Advertisement

Human Papillomavirus (HPV)-Positive Head and Neck Cancer and the Wnt Signaling Pathway

  • Theodoros Rampias
  • Amanda Psyrri
Chapter
Part of the Current Cancer Research book series (CUCR)

Abstract

All known human papillomaviruses (HPVs) are exclusively epitheliotropic. Upon entry into populations of stratified epithelial cells, the E6 and E7 oncoproteins encoded by high-risk HPV variants establish a productive infection by manipulating signaling processes in the host environment, leading ultimately to production of infectious particles in the upper epithelial layers. The mechanisms by which E6 and E7 promote cell-cycle progression and viral DNA replication are well established, and involve E6-dependent ubiquitination and degradation of the p53 tumor suppressor, and E7- and cullin 2-dependent ubiquitination and degradation of the retinoblastoma (Rb) tumor suppressor protein. Recent experimental work provides evidence that high-risk HPVs also manipulate the underlying differentiation status of cells by targeting the Wnt pathway to ensure progression of the viral replication cycle. This chapter summarizes the possible cell pathways involved in the activation of Wnt signaling in HPV-positive head and neck cancer.

Keywords

HPV Head and neck cancer Wnt β-Catenin 

References

  1. 1.
    Wilson VG, et al. Papillomavirus E1 proteins: form, function, and features. Virus Genes. 2002;24(3):275–90.PubMedCrossRefGoogle Scholar
  2. 2.
    De Geest K, et al. Growth and differentiation of human papillomavirus type 31b positive human cervical cell lines. Gynecol Oncol. 1993;49(3):303–10.PubMedCrossRefGoogle Scholar
  3. 3.
    Stanley MA, et al. Properties of a non-tumorigenic human cervical keratinocyte cell line. Int J Cancer. 1989;43(4):672–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Zhang P, et al. Induction of E6/E7 expression in cottontail rabbit papillomavirus latency following UV activation. Virology. 1999;263(2):388–94.PubMedCrossRefGoogle Scholar
  5. 5.
    Gravitt PE. The known unknowns of HPV natural history. J Clin Invest. 2011;121(12):4593–9.PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Tang AL, et al. UM-SCC-104: a new human papillomavirus-16-positive cancer stem cell-containing head and neck squamous cell carcinoma cell line. Head Neck. 2012;34(10):1480–91.PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Kimelman D, Xu W. Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene. 2006;25(57):7482–91.PubMedCrossRefGoogle Scholar
  8. 8.
    Skapek SX, et al. Inhibition of myogenic differentiation in proliferating myoblasts by cyclin D1-dependent kinase. Science. 1995;267(5200):1022–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Zeilstra J, et al. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res. 2008;68(10):3655–61.PubMedCrossRefGoogle Scholar
  10. 10.
    Shtutman M, et al. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A. 1999;96(10):5522–7.PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Mann B, et al. Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci U S A. 1999;96(4):1603–8.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Wilkins JA, Sansom OJ. C-Myc is a critical mediator of the phenotypes of Apc loss in the intestine. Cancer Res. 2008;68(13):4963–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Lindsley RC, et al. Canonical Wnt signaling is required for development of embryonic stem cell-derived mesoderm. Development. 2006;133(19):3787–96.PubMedCrossRefGoogle Scholar
  14. 14.
    Zhu AJ, Watt FM. Beta-catenin signalling modulates proliferative potential of human epidermal keratinocytes independently of intercellular adhesion. Development. 1999;126(10):2285–98.PubMedGoogle Scholar
  15. 15.
    Reya T, et al. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 2003;423(6938):409–14.PubMedCrossRefGoogle Scholar
  16. 16.
    Silva-Vargas V, et al. Beta-catenin and Hedgehog signal strength can specify number and location of hair follicles in adult epidermis without recruitment of bulge stem cells. Dev Cell. 2005;9(1):121–31.PubMedCrossRefGoogle Scholar
  17. 17.
    Alonso L, Fuchs E. Stem cells of the skin epithelium. Proc Natl Acad Sci U S A. 2003;100(Suppl 1):11830–5.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Ito M, et al. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007;447(7142):316–20.PubMedCrossRefGoogle Scholar
  19. 19.
