Advertisement

Sequencing HNC: Emergence of Notch Signaling

  • Curtis R. Pickering
  • Thomas J. Ow
  • Jeffrey N. Myers
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

Head and neck cancer is driven by the accumulation of genomic abnormalities. Classically these were characterized by chromosomal alterations and TP53 mutations, but recent sequencing studies have improved our understanding of the full spectrum of mutations in this disease. While a few oncogenes are found to be altered (PIK3CA, HRAS, CCND1), the most frequent events inactivate tumor suppressor genes (TP53, CDKN2A). A surprising new finding was the identification of mutations in the gene NOTCH1. These mutations demonstrate that NOTCH1 is an important tumor suppressor gene in head and neck and other squamous tumors. This has shed new light on the Notch pathway in head and neck cancer progression, and clarified our need to learn more about this pathway in the progression and biology of head and neck cancer.

Keywords

Sequencing Genomics Notch Head and neck cancer Squamous 

References

  1. 1.
    Adamson R, Jones AS, Field JK. Loss of heterozygosity studies on chromosome 17 in head and neck cancer using microsatellite markers. Oncogene. 1994;9(7):2077–82.PubMedGoogle Scholar
  2. 2.
    Agrawal N, Frederick MJ, Pickering CR, Bettegowda C, Chang K, Li RJ, Fakhry C, Xie TX, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science. 2011;333 (6046):1154–7. doi: 10.1126/science.1206923.Google Scholar
  3. 3.
    Ahomadegbe JC, Barrois M, Fogel S, Le Bihan ML, Douc-Rasy S, Duvillard P, Armand JP, Riou G. High incidence of p53 alterations (mutation, deletion, overexpression) in head and neck primary tumors and metastases; absence of correlation with clinical outcome. Frequent protein overexpression in normal epithelium and in early non-invasive lesions. Oncogene. 1995;10(6):1217–27.PubMedGoogle Scholar
  4. 4.
    Akhoondi S, Sun D, der Lehr N von, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, et al. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res. 2007;67(19):9006–12. doi: 10.1158/0008-5472.CAN-07-1320.Google Scholar
  5. 5.
    Bamford S, Dawson E, Forbes S, Clements J, Pettett R, Dogan A, Flanagan A, Teague J, et al. The COSMIC (Catalogue of Somatic Mutations in Cancer) database and website. Br J Cancer. 2004;91(2):355–8. doi: 10.1038/sj.bjc.6601894.Google Scholar
  6. 6.
    Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9. doi: 10.1038/nature11154.Google Scholar
  7. 7.
    Bardelli A, Siena S. Molecular mechanisms of resistance to cetuximab and panitumumab in colorectal cancer. J Clin Oncol: Off J Am Soc Clin Oncol. 2010;28(7):1254–61. doi: 10.1200/JCO.2009.24.6116.Google Scholar
  8. 8.
    Bockmuhl U, Petersen I. DNA ploidy and chromosomal alterations in head and neck squamous cell carcinoma. Virchows Arch: Int J Pathol. 2002;441(6):541–50. doi: 10.1007/s00428-002-0729-3.Google Scholar
  9. 9.
    Boyle JO, Hakim J, Koch W, Riet P van der, Hruban RH, Roa RA, Correo R, Eby YJ, et al. The incidence of p53 mutations increases with progression of head and neck cancer. Cancer Res. 1993;53(19):4477–80.Google Scholar
  10. 10.
    Brennan JA, Boyle JO, Koch WM, Goodman SN, Hruban RH, Eby YJ, Couch MJ, Forastiere AA, et al. Association between cigarette smoking and mutation of the p53 gene in squamous-cell carcinoma of the head and neck. New Engl J Med. 1995;332(11):712–7. doi: 10.1056/NEJM199503163321104.Google Scholar
  11. 11.
    Brennan JA, Mao L, Hruban RH, Boyle JO, Eby YJ, Koch WM, Goodman SN, Sidransky D. Molecular assessment of histopathological staging in squamous-cell carcinoma of the head and neck. New Engl J Med. 1995;332(7):429–35. doi: 10.1056/NEJM199502163320704.Google Scholar
  12. 12.
    Burns JE, Baird MC, Clark LJ, Burns PA, Edington K, Chapman C, Mitchell R, Robertson G, et al. Gene mutations and increased levels of p53 protein in human squamous cell carcinomas and their cell lines. Br J Cancer. 1993;67(6):1274–84.Google Scholar
  13. 13.
