Skip to main content
Book cover

Opacity pp 411–419Cite as

Limits, Approximations, Scaling, and Interpolations

  • Chapter
  • First Online:
  • 1142 Accesses

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 402))

Abstract

Limits and approximations can serve as useful checks on calculated opacities. Scaling is important to estimate opacities for elements for which tables have not been calculated. Interpolation is indispensable to obtain opacities at density and temperature values for which they have not been tabulated. In the following, opacities, κ, are in units of m2∕kg.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    For relativistic and collective effects, see Sect. 6.3.

  2. 2.

    For application to H2O vapor, Penner (1959) used \(B_{\mathrm{e},i} \approx \sqrt{BC} = 1160\,\mathrm{{m}}^{-1}\). Penner and Olfe (1968) justified application of the model by the empirical observation that “adequate pressure broadening (i.e., so that rotational fine structure lines overlap) is achieved, at a few atmospheres at room temperature in dilute water vapor and that the widths for water – water collisions are 5 to 10 times larger than the widths for H2O – N2 or H2O – O2 collisions.” According to Penner and Varanasi (1965): “The relatively weak dependence of the theoretical value of A on B e, i is, in large measure, responsible for the success of the highly simplified procedure.”

  3. 3.

    For small K-values ( < 0.05), I(K) ≈ 0. 5 K (within 2 %). For intermediate and large values of K, \(I(K) \approx 1.11{[2.303\log 1.21\,K]}^{1/2}\) (Penner and Olfe 1968).

  4. 4.

    Values for α i for H2O vapor for four spectral regions (1.38, 1.87, 2.7, and 6. 3 μm) at T = 473, 673, 873, and 1,000 K with the T-dependence of the integrated radiances are given by Eq. (11.10) derived from measurements of Goldstein (1964), were compared with values calculated using the upper limit of the inequalities. They found that the ratio \(\alpha _{i,\mathrm{calc.}}/\alpha _{i,\mathrm{meas.}}\) for optical depths 0.03, 0.1, and 0.3 ranged from 0.82 to 1.1, with the larger discrepancies occurring for the 6. 3 μm band.

  5. 5.

    The last term in brackets is a fit to the free–free Gaunt factor at u ≈ 7.

  6. 6.

    See also Zel’dovich and Raĭzer (1966).

  7. 7.

    It was found that replacing the coefficient 0.001 by 0.01 or 0.0001 would lead to substantially the same results [for calculated band emissivities for CO fundamental and first overtone, \(0.1\,\mathrm{MPa} \leq P \leq 5\,\mathrm{MPa}\), \(300 \leq T \leq 3,000\,\mathrm{K}\)]. The data show that a 50-fold increase in optical density changes the effective bandwidth by about 30 % for the fundamental and by about 10 % for the overtone band.

  8. 8.

    See also approximate band models described in Sect 7.3.3.

  9. 9.

    Numbers in brackets indicate the chapters in which the references are cited.

References

Numbers in brackets indicate the chapters in which the references are cited.

  • Abdallah Jr., J., Clark, R. E. H. (1991): ‘X-ray transmission calculations for an aluminum plasma.’ J. Appl. Phys. 69, 23–26. [13]

    Google Scholar 

  • Abdallah Jr., J., Clark, R. E. H., Cowan, R. D. (1988): ‘Theoretical Atomic Physics Code Development. I. CATS: Cowan Atomic Structure Code.’ Los Alamos National Laboratory report LA-11436-M. [3]

    Google Scholar 

  • Abraham, Z., Iben, I. (1971): ‘More solar models and neutrino fluxes.’ Astrophys. J. 170, 157–163. [11]

    Google Scholar 

  • Abramowitz, M., Stegun, I. A. (1964/1972): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. NBS Applied Mathematics Series 55, U.S. Dept. Commerce, Washington, DC. Tenth printing, December 1972, with corrections. [5, 8]