    Narhi K, et al. Sustained epithelial beta-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development. 2008;135(6):1019–28.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang Y, et al. Activation of beta-catenin signaling programs embryonic epidermis to hair follicle fate. Development. 2008;135(12):2161–72.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Hayward SD, Liu J, Fujimuro M Notch and Wnt signaling: mimicry and manipulation by gamma herpesviruses. Sci STKE. 2006;2006(335):re4.PubMedGoogle Scholar
  22. 22.
    Jang KL, et al. Up-regulation of beta-catenin by a viral oncogene correlates with inhibition of the seven in absentia homolog 1 in B lymphoma cells. Proc Natl Acad Sci U S A. 2005;102(51):18431–6.PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Angelova M, et al. Human cytomegalovirus infection dysregulates the canonical Wnt/beta-catenin signaling pathway. PLoS Pathog. 2012;8(10):e1002959.PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Castellsague X, et al. Worldwide human papillomavirus etiology of cervical adenocarcinoma and its cofactors: implications for screening and prevention. J Natl Cancer Inst. 2006;98(5):303–15.PubMedCrossRefGoogle Scholar
  25. 25.
    Shinohara A, et al. Cytoplasmic/nuclear expression without mutation of exon 3 of the beta-catenin gene is frequent in the development of the neoplasm of the uterine cervix. Gynecol Oncol. 2001;82(3):450–5.PubMedCrossRefGoogle Scholar
  26. 26.
    Pereira-Suarez AL, et al. Frequent alterations of the beta-catenin protein in cancer of the uterine cervix. Tumour Biol. 2002;23(1):45–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Chung MT, et al. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol. 2009;112(3):646–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Ueda M, et al. Mutations of the beta- and gamma-catenin genes are uncommon in human lung, breast, kidney, cervical and ovarian carcinomas. Br J Cancer. 2001;85(1):64–8.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Su TH, et al. Mutation analysis of CTNNB1 (beta-catenin) and AXIN1, the components of Wnt pathway, in cervical carcinomas. Oncol Rep. 2003;10(5):1195–200.PubMedGoogle Scholar
  30. 30.
    Imura J, et al. Beta-catenin expression as a prognostic indicator in cervical adenocarcinoma. Int J Mol Med. 2001;8(4):353–8.PubMedGoogle Scholar
  31. 31.
    Shim C, et al. Profiling of differentially expressed genes in human primary cervical cancer by complementary DNA expression array. Clin Cancer Res. 1998;4(12):3045–50.PubMedGoogle Scholar
  32. 32.
    Perez-Plasencia C, Duenas-Gonzalez A, and B Alatorre-Tavera. Second hit in cervical carcinogenesis process: involvement of wnt/beta catenin pathway. Int Arch Med. 2008;1(1):10.PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    van der Meide WF, et al. Promoter methylation analysis of WNT/beta-catenin signaling pathway regulators to detect adenocarcinoma or its precursor lesion of the cervix. Gynecol Oncol. 2011;123(1):116–22.PubMedCrossRefGoogle Scholar
  34. 34.
    Klussmann JP, et al. Expression of p16 protein identifies a distinct entity of tonsillar carcinomas associated with human papillomavirus. Am J Pathol. 2003;162(3):747–53.PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Hafkamp HC, et al. A subset of head and neck squamous cell carcinomas exhibits integration of HPV 16/18 DNA and overexpression of p16INK4A and p53 in the absence of mutations in p53 exons 5–8. Int J Cancer. 2003;107(3):394–400.PubMedCrossRefGoogle Scholar
  36. 36.
    Worsham MJ, et al. Fine-mapping loss of gene architecture at the CDKN2B (p15INK4b), CDKN2A (p14ARF, p16INK4a), and MTAP genes in head and neck squamous cell carcinoma. Arch Otolaryngol Head Neck Surg. 2006;132(4):409–15.PubMedCrossRefGoogle Scholar
  37. 37.
    Weinberger PM, et al. Molecular classification identifies a subset of human papillomavirus–associated oropharyngeal cancers with favorable prognosis. J Clin Oncol. 2006;24(5):736–47.PubMedCrossRefGoogle Scholar
  38. 38.
    Singhi AD, Westra WH. Comparison of human papillomavirus in situ hybridization and p16 immunohistochemistry in the detection of human papillomavirus-associated head and neck cancer based on a prospective clinical experience. Cancer. 2010;116(9):2166–73.PubMedGoogle Scholar
  39. 39.