    Caamano J, Zhang SY, Rosvold EA, Bauer B, Klein-Szanto AJ. p53 alterations in human squamous cell carcinomas and carcinoma cell lines. Am J Pathol. 1993;142(4):1131–9.PubMedCentralPubMedGoogle Scholar
  14. 14.
    Califano J, Riet P van der, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, et al. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996;56(11):2488–92.Google Scholar
  15. 15.
    Carter CA, Giaccone G. Treatment of nonsmall cell lung cancer: overcoming the resistance to epidermal growth factor receptor inhibitors. Curr Opin Oncol. 2012;24(2):123–9. doi: 10.1097/CCO.0b013e32834ec6a7.Google Scholar
  16. 16.
    Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008;87(1):14–32.Google Scholar
  17. 17.
    del Alamo D, Rouault H, Schweisguth F. Mechanism and significance of cis-inhibition in Notch signalling. Curr Biol: CB. 2011;21(1):R40–7. doi: 10.1016/j.cub.2010.10.034.Google Scholar
  18. 18.
    Demehri S, Turkoz A, Kopan R. Epidermal Notch1 loss promotes skin tumorigenesis by impacting the stromal microenvironment. Cancer cell. 2009;16(1):55–66. doi: 10.1016/j.ccr.2009.05.016.Google Scholar
  19. 19.
    Ding L, Wendl MC, Koboldt DC, Mardis ER. Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet. 2010;19(R2):R188–96. doi: 10.1093/hmg/ddq391.Google Scholar
  20. 20.
    Dotto GP. Crosstalk of Notch with p53 and p63 in cancer growth control. Nature Rev Cancer. 2009;9(8):587–95. doi: 10.1038/nrc2675.Google Scholar
  21. 21.
    Gaffey MJ, Iezzoni JC, Meredith SD, Boyd JC, Stoler MH, Weiss LM, Zukerberg LR, Levine PA, et al. Cyclin D1 (PRAD1, CCND1) and glutathione-S-transferase pi gene expression in head and neck squamous cell carcinoma. Hum Pathol. 1995;26(11):1221–6.Google Scholar
  22. 22.
    Gollin SM. Chromosomal alterations in squamous cell carcinomas of the head and neck: window to the biology of disease. Head Neck. 2001;23(3):238–53.Google Scholar
  23. 23.
    Hijioka H, Setoguchi T, Miyawaki A, Gao H, Ishida T, Komiya S, Nakamura N. Upregulation of Notch pathway molecules in oral squamous cell carcinoma. Int J Oncol. 2010;36(4):817–22.Google Scholar
  24. 24.
    Ihle NT, Powis G. Take your PIK: phosphatidylinositol 3-kinase inhibitors race through the clinic and toward cancer therapy. Mol Cancer Ther. 2009;8(1):1–9. doi: 10.1158/1535-7163.MCT-08-0801.Google Scholar
  25. 25.
    Ikenoue T, Kanai F, Hikiba Y, Obata T, Tanaka Y, Imamura J, Ohta M, Jazag A, et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res. 2005;65(11):4562–7. doi: 10.1158/0008-5472.CAN-04-4114.Google Scholar
  26. 26.
    Jares P, Fernandez PL, Campo E, Nadal A, Bosch F, Aiza G, Nayach I, Traserra J, et al. PRAD-1/cyclin D1 gene amplification correlates with messenger RNA overexpression and tumor progression in human laryngeal carcinomas. Cancer Res. 1994;54(17):4813–7.Google Scholar
  27. 27.
    Jiang L, Zeng X, Yang H, Wang Z, Shen J, Bai J, Zhang Y, Gao F, et al. Oral cancer overexpressed 1 (ORAOV1): a regulator for the cell growth and tumor angiogenesis in oral squamous cell carcinoma. Int J Cancer (Journal international du cancer). 2008;123(8):1779–86. doi: 10.1002/ijc.23734.Google Scholar
  28. 28.
    Joo YH, Jung CK, Kim MS, Sun DI. Relationship between vascular endothelial growth factor and Notch1 expression and lymphatic metastasis in tongue cancer. Otolaryng Head Neck Surg: Off J Am Acad Otolaryng Head Neck Surg. 2009;140(4):512–8. doi: 10.1016/j.otohns.2008.12.057.Google Scholar
  29. 29.