    Google Scholar 

  • Acton, A. P., Aickin, R. G., Bayliss, N. S. (1936): ‘The continuous absorption spectrum of bromine: A new interpretation.’ J. Chem. Phys. 4, 474–479. [6]

    Google Scholar 

  • Adam, J. C., Serveniere, A. G., Laval, G. (1983): ‘Instabilities induced by resonant absorption of an electromagnetic wave in an inhomogeneous plasma.’ J. Phys., Colloque C2 Suppl. 44, 171–179. [5]

    Google Scholar 

  • Adelman, S. J., Wiese, W. L.(1995): Astrophysical applications of powerful new databases: Joint discussion no. 16 of the 22nd General Assembly of the IAU. Astronomical Society of the Pacific, San Francisco. [1, 13]

    Google Scholar 

  • Aden, A. L. (1951): ‘Electromagnetic scattering from spheres with sizes comparable to the wavelength.’ J. Appl. Phys. 22, 601–605. [5]

    Google Scholar 

  • Aden, A. L., Kerker, M. (1951): ‘Scattering of electromagnetic waves from two concentric spheres.’ J. Appl. Phys. 22, 1242–1246. [5]

    Google Scholar 

  • Adey, A. W. (1956): ‘Scattering of electromagnetic waves by coaxial cylinders.’ Can. J. Phys. 34, 510–520. [5]

    Google Scholar 

  • Adler-Golden, S. M., Langhoff, S. R., Bauschlicher Jr., C. W., Carney, G. D. (1985): ‘Theoretical calculation of ozone vibrational infrared intensities.’ J. Chem. Phys. 83, 255–264. [5]

    Google Scholar 

  • Ågren, H., Arneberg, R., Müller, J., Manne, R. (1984): ‘X-ray emission of the nitrogen molecule following photon or electron impact. A theoretical study using configuration-interaction wavefunctions.’ Chem. Phys. 83, 53–67. [5]

    Google Scholar 

  • Ahlrichs, R. (1979): ‘Many body perturbation calculations and coupled electron pair models.’ Comp. Phys. Comm. 17, 31–45. [5]

    Google Scholar 

  • Ahlrichs, R., Scharf, P. (1987): ‘The coupled pair approximation.’ Adv. Chem. Phys. 67, 501–537. [3, 5]

    Google Scholar 

  • Akhiezer, A. I., Berestetskii, V. B. (1965): Quantum Electrodynamics. 2nd ed., (Engl. trans.), Interscience, New York. [3, 5]

    Google Scholar 

  • Albrecht, A. C. (1961): ‘On the theory of Raman intensities.’ J. Chem. Phys. 34, 1476–1484. [5]

    Google Scholar 

  • Alder, K., Bohr, A., Huus, T., Mottelson, B., Winther, A. (1956): ‘Study of nuclear structure by electromagnetic excitation with accelerated ions.’ Rev. Mod. Phys. 28, 432–542. [7]

    Google Scholar 

  • Alexander, D. R. (1975): ‘Low-temperature Rosseland opacity tables.’ Astrphys. J. Suppl. Ser. 29, 363–374. [6]

    Google Scholar 

  • Alexander, D. R., Ferguson, J. W. (1994a): ‘Improvements in the computation of grain opacities.’ In Molecules in the Stellar Environment. Ed. U. G. Jørgensen, Springer-Verlag, Berlin, p. 149–162. [6]

    Google Scholar 

  • Alexander, D. R., Ferguson, J. W. (1994b): ‘Low-temperature Rosseland opacities.’ Astrphys. J. 437, 879–891. [6, 7]

    Google Scholar 

  • Alexander, D. R., Johnson, H. R., Rypma, R. L. (1983): ‘Effect of molecules and grains on Rosseland mean opacities.’ Astrophys. J. 272, 773–780. [6, 7]

    Google Scholar 

  • Alhassid, Y., Gürsey, F., Iachello, F. (1983): ‘Group theory approach to scattering.’ Ann. Phys. (NY) 148, 346–380. [5]

    Google Scholar 

  • Allard, F., Hauschildt, P. H. (1995): ‘Model atmospheres for M (sub)dwarf stars. I. The base model grid.’ Astrophys. J 445, 433–450. [14]

    Google Scholar 

  • Allard, F., Hauschildt, P. H., Alexander, T. R., Tamanai, A., Schweitzer, A. (2001): ‘The limiting affects of dust in brown dwarf atmospheres.’ Astrophys. J. 556, 357–372. [14]

    Google Scholar 

  • Allen, C. W. (1963): Astrophysical Quantities. 2nd ed., The Athlone Press, University of London, and Humanities Press, Inc., New York. [5]

    Google Scholar 

  • Allen, S. J. M. (1935): ‘Mean values of the mass absorption coefficient of the elements.’ In X-Rays in Theory and Experiment, Appendix IX. Eds. A. H. Compton and S. K. Allison; D. van Nostrand Co., Inc., Princeton, NJ, Toronto, New York, London, p. 799. Also in Handbook of Chemistry and Physics. 53rd ed., p. E-123. [5]

    Google Scholar 

  • Allison, A. C., Dalgarno, A. (1971); ‘Continuity at the dissociation threshold in molecular absorption.’ J. Chem. Phys. 55, 4342–4344. [5]

    Google Scholar 

  • Ambarzumian, V. A. (1936): ‘The effect of absorption lines on the radiative equilibrium of the outer layers of stars.’ Publ. Obs. Astronom. Univ. Leningrad 6, 7–18. [7]

    Google Scholar 

  • Amos, R. D. (1987a): ‘Molecular property derivatives.’ Adv. Chem. Phys. 67, 99–153. [3, 5]

    Google Scholar 

  • Amos, R. D. (1987b): ‘Geometries, harmonic frequencies and infrared and Raman intensities for H2O, NH3, and CH4.’ J. Chem. Soc. Faraday Trans. 2, 83, 1595–1607. [5]

    Google Scholar 

  • Amusia, M. Y.(1996a): ‘Many-body theory of atomic structure and processes.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 287–300. [3, 5]

    Google Scholar 

  • Amusia, M. Y.(1996b): ‘Atoms as many-body systems.’ Phys. Rep. 264, 7–26. [5]

    Google Scholar 

  • Amus’ya, M. Ya., Cherepkov, N. A., Chernysheva, L. V. (1971): ‘Cross section for the photoionization of noble-gas atoms with allowance for multielectron correlations.’ Zh. Eksper. Teor. Fiz. 60, 160–174 (Sov. Phys. - JETP 33, 90–96). [5]

    Google Scholar 

  • Anderson, P. W. (1949): ‘Pressure broadening in the microwave and infra-red regions.’ Phys. Rev. 76, 647–661. [7]

    Google Scholar 

  • Andresen, P. (1986a): ‘Classification of pump mechanism for astronomical OH masers and a maser model for the H2O photodissociation pump mechanism.’ Astron. Astrophys. 154, 42–54. [5]

    Google Scholar 

  • Andresen, P. (1986b): ‘Possible pump mechanisms for astronomical OH masers.’ Comments At. Mol. Phys. 18, 1–9. [5]

    Google Scholar 

  • Andresen, P., Schinke, R. (1987): ‘Dissociation of water in the first absorption band: A model system for direct photodissociation.’ In Molecular Photodissociation Dynamics. Eds. M. N. R. Ashfold and J. E. Baggott; Royal Society of Chemistry, Burlington House, Piccadilly, London, p. 61–113. [5]

    Google Scholar 

  • Anicich, V. G. (1993): ‘A survey of bimolecular ion – molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds.’ Astrophys. J. Suppl. Ser. 84, 215–315. [4]