    Ang KK, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363(1):24–35.PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Rischin D, et al. Prognostic significance of p16INK4A and human papillomavirus in patients with oropharyngeal cancer treated on TROG 02.02 phase III trial. J Clin Oncol. 2010;28(27):4142–8.PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Rampias T, et al. Molecular profile of head and neck squamous cell carcinomas bearing p16 high phenotype. Ann Oncol. 2013;24(8):2121–31.CrossRefGoogle Scholar
  42. 42.
    Rampias T, et al. Activation of Wnt signaling pathway by human papillomavirus E6 and E7 oncogenes in HPV16-positive oropharyngeal squamous carcinoma cells. Mol Cancer Res. 2010;8(3):433–43.PubMedCrossRefGoogle Scholar
  43. 43.
    Bruzzoni-Giovanelli H, et al. Distinct expression patterns of the E3 ligase SIAH-1 and its partner Kid/KIF22 in normal tissues and in the breast tumoral processes. J Exp Clin Cancer Res. 2010;29:10.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Brauckhoff A, et al. [Reduced expression of the E3-ubiquitin ligase seven in absentia homologue (SIAH)-1 in human hepatocellular carcinoma]. Verh Dtsch Ges Pathol. 2007;91:269–77.PubMedGoogle Scholar
  45. 45.
    Liu J, et al. Siah-1 mediates a novel beta-catenin degradation pathway linking p53 to the adenomatous polyposis coli protein. Mol Cell. 2001;7(5):927–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Matsuzawa SI, Reed JC. Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell. 2001;7(5):915–26.PubMedCrossRefGoogle Scholar
  47. 47.
    Maeda A, et al. The characterization of the human Siah-1 promoter(1). FEBS Lett. 2002;512(1–3):223–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Dimitrova YN, et al. Direct ubiquitination of beta-catenin by Siah-1 and regulation by the exchange factor TBL1. J Biol Chem. 2010;285(18):13507–16.PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Wang D, et al. An upregulation of SIAH1 after spinal cord injury in adult rats. J Mol Neurosci. 2011;45(2):134–44.PubMedCrossRefGoogle Scholar
  50. 50.
    Rampias T, et al. E6 and e7 gene silencing and transformed phenotype of human papillomavirus 16-positive oropharyngeal cancer cells. J Natl Cancer Inst. 2009;101(6):412–23.PubMedCrossRefGoogle Scholar
  51. 51.
    Smeets SJ, et al. Immortalization of oral keratinocytes by functional inactivation of the p53 and pRb pathways. Int J Cancer. 2011;128(7):1596–605.PubMedCrossRefGoogle Scholar
  52. 52.
    Donehower LA, et al. Deficiency of p53 accelerates mammary tumorigenesis in Wnt-1 transgenic mice and promotes chromosomal instability. Genes Dev. 1995;9(7):882–95.PubMedCrossRefGoogle Scholar
  53. 53.
    Jones JM, et al. Absence of p53 in a mouse mammary tumor model promotes tumor cell proliferation without affecting apoptosis. Cell Growth Differ. 1997;8(8):829–38.PubMedGoogle Scholar
  54. 54.
    Gunther EJ, et al. Impact of p53 loss on reversal and recurrence of conditional Wnt-induced tumorigenesis. Genes Dev. 2003;17(4):488–501.PubMedCentralPubMedCrossRefGoogle Scholar
  55. 55.
    Kim NH, et al. p53 regulates nuclear GSK-3 levels through miR-34-mediated Axin2 suppression in colorectal cancer cells. Cell Cycle. 2013;12(10):1578–87.PubMedCrossRefGoogle Scholar
  56. 56.
    Kim NH, et al. p53 and microRNA-34 are suppressors of canonical Wnt signaling. Sci Signal. 2011;4(197):ra71.PubMedCentralPubMedCrossRefGoogle Scholar
  57. 57.
    Weinberg RA. The retinoblastoma protein and cell cycle control. Cell. 1995;81(3):323–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Costa C, et al. E2F1 loss induces spontaneous tumour development in Rb-deficient epidermis. Oncogene. 2013;32(24):2937–51.PubMedCrossRefGoogle Scholar
  59. 59.
    Bonilla-Delgado J, et al. The E6 oncoprotein from HPV16 enhances the canonical Wnt/beta-catenin pathway in skin epidermis in vivo. Mol Cancer Res. 2012;10(2):250–8.PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Pim D, et al. Human papillomaviruses and the specificity of PDZ domain targeting. FEBS J. 2012;279(19):3530–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Bulut G, et al. Beta-catenin accelerates human papilloma virus type-16 mediated cervical carcinogenesis in transgenic mice. PLoS One. 2011;6(11):e27243.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Surgery, Section of OtolaryngologyYale University School of MedicineNew HavenUSA
  2. 2.2nd Department of Internal Medicine, Attikon HospitalNational Kapodistrian University of AthensAthensGreece

Personalised recommendations