    Kidd S, Kelley MR, Young MW. Sequence of the notch locus of Drosophila melanogaster: relationship of the encoded protein to mammalian clotting and growth factors. Mol Cell Biol. 1986;6(9):3094–108.Google Scholar
  30. 30.
    Kim HS, Lee JW, Soung YH, Park WS, Kim SY, Lee JH, Park JY, Cho YG, et al. Inactivating mutations of caspase-8 gene in colorectal carcinomas. Gastroenterology. 2003;125(3):708–15.Google Scholar
  31. 31.
    Klinakis A, Lobry C, Abdel-Wahab O, Oh P, Haeno H, Buonamici S, De Walle I van, Cathelin S, et al. A novel tumour-suppressor function for the Notch pathway in myeloid leukaemia. Nature. 2011;473(7346):230–3. doi: 10.1038/nature09999.Google Scholar
  32. 32.
    Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009;137(2):216–33. doi: 10.1016/j.cell.2009.03.045.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Koster MI, Dai D, Roop DR. Conflicting roles for p63 in skin development and carcinogenesis. Cell cycle. 2007;6(3):269–73.Google Scholar
  34. 34.
    Kovalenko A, Kim JC, Kang TB, Rajput A, Bogdanov K, Dittrich-Breiholz O, Kracht M, Brenner O, et al. Caspase-8 deficiency in epidermal keratinocytes triggers an inflammatory skin disease. J Exp Med. 2009;206(10):2161–77. doi: 10.1084/jem.20090616.Google Scholar
  35. 35.
    Kozaki K, Imoto I, Pimkhaokham A, Hasegawa S, Tsuda H, Omura K, Inazawa J. PIK3CA mutation is an oncogenic aberration at advanced stages of oral squamous cell carcinoma. Cancer Sci. 2006;97(12):1351–8. doi: 10.1111/j.1349-7006.2006.00343.x.Google Scholar
  36. 36.
    Kratzke RA, Shimizu E, Kaye FJ. Oncogenes in human lung cancer. Cancer Treat Res. 1992;63:61–85.PubMedCrossRefGoogle Scholar
  37. 37.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. doi: 10.1038/35057062.Google Scholar
  38. 38.
    Leemans CR, Braakhuis BJ, Brakenhoff RH. The molecular biology of head and neck cancer. Nature Rev. Cancer. 2011;11(1):9–22. doi: 10.1038/nrc2982.Google Scholar
  39. 39.
    Lin JT, Chen MK, Yeh KT, Chang CS, Chang TH, Lin CY, Wu YC, Su BW, et al. Association of high levels of Jagged-1 and Notch-1 expression with poor prognosis in head and neck cancer. Ann Surg Oncol. 2010;17(11):2976–83. doi: 10.1245/s10434-010-1118-9.Google Scholar
  40. 40.
    Lippman SM, Sudbo J, Hong WK. Oral cancer prevention and the evolution of molecular-targeted drug development. J Clin Oncol: Off J Am Soc Clin Oncol. 2005;23(2):346–56. doi: 10.1200/JCO.2005.09.128.Google Scholar
  41. 41.
    Lydiatt WM, Murty VV, Davidson BJ, Xu L, Dyomina K, Sacks PG, Schantz SP, Chaganti RS. Homozygous deletions and loss of expression of the CDKN2 gene occur frequently in head and neck squamous cell carcinoma cell lines but infrequently in primary tumors. Genes Chromosomes Cancer. 1995;13(2):94–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Meredith SD, Levine PA, Burns JA, Gaffey MJ, Boyd JC, Weiss LM, Erickson NL, Williams ME. Chromosome 11q13 amplification in head and neck squamous cell carcinoma. Association with poor prognosis. Arch Otolaryngol Head Neck Surg. 1995;121(7):790–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Meyerson M, Gabriel S, Getz G. Advances in understanding cancer genomes through second-generation sequencing. Nature Rev Genetics. 2010;11(10):685–96. doi: 10.1038/nrg2841.Google Scholar
  44. 44.
    Michalides R, Veelen N van, Hart A, Loftus B, Wientjens E, Balm A. Overexpression of cyclin D1 correlates with recurrence in a group of forty-seven operable squamous cell carcinomas of the head and neck. Cancer Res. 1995;55(5):975–8.PubMedGoogle Scholar
  45. 45.
    Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A. p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature. 1999;398(6729):708–13. doi: 10.1038/19531.PubMedCrossRefGoogle Scholar
  46. 46.
