Skip to main content

Knowledge Engineering via Human Computation

  • Chapter
  • First Online:
Handbook of Human Computation

Abstract

In this chapter, we will analyze a number of essential knowledge engineering activities that, for technical or principled reasons, can hardly be optimally executed through automatic processing approaches, thus remaining heavily reliant on human intervention. Human computation methods can be applied to this field in order to overcome these limitations in terms of accuracy, while still being able to fully take advantage of the scalability and performance of machine-driven capabilities. For each activity, we will explain how this symbiosis can be achieved by giving a short overview of the state of the art and several examples of systems and applications such as games-with-a-purpose, microtask crowdsourcing projects, and community-driven collaborative initiatives that showcase the benefits of the general idea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Especially in tasks like data annotation or data quality assessment, which involve defining and encoding the meaning of the resources published on the Web or resolving semantic conflicts such as data ambiguity or inconsistency.

  2. 2.

    A similar process model applies to the creation, management and use of instance data. Management and pre-development activities cover the entire scope of the knowledge-engineering exercise. Development, post-development and support activities are equally relevant to both schema and data, though there might be differences in their actual realization. For example, instance data is typically lifted from existing sources into the newly created ontological schema, while a greater share of activities at the ontology level are carried out manually.

  3. 3.

    Exceptions include highly contextualized systems, which require extensive training and/or background knowledge. In these cases, the manual efforts shifts from the creation and maintenance of the knowledge base to the generation of training data sets and background corpora.

  4. 4.

    http://agents.csie.ntu.edu.tw/commonsense/cate2_1_en.html

  5. 5.

    http://conceptnet5.media.mit.edu/

  6. 6.

    http://nitemaster.de/guesswhat/manual.html

  7. 7.

    http://linkeddata.org/

  8. 8.

    http://wordhunger.freebaseapps.com/

  9. 9.

    WordNet: http://wordnet.princeton.edu/, Freebase: http://www.freebase.com/

  10. 10.

    http://wiki.dbpedia.org/Ontology

  11. 11.

    http://swa.cefriel.it/urbangames/urbanmatch/index.html

  12. 12.

    http://www.openstreetmap.org

  13. 13.

    http://www.semanticgames.org

  14. 14.

    http://www.gwap.com/

  15. 15.

    Amazon Mechanical Turk: http://mturk.com, CrowdFlower: http://crowdflower.com

  16. 16.

    https://inpho.cogs.indiana.edu/

  17. 17.

    http://people.aifb.kit.edu/mac/mechanicalProtege

  18. 18.

    http://protege.stanford.edu/

  19. 19.

    http://nl.dbpedia.org:8080/TripleCheckMate/

  20. 20.

    Wikipedia extractors. http://wiki.dbpedia.org/DeveloperDocumentation/Extractor

  21. 21.

    http://www.wikidata.org/

  22. 22.

    http://www.freebase.com/

References

  • Acosta M, Simperl E, Flöck F, Norton B (2012) A sparql engine for crowdsourcing query processing using microtasks – technical report. Institute AIFB, KIT, Karlsruhe

    Google Scholar 

  • Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5):34–43

    Article  Google Scholar 

  • Bloehdorn S, Petridis K, Saathoff C, Simou N, Tzouvaras V, Avrithis Y, Handschuh S, Kompatsiaris Y, Staab S, Strintzis MG (2005) Semantic annotation of images and videos for multimedia analysis. LNCS. Springer The Semantic Web: Research and Applications, volume 3532 of Lecture Notes in Computer Science, pp 592–607. Springer Berlin Heidel-berg

    Google Scholar 

  • Bouquet P, Scefor S, Serafini L, Zanobini S (2006) Booststrapping semantics on the web: meaning elicitation from schemas. In: 15th international conference on ACM, New York, NY, USA, http://doi.acm.org/10.1145/1135777.1135851, pp 505–512

  • Buitelaar P, Cimiano P (2008) Ontology learning and population: bridging the gap between text and knowledge. IOS-Press, AmsterdamCelino, Irene, Simone Contessa, Marta Corubolo, Daniele Dell’Aglio, Emanuele Della Valle, Stefano Fumeo, Thorsten Krüger, and Thorsten Krüger. “UrbanMatch-linking and improving Smart Cities Data.” In LDOW. 2012

    Google Scholar 

  • Demartini G, Difallah DE, Cudré-Mauroux P (2012) Zencrowd: leveraging probabilistic reasoning and crowdsourcing techniques for large-scale entity linking. In: Proceedings of the 21st international conference on world wide web, WWW’12, Lyon. ACM, New York, pp 469–478

    Google Scholar 

  • Dimitrov M, Simov A, Momtchev V, Konstantinov M (2007) Wsmo studio – a semantic web services modelling environment for wsmo (system description). In: European semantic web conference (ESWC 2007), Innsbruck

    Google Scholar 

  • Eckert K, Niepert M, Niemann C, Buckner C, Allen C, Stuckenschmidt H (2010) Crowdsourcing the assembly of concept hierarchies. In: Proceedings of the 10th annual joint conference on digital libraries, JCDL ’10, Gold Coast. ACM, New York, pp 139–148

    Google Scholar 

  • Euzenat J, Shvaiko P (2007) Ontology matching. Springer, Berlin/New York

    Google Scholar 

  • Euzenat J, Mocan A, Scharffe F (2007) Ontology alignments. Volume 6 of semantic web and beyond. Springer, p 350