    Google Scholar 

  • Ansbacher, A. (1959): ‘A note on the overlap integral of two harmonic oscillator wave functions.’ Z. Naturforsch. A 14, 889–892. [5]

    Google Scholar 

  • Appell, P., Kampe de Feriet, J. (1926): Fonctions Hypergeometrique et Hyperspherique Polynomes d’Hermite. Gauthier-Villars, Paris. [5]

    Google Scholar 

  • Arking, A., Grossman, K. (1972): ‘Influence of line shape and band structure on temperatures in planetary atmospheres.’ J. Atmos. Sci. 29 937–949. [7]

    Google Scholar 

  • Armstrong, B. H. (1964a): ‘Apparent positions of photoelectric edges and the merging of spectral lines.’ J. Quant. Spectr. Rad. Transfer 4, 207–214. [5, 7]

    Google Scholar 

  • Armstrong, B. H. (1964b): ‘Research on opacity of high-temperature air.’ J. Quant. Spectr. Rad. Transfer 4, 731–736. [1]

    Google Scholar 

  • Armstrong, B. H. (1967): ‘Spectrum line profiles: The Voigt function.’ J. Quant. Spectr. Rad. Transfer 7, 61–88. [5, 7]

    Google Scholar 

  • Armstrong, B. H., Purdum, K. L. (1966): ‘Extended use of the Coulomb approximation: Mean powers of r, a sum rule, and improved transition integrals.’ Phys. Rev. 150, 51–59. [7]

    Google Scholar 

  • Armstrong, B. H., Sokoloff, J., Nicholls, R. W., Holland, D. H., Meyerott, R. E. (1961): ‘Radiative properties of high temperature air.’ J. Quant. Spectr. Rad. Transfer 1, 143–162. [1]

    Google Scholar 

  • Armstrong, B. H., Johnston, R. R., Kelly, P. S. (1965): ‘The atomic line contribution to the radiation absorption coefficient of air.’ J. Quant. Spectr. Rad. Transfer 5, 55–65. [11]

    Google Scholar 

  • Armstrong, B. H., Johnston, R. R., Kelly, P. S., DeWitt, H. E., Brush, S. G. (1967): ‘Opacity of high-temperature air.’ Prog. High Temp. Phys. Chem. 1, 139–242. [1, 4, 5, 7]

    Google Scholar 

  • Asano, S. (1979): ‘Light scattering properties of spheroidal particles.’ Appl. Optics 18, 712–723. [5]

    Google Scholar 

  • Asano, S., Yamamoto, G. (1975): ‘Light scattering by a spheroidal particle.’ Appl. Optics 14, 29–49. [5]

    Google Scholar 

  • Asinovsky, Z. J., Kirillin, Z. V., Kobsev, G. A. (1970): ‘Study of the continuum radiation of nitrogen plasmas.’ J. Quant. Spectr. Rad. Transfer 10, 143–164. [13]

    Google Scholar 

  • Auman Jr., J. (1966): ‘The infrared opacity of hot water vapor.’ Astrophys. J. Suppl. Ser. 14, 171–206. [7]

    Google Scholar 

  • Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969a): ‘Optical properties of heated air – I. Basic procedures of spectral characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 89–111. [1]

    Google Scholar 

  • Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969b): ‘Optical properties of heated air – II. Integrated characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 113–122. [1]

    Google Scholar 

  • Bacher, R. F., Goudsmit, S. (1934): ‘Atomic energy relations. I.’ Phys. Rev. 46, 948–969. [3]

    Google Scholar 

  • Back, C. A., Perry, T. S., Bach, D. R., Wilson, B. G., Iglesias, C. A., Landen, O. L., Davidson, S. J., Crowley, B. J. B. (1997): ‘Opacity measurements: Extending the range and filling in the gaps.’ J. Quant. Spectr. Rad. Transfer 58, 415–425. [13]