    Mitani Y, Li J, Weber RS, Lippman SL, Flores ER, Caulin C, El-Naggar AK. Expression and regulation of the DeltaN and TAp63 isoforms in salivary gland tumorigenesis clinical and experimental findings. Am J Pathol. 2011;179(1):391–9. doi: 10.1016/j.ajpath.2011.03.037.PubMedCentralPubMedCrossRefGoogle Scholar
  47. 47.
    Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan S, Eng S, Kannan K, et al. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet. 2013;45(3):253–61. doi: 10.1038/ng.2538.Google Scholar
  48. 48.
    Nakashima T, Clayman GL. Antisense inhibition of cyclin D1 in human head and neck squamous cell carcinoma. Arch Otolaryngol-head Neck Surg. 2000;126(8):957–61.Google Scholar
  49. 49.
    Nakaya K, Yamagata HD, Arita N, Nakashiro KI, Nose M, Miki T, Hamakawa H. Identification of homozygous deletions of tumor suppressor gene FAT in oral cancer using CGH-array. Oncogene. 2007;26(36):5300–8. doi: 10.1038/sj.onc.1210330.PubMedCrossRefGoogle Scholar
  50. 50.
    Nawroz H, Riet P van der, Hruban RH, Koch W, Ruppert JM, Sidransky D. Allelotype of head and neck squamous cell carcinoma. Cancer Res. 1994;54(5):1152–5.PubMedGoogle Scholar
  51. 51.
    Network, The Cancer Genome Atlas. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487(7407):330–7. doi: 10.1038/nature11252.CrossRefGoogle Scholar
  52. 52.
    Nicolas M, Wolfer A, Raj K, Kummer JA, Mill P, Noort M van, Hui CC, Clevers H, et al. Notch1 functions as a tumor suppressor in mouse skin. Nature Genet. 2003;33(3):416–21. doi: 10.1038/ng1099.Google Scholar
  53. 53.
    Okami K, Wu L, Riggins G, Cairns P, Goggins M, Evron E, Halachmi N, Ahrendt SA, et al. Analysis of PTEN/MMAC1 alterations in aerodigestive tract tumors. Cancer Res. 1998;58(3):509–11.Google Scholar
  54. 54.
    Park JT, Li M, Nakayama K, Mao TL, Davidson B, Zhang Z, Kurman RJ, Eberhart CG, et al. Notch3 gene amplification in ovarian cancer. Cancer Res. 2006;66(12):6312–8. doi: 10.1158/0008-5472.CAN-05-3610.Google Scholar
  55. 55.
    Perrone F, Bossi P, Cortelazzi B, Locati L, Quattrone P, Pierotti MA, Pilotti S, Licitra L. TP53 mutations and pathologic complete response to neoadjuvant cisplatin and fluorouracil chemotherapy in resected oral cavity squamous cell carcinoma. J Clin Oncol. 2010;28(5):761–6. doi: 10.1200/JCO.2009.22.4170.PubMedCrossRefGoogle Scholar
  56. 56.
    Petitjean A, Mathe E, Kato S, Ishioka C, Tavtigian SV, Hainaut P, Olivier M. Impact of mutant p53 functional properties on TP53 mutation patterns and tumor phenotype: lessons from recent developments in the IARC TP53 database. Hum Mutat. 2007;28(6):622–9. doi: 10.1002/humu.20495.PubMedCrossRefGoogle Scholar
  57. 57.
    Poeta ML, Manola J, Goldwasser MA, Forastiere A, Benoit N, Califano JA, Ridge JA, Goodwin J, et al. TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med. 2007;357(25):2552–61. doi: 10.1056/NEJMoa073770.Google Scholar
  58. 58.
    Poi MJ, Yen T, Li J, Song H, Lang JC, Schuller DE, Pearl DK, Casto BC, et al. Somatic INK4a-ARF locus mutations: a significant mechanism of gene inactivation in squamous cell carcinomas of the head and neck. Mol Carcinogen. 2001;30(1):26–36.Google Scholar
  59. 59.
    Qiu W, Schonleben F, Li X, Ho DJ, Close LG, Manolidis S, Bennett BP, Su GH. PIK3CA mutations in head and neck squamous cell carcinoma. Clin Cancer Res: Off J Am Assoc Cancer Res. 2006;12 (5):1441–6. doi: 10.1158/1078-0432.CCR-05-2173.Google Scholar
  60. 60.
    Radtke F, Raj K. The role of Notch in tumorigenesis: oncogene or tumour suppressor? Nature Rev Cancer. 2003;3(10):756–67. doi: 10.1038/nrc1186.Google Scholar
  61. 61.
    Rangarajan A, Talora C, Okuyama R, Nicolas M, Mammucari C, Oh H, Aster JC, Krishna S, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J. 2001;20(13):3427–36. doi: 10.1093/emboj/20.13.3427.Google Scholar
  62. 62.
    Reed AL, Califano J, Cairns P, Westra WH, Jones RM, Koch W, Ahrendt S, Eby Y, et al. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 1996;56(16):3630–3.Google Scholar
  63. 63.
    Rocco JW, Ellisen LW. p63 and p73: life and death in squamous cell carcinoma. Cell Cycle. 2006;5(9):936–40.Google Scholar
  64. 64.
    Rocco JW, Sidransky D. p16(MTS-1/CDKN2/INK4a) in cancer progression. Exp Cell Res. 2001;264 (1):42–55. doi: 10.1006/excr.2000.5149.Google Scholar
  65. 65.
    Sok JC, Coppelli FM, Thomas SM, Lango MN, Xi S, Hunt JL, Freilino ML, Graner MW, et al. Mutant epidermal growth factor receptor (EGFRvIII) contributes to head and neck cancer growth and resistance to EGFR targeting. Clin Cancer Res: Off J Am Assoc Cancer Res. 2006;12(17):5064–73. doi: 10.1158/1078-0432.CCR-06-0913.Google Scholar
  66. 66.
    Somers KD, Merrick MA, Lopez ME, Incognito LS, Schechter GL, Casey G. Frequent p53 mutations in head and neck cancer. Cancer Res. 1992;52(21):5997–6000.PubMedGoogle Scholar
  67. 67.
    Sopko R, McNeill H. The skinny on Fat: an enormous cadherin that regulates cell adhesion, tissue growth, and planar cell polarity. Curr Opin Cell Biol. 2009;21(5):717–23. doi: 10.1016/j.ceb.2009.07.001.Google Scholar
  68. 68.
    Soung YH, Lee JW, Kim SY, Jang J, Park YG, Park WS, Nam SW, Lee JY, et al. CASPASE-8 gene is inactivated by somatic mutations in gastric carcinomas. Cancer Res. 2005;65(3):815–21.Google Scholar
  69. 69.
    Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, Kryukov GV, Lawrence MS, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157–60. doi: 10.1126/science.1208130.Google Scholar
  70. 70.
    Tanoue T, Takeichi M. New insights into Fat cadherins. J Cell Sci. 2005;118 (Pt 11):2347–53. doi: 10.1242/jcs.02398.Google Scholar
  71. 71.
    van Raam BJ, Salvesen GS. Proliferative versus apoptotic functions of caspase-8 Hetero or homo: the caspase-8 dimer controls cell fate. Biochimica et biophysica acta. 2012;1824(1):113–22. doi: 10.1016/j.bbapap.2011.06.005.PubMedCrossRefGoogle Scholar
  72. 72.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. doi: 10.1126/science.1058040.Google Scholar
  73. 73.
    Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319(9):525–32. doi: 10.1056/NEJM198809013190901.Google Scholar
  74. 74.
    Wang MB, Billings KR, Venkatesan N, Hall FL, Srivatsan ES. Inhibition of cell proliferation in head and neck squamous cell carcinoma cell lines with antisense cyclin D1. Otolaryngol Head Neck Surg: Off J Am Acad Otolaryng Head Neck Surg. 1998;119(6):593–9.Google Scholar
  75. 75.
    Wang NJ, Sanborn Z, Arnett KL, Bayston LJ, Liao W, Proby CM, Leigh IM, Collisson EA, et al. Loss-of-function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A. 2011;108(43):17761–6. doi: 10.1073/pnas.1114669108.Google Scholar
  76. 76.
    Weinlich R, Dillon CP, Green DR. Ripped to death. Trends Cell Biol. 2011;21(11):630–7. doi: 10.1016/j.tcb.2011.09.002.Google Scholar
  77. 77.
    Welcker M, Clurman BE. FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation. Nature Rev Cancer. 2008;8(2):83–93. doi: 10.1038/nrc2290.Google Scholar
  78. 78.
    Westfall MD, Pietenpol JA. p63: Molecular complexity in development and cancer. Carcinogenesis. 2004;25(6):857–64. doi: 10.1093/carcin/bgh148.PubMedCrossRefGoogle Scholar
  79. 79.
    Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S. Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell. 1985;43(3 Pt 2):567–81.PubMedCrossRefGoogle Scholar
  80. 80.
    White EA, Howley PM. Proteomic approaches to the study of papillomavirus-host interactions. Virology. 2013;435(1):57–69. doi: 10.1016/j.virol.2012.09.046.PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    Wreesmann VB, Singh B. Chromosomal aberrations in squamous cell carcinomas of the upper aerodigestive tract: biologic insights and clinical opportunities. J Oral Pathol Med: Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2005;34(8):449–59. doi: 10.1111/j.1600-0714.2005.00343.x.Google Scholar
  82. 82.
    Yang A, Schweitzer R, Sun D, Kaghad M, Walker N, Bronson RT, Tabin C, Sharpe A, et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature. 1999;398(6729):714–8. doi: 10.1038/19539.Google Scholar
  83. 83.
    Yap TA, Workman P. Exploiting the cancer genome: strategies for the discovery and clinical development of targeted molecular therapeutics. Annu Rev Pharmacol Toxicol. 2012;52:549–73. doi: 10.1146/annurev-pharmtox-010611-134532.PubMedCrossRefGoogle Scholar
  84. 84.
    Yeudall WA, Crawford RY, Ensley JF, Robbins KC. MTS1/CDK4I is altered in cell lines derived from primary and metastatic oral squamous cell carcinoma. Carcinogenesis. 1994;15(12):2683–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F. Ras signaling and therapies. Adv Cancer Res. 2009;102:1–17. doi: 10.1016/S0065-230X(09)02001-6.PubMedCrossRefGoogle Scholar
  86. 86.
    Yu K, Toral-Barza L, Shi C, Zhang WG, Zask A. Response and determinants of cancer cell susceptibility to PI3K inhibitors: combined targeting of PI3K and Mek1 as an effective anticancer strategy. Cancer Biol Ther. 2008;7(2):307–15.Google Scholar
  87. 87.
    Zage PE, Nolo R, Fang W, Stewart J, Garcia-Manero G, Zweidler-McKay PA. Notch pathway activation induces neuroblastoma tumor cell growth arrest. Pediatr Blood Cancer. 2012;58(5):682–9. doi: 10.1002/pbc.23202.Google Scholar
  88. 88.
    Zhai C, Li Y, Mascarenhas C, Lin Q, Li K, Vyrides I, Grant CM, Panaretou B. The function of ORAOV1/LTO1, a gene that is overexpressed frequently in cancer: essential roles in the function and biogenesis of the ribosome. Oncogene. 2013. doi: 10.1038/onc.2012.604.Google Scholar
  89. 89.
    Zhang SY, Klein-Szanto AJ, Sauter ER, Shafarenko M, Mitsunaga S, Nobori T, Carson DA, Ridge JA, et al. Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res. 1994;54(19):5050–3.Google Scholar
  90. 90.
    Zhang TH, Liu HC, Zhu LJ, Chu M, Liang YJ, Liang LZ, Liao GQ. Activation of Notch signaling in human tongue carcinoma. J Oral Pathol Med: Off Publ Int Assoc Oral Pathol Am Acad Oral Pathol. 2011;40(1):37–45. doi: 10.1111/j.1600-0714.2010.00931.x.Google Scholar
  91. 91.
    Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27(41):5486–96. doi: 10.1038/onc.2008.244.PubMedCentralPubMedCrossRefGoogle Scholar
  92. 92.
    Zweidler-McKay PA. Notch signaling in pediatric malignancies. Curr Oncol Rep. 2008;10(6):459–68.Google Scholar
  93. 93.
    Zweidler-McKay PA, He Y, Xu L, Rodriguez CG, Karnell FG, Carpenter AC, Aster JC, Allman D, et al. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies. Blood. 2005;106(12):3898–906. doi: 10.1182/blood-2005-01-0355.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Curtis R. Pickering
    • 1
  • Thomas J. Ow
    • 2
  • Jeffrey N. Myers
    • 1
  1. 1.Department of Head and Neck SurgeryThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of Otorhinolaryngology-Head and Neck Surgery and Department of PathologyMontefiore Medical Center and Albert Einstein College of MedicineBronxUSA

Personalised recommendations