RP, Singh BD, Singh RM (1985) Organ regeneration in mungbean callus cultures. In: Gupta PK, Bahl JR (eds) Genetics and crop improvement. Rastogi and Co, Meerut, India, pp 387–395

    Google Scholar 

  • Singh VP, Singh M, Pal JP (1999) Mutagenic effects of gamma rays and EMS on frequency and spectrum of chlorophyll and macro mutations in urdbean (Vigna mungo (L.) Hepper). Indian J Genet 59(2):203–210

    Google Scholar 

  • Solanki IS, Sharma B (1999) Induction and isolation of morphological mutations in different damage groups in lentil (Lens culinaris Medik). Indian J Genet 59(4):479–485

    Google Scholar 

  • Solanki IS, Waldia RS (1997) Mutagenesis techniques. In: Kapoor RL, Saini ML (eds) Plant breeding and crop improvement II. CBS Publishers and Distributors, New Delhi, India, p 271

    Google Scholar 

  • Solanki RK, Gill RK, Verma P, Singh S (2011) Mutation breeding in pulses: an overview. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, pp 85–103

    Google Scholar 

  • Spence RK (1965) The influence of sodium azide on the biological effects of ionizing radiations in moist barley seeds. Master’s Thesis, Washington State University, Pullman, p 59

    Google Scholar 

  • Sree Ramulu K (1972) A comparison of mutagenic effectiveness and efficiency of NMU and NMG in sorghum. Theor Appl Genet 42:101–106

    Google Scholar 

  • Srivastava A, Singh VP (1993) Induced polygenic variability in pigeonpea (Cajanus cajan (L.) Millsp). J Indian Bot Soc 72:281–284

    Google Scholar 

  • Stadler LJ (1928) Mutation in barley induced by X-rays and radium. Science 69:186–187

    Google Scholar 

  • Steffensen D (1956) Effect of various cation imbalances on the frequency of X-ray induced chromosomal aberrations in Tradescantia. Genetics 42:239–252

    Google Scholar 

  • Strauss B (1964) The presence of breaks in the deoxyribonucleic acid of Bacillus subtilis treated in vivo with alkylating agents. Biochem Biophys Acta 80:116–126

    CAS  Google Scholar 

  • Swaminathan MS (1964) The use of induced mutations in plant breeding. J Sci Ind Res 23:455–458

    Google Scholar 

  • Swaminathan MS, Chopra VL, Bhaskaran S (1962) Chromosome aberrations and frequency and spectrum of mutations induced by EMS in barley and wheat. Indian J Genet 22:192–207

    Google Scholar 

  • Swaminathan MS, Sharma NP (1968) Alteration of the mutation spectrum in barley through treatments of different periods in ‘S’ phase of DNA synthesis. Curr Sci 37:685–686

    Google Scholar 

  • Takahashi M, Kokubun M, Akao S (1995) Characterization of nitrogen assimilation in a supernodulating soybean mutant En6500. Soil Sci Plant Nutr 41(3):567–575

    Google Scholar 

  • Thakur JR, Sethi GS (1995) Comparative mutagenicity of gamma rays, ethylmethane sulphonate and sodium azide in barley (Hordeum vulgare L.). Crop Res 9:350–357

    Google Scholar 

  • Tickoo JL, Chandra N (1999) Mutagen induced polygenic variability in mungbean (Vigna radiata (L.) Wilczek). Indian J Genet 59(2):193–201

    Google Scholar 

  • Tickoo JL, Jain HK (1979) Breeding high yielding varieties of mung (Vigna radiata (L.) Wilczek) through mutagenesis. In: Proceedings of the symposium role of induced mutations in crop improvement, Hyderabad, India, pp 198–204

    Google Scholar 

  • Tisser A, Bourgeois P (2001) Reverse genetics in plants. Curr Genomics 23:269–284

    Google Scholar 

  • Toker C, Uzun B, Inci NE (2011) Mutation breeding in chickpea. In: Khan S, Kozgar MI (eds) Breeding of pulse crops. Kalyani Publishers, Ludhiana, India, pp 1–21

    Google Scholar 

  • Trivedi AP, Dhumal KN, Lawande KE (2006) Estimates of heritability, genetic advance and correlation between yield and its components in onion (Allium cepa L.). Indian J Genet 66(1):59–60

    Google Scholar 

  • Tulmann Neto A, Mendes BMJ, Vaz FBD (1997) Application of in vitro culture in mutation breeding. In: Siddiqui BA, Khan S (eds) Plant breeding advances and in vitro culture. CBS Publishers and Distributors, New Delhi, India, pp 254–268

    Google Scholar 

  • Tyagi BS, Gupta BK (1991) Induced mutations for fasciation in lentil (Lens culinaris Med.). Indian J Genet 51(3):326–331

    Google Scholar 

  • Uzan B, Cagirgan MI (2009) Identification of molecular markers linked to determinate growth habit in sesame. Euphytica 166:379–384

    Google Scholar 

  • Van Harten AM (1998) Mutation breeding theory and practical applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Vandana, Dubey DK (1996) Meiotic anomalies induced by EMS and DES in faba bean (Vicia faba L.). J Indian Bot Soc 75:237–240

    Google Scholar 

  • Vanniarajan C, Vivekanandan P, Ramalingam J (1993) Spectrum and frequency of chlorophyll and viable mutations in M2 generation of black gram. Crop Improv 20(2):215–218

    Google Scholar 

  • Varshney RK, Hoisington DA, Upadhyaya HD, Gaur PM, Nigam SN, Saxena KB, Vadez V, Sethy NK, Bhatia S, Aruna R, Gowda MVC, Singh N (2007) Molecular genetics and breeding of grain legume crops for the semi-arid tropics. In: Varshney RK, Tuberosa R (eds) Genomics assisted crop improvement, genomics applications in crops, vol II. Springer, Dordrecht, pp 207–242

    Google Scholar 

  • Veilleux RE (1985) Diploid and polyploidy gametes in crop plants: mechanisms of formation and utilization in plant breeding. Plant Breed Rev 3:253–288

    Google Scholar 

  • Wani MR, Khan S, Kozgar MI (2011a) An assessment of high yielding M3 mutants of green gram (Vigna radiata (L.) Wilczek). Rom J Biol 56(1):29–36

    Google Scholar 

  • Wani MR, Khan S, Kozgar MI (2011b) Induced chlorophyll mutations I. Mutagenic effectiveness and efficiency of EMS, HZ and SA in mungbean. Front Agric China 5(4):514–518

    Google Scholar 

  • Wani MR, Khan S, Kozgar MI (2012a) Genetic enhancement of mungbean (Vigna radiata (L.) Wilczek) through induced mutagenesis. Crop Res 43(1–3):189–193

    Google Scholar 

  • Wani MR, Khan S, Kozgar MI, Goyal S (2011c) Induction of morphological mutants in mungbean (Vigna radiata (L.) Wilczek) through chemical mutagens. Nucleus 48(3):243–247

    CAS  Google Scholar 

  • Wani MR, Lone MA, Sheikh SA, Dar MS, Tak MA, Ahmad P, Khan S (2012b) Induction and assessment of genetic variability for yield and yield contributing traits of chickpea (Cicer arietinum L.). J Plant Genomics 2(1):28–33

    Google Scholar 

  • Wyss O, Clark JB, Haas F, Stone WS (1948) The role of peroxide in the biological effects of irradiated broth. J Bacteriol 56:51–57

    CAS  Google Scholar 

  • Yadav R, Singh P (1988) Induced synchronized mutant in mungbean. Natl Acad Sci Lett 11:271

    Google Scholar 

  • Yadav RDS, Singh VP (1985) Induction and manipulation of bacterial nodulation in green gram (Vigna radiata (L.) Wilczek) cv T44. Genet Agric 39(1):25–33

    Google Scholar 

  • Yen C, Yang JL, Sun GL (1993) Intermeiocytic connection and cytomixis in intergeneric hybrids of Roegneria ciliaris (Trin) Nevski with Psathyrstachys huashanica Keng. Cytologia 58:187–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd Rafiq Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wani, M.R., Kozgar, M.I., Khan, S., Ahanger, M.A., Ahmad, P. (2014). Induced Mutagenesis for the Improvement of Pulse Crops with Special Reference to Mung Bean: A Review Update. In: Ahmad, P., Wani, M., Azooz, M., Tran, LS. (eds) Improvement of Crops in the Era of Climatic Changes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8830-9_11

Download citation

Publish with us

Policies and ethics