    Google Scholar 

  • Bahcall, J. N., Huebner, W. F., Lubow, S. H., Parker, P. D., Ulrich, R. K. (1982): ‘Standard solar models and the uncertainties in predicted capture rates of solar neutrinos.’ Rev. Mod. Phys. 54, 767–799. [13]

    Google Scholar 

  • Balasubramanian, K., Pitzer, K. S. (1987): ‘Relativistic quantum chemistry.’ Adv. Chem. Phys. 67, 287–320. [3]

    Google Scholar 

  • Balescu, R. (1960): ‘Irreversible processes in ionized gases.’ Phys. Fluids 3, 52–63. [9]

    Google Scholar 

  • Balescu, R. (1961): ‘Approach to equilibrium of a quantum plasma.’ Phys. Fluids 4, 94–99. [9]

    Google Scholar 

  • Baranger, M. (1958): ‘Problem of overlapping lines in the theory of pressure broadening.’ Phys. Rev. 111, 494–504. [7]

    Google Scholar 

  • Baranger, M. (1962): ‘Spectral line broadening in plasmas.’ In Atomic and Molecular Processes. Ed. D. R. Bates; Academic Press, New York, London, p. 493–548. [7]

    Google Scholar 

  • Baranov, V. I. (2000): ‘Parametric method in the theory of vibronic spectra of polyatomic molecules: Absorption and fluorescence spectra and structure of styrene in the excited state.’ Optika Spectrosk. 88, 216–223 (Russian); Opics Spectrosc. 88 182–189 (English). [5]

    Google Scholar 

  • Baranov, v. I., Gribov, L. A., Zelent’sov, D. Yu (1996): ‘Refined approach for matrix element calculations in the theory of electronic-vibration spectra of polyatomic molecules.’ J. Mol. Struct. 376, 475–493. [5]

    Google Scholar 

  • Bardsley, J. N. (1968): ‘Configuration interaction in the continuum states of molecules.’ J. Phys. B 1, 349–364. [5]

    Google Scholar 

  • Barfield, W. D. (1977): ‘Theoretical study of equilibrium nitrogen plasma radiation.’ J. Quant. Spectr. Rad. Transfer 17, 471–482. [10]

    Google Scholar 

  • Barfield, W. D., Huebner, W. F. (1976): ‘On the calculation of scattering cross sections from absorption cross sections.’ J. Quant. Spectr. Rad. Transfer 16, 27–34. [5]

    Google Scholar 

  • Barfield, W. D., Koontz, G. D., Huebner, W. F. (1972): ‘Fits to new calculations of photoionization cross sections for low-Z elements.’ J. Quant. Spectr. Rad. Transfer 12, 1409–1433; 13, 87. [5, 6, 12]

    Google Scholar 

  • Barin, I. (1995): Thermochemical Data of Pure Substances. VCH Publishers, New York, N.Y. [4]

    Google Scholar 

  • Baron, E., Hauschildt, P. H. (1998): ‘Parallel implementation of the PHOENIX generalized stellar atmosphere program. II. Wavelength parallelization.’ Astrophys. J. 495, 370–376. [14]

    Google Scholar 

  • Baron, E., Hauschildt, P. H., Nugent, P., Branch, D. (1996): ‘Non-local thermodynamic equilibrium effects in modeling supernovae near maximum light.’ Mon. Not. Roy. Astron. Soc. 283, 297–315. [14]

    Google Scholar 

  • Bar-Shalom, A., Oreg, J., Glodstein, W. H., Shvarts, D., Zigler, A. (1989): ‘Super-transition arrays: A model for the spectral analysis of hot, dense plasma.’ Phys. Rev. A 40, 3183–3193. [7, 13]

    Google Scholar 

  • Bar-Shalom, A., Oreg, J., Glodstein, W. H., (1994): ‘Configuration interaction in LTE spectra of heavy elements.’ J. Quant. Spectr. Rad. Transfer 51, 27–39. [7, 13]

    Google Scholar 

  • Bar-Shalom, A., Oreg, J., Goldstein, W. H., (1995a): ‘Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas.’ Phys. Rev. E 51, 4882–4890. [7]

    Google Scholar 

  • Bar-Shalom, A., Oreg, J., Seely, J. F., Feldman, U., Brown, C. M., Hammel, B. A., Lee, R. W., Back, C. A. (1995b): ‘Interpretation of hot and dense absorption spectra of a near-local-thermodynamic-equilibrium plasma by the super-transition-array method.’ Phys. Rev. E 52, 6686–6691. [7, 13]

    Google Scholar 

  • Bartlett, R. J., Musial, M. (2007): ‘Coupled-cluster theory in quantum chemistry.’ Rev. Mod. Phys. 79, 291–352. [3]

    Google Scholar 

  • Bates, D. R. (1946): ‘An approximate formula for the continuous radiative absorption cross-section of the lighter neutral atoms and positive and negative ions.’ Mon. Not. Roy. Astron. Soc. 106, 423–431. [5]

    Google Scholar 

  • Bates, D. R., Damgaard, A. (1949): ‘The calculation of the absolute strengths of spectral lines.’ Phil. Trans. Roy. Soc. London, Ser. A 242, 101–122. [3, 5, 7]

    Google Scholar 

  • Bauche, J., Bauche-Arnoult, C. (1990): ‘Statistical properties of atomic spectra.’ Comp. Phys. Rep. 12, 1–28. [7]

    Google Scholar 

  • Bauche, J., Bauche-Arnoult, C., Klapisch, M., Mandelbaum, P., Schwob, J.-L. (1987): ‘Quenching of transition arrays through configuration mixing.’ J. Phys. B 20 1443–1450. [7]

    Google Scholar 

  • Bauche-Arnoult, C., Bauche, J. (1992): ‘Statistical approach to the spectra of plasmas.’ Phys. Scripta T40, 58–64. [7]

    Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1978): ‘Mean wavelength and spectral width of transition arrays in x-uv atomic spectra.’ J. Opt. Soc. Am. 68 1136–1139. [7]

    Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1979): ‘Variance of the distributions of energy levels and of the transition arrays in atomic spectra.’ Phys. Rev. A 20 2424–2439. [7]

    Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1982): ‘Variance of the distributions of energy levels and of the transition arrays in atomic spectra. II. Configurations with more than two open shells.’ Phys. Rev. A 25 2641–2646. [7]

    Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1984): ‘Asymmetry of \({l}^{N+1} - {l}^{N}{l}^{{\prime}}\) transition array patterns in ionic spectra.’ Phys. Rev. A 30 3026–3032. [7]

    Google Scholar 

  • Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1985): ‘Variance of the distribution of energy levels and of the transition arrays in atomic spectra. III. Case of spin-orbit-split arrays.’ Phys. Rev. A 31 2248–2259. [7]

    Google Scholar 

  • Bauer, A., Godon, M., Carlier, J., Ma, Q. (1995): ‘Water vapor absorption in the atmospheric window at 239 GHz.’ J. Quant. Spectr. Rad. Transfer 53, 411–423. [7]

    Google Scholar 

  • Bauer, A., Godon, M., Carlier, J., Gamache, R. R. (1996): ‘Absorption of a H2O–CO2 mixture in the atmospheric window at 239 GHz.’ J. Mol. Spectr. 176, 45–57. [7]

    Google Scholar 

  • Bauer, A., Godon, M., Carlier, J., Gamache, R. R. (1998): ‘Continuum in the windows of the water vapor spectrum. Absorption of H2O–Ar at 239 Ghz and linewidth calculations.’ J. Quant. Spectr. Rad. Transfer 59, 273–285. [7]

    Google Scholar 

  • Bauschlicher Jr., C. W., Langhoff