    Google Scholar 

  • Falconer SM, Storey M-A (2007) A cognitive support framework for ontology mapping. In: Asian semantic web conference (ASWC 2007), Busan

    Google Scholar 

  • Fensel D (2001) Ontologies: a silver bullet for knowledge management and electronic commerce. Springer, Berlin/New York

    Book  Google Scholar 

  • Gómez-Pérez A, Fernández-Lopéz M, Corcho O (2004) Ontological engineering – with examples form the areas of knowledge management, e-Commerce and the semantic web. Advanced information and knowledge processing. Springer

    Google Scholar 

  • Guarino N (1998) Formal ontology and information systems. In: Proceedings of the 1st international conference on formal ontologies in information systems FOIS1998, Amsterdam/Washington. IOS-Press, pp 3–15

    Google Scholar 

  • Kerrigan M, Mocan A, Tanler M, Fensel D (2007) The web service modeling toolkit – an integrated development environment for semantic web services (system description). In: European semantic web conference (ESWC 2007), Innsbruck

    Google Scholar 

  • Kerrigan M, Mocan A, Simperl E, Fensel D (2008) Modeling semantic web services with the web service modeling toolkit. Technical report, Semantic Technology Institute (STI)

    Google Scholar 

  • Kuo Y-L, Lee J-C, Chiang K-Y, Wang R, Shen E, Chan C-W, Hsu J-Y (2009) Community-based game design: experiments on social games for commonsense data collection. In: International conference on knowledge discovery and data mining, HCOMP’09, Paris. ACM, New York, pp 15–22

    Google Scholar 

  • Neches R, Fikes RE, Finin T, Gruber TR, Senator T, Swartout WR (1991) Enabling technology for knowledge sharing. AI Mag 12(3):35–56

    Google Scholar 

  • Niepert M, Buckner C, Allen C (2007) A dynamic ontology for a dynamic reference work. In: Proceedings of the 7th ACM/IEEE-CS joint conference on digital libraries, JCDL ’07, Vancouver. ACM, New York, pp 288–297

    Google Scholar 

  • Noy N, Musen M (2001) Anchor-prompt: using non-logical context for semantic matching. In: IJCAI workshop on ontologies and information sharing, Seattle, pp 63–70

    Google Scholar 

  • Noy NF, Musen M (2003) The prompt suite: interactive tools for ontology merging and mapping. Int J Hum Comput Stud 59(6):983–1024

    Article  Google Scholar 

  • Reeve L, Han H (2005) Survey of semantic annotation platforms. ACM Press, New York, pp 1634–1638

    Google Scholar 

  • Sarasua C, Simperl E, Noy NF (2012) Crowdmap: crowdsourcing ontology alignment with microtasks. In: International Semantic Web Conference (1)’12, Boston. pp 525–541

    Google Scholar 

  • Schreiber G, Akkermans H, Anjewierden A, de Hoog R, Shadbolt N, Van de Velde W, Wielinga B (1999) Knowledge engineering and management: the CommonKADS methodology. MIT, Cambridge http://proton.semanticweb.org

  • SEKT Consortium. Proton ontology

    Google Scholar 

  • Simperl E, Wölger S, Norton B, Thaler S, Bürger T (2012) Combining human and computational intelligence: the case of data interlinking tools. Int J Metadata Semant Ontol 7.2 (2012):77–92

    Google Scholar 

  • Simperl E, Cuel R, Stein M (2013) Incentive-Centric semantic web application engineering. Synthesis lectures on the semantic web: theory and technology. Morgan & Claypool, San Rafael

    Google Scholar 

  • Siorpaes K, Hepp M (2008) Ontogame: weaving the semantic web by online games The Semantic Web: Research and Applications, volume 5021 of Lecture Notes in Computer Science, pp 751–766. Springer Berlin Heidelberg, 2008

    Google Scholar 

  • Siorpaes K, Simperl E (2010) Human intelligence in the process of semantic content creation. World Wide Web J 13(1):33–59

    Article  Google Scholar 

  • Studer R, Benjamins VR, Fensel D (1998) Knowledge engineering principles and methods. Data Knowl Eng 25(1/2):161–197

    Article  MATH  Google Scholar 

  • Uren V, Cimiano P, Iria J, Handschuh S, Vargas-Vera M, Motta E, Ciravegna F (2006) Semantic annotation for knowledge management: requirements and a survey of the state of the art. Web Semant Sci Serv Agents World Wide Web 4(1):14–28

    Article  Google Scholar 

  • Völker J, Vrandecic D, Sure Y, Hotho A (2007) Learning disjointness. In: Proceedings of the 4th european semantic web conference ESWC 2012, Innsbruck, pp 175–189

    Google Scholar 

  • Wölger S, Siorpaes K, Bürger T, Simperl E, Thaler S, Hofer C (2011) Interlinking data – approaches and tools. Technical report, STI Innsbruck, University of InnsbruckYen-ling Kuo et al. (2009): In Proceedings of the ACM SIGKDD Workshop on Human Computation (HCOMP ‘09)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Simperl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Simperl, E., Acosta, M., Flöck, F. (2013). Knowledge Engineering via Human Computation. In: Michelucci, P. (eds) Handbook of Human Computation. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8806-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8806-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8805-7

  • Online ISBN: 978-1-4614-8806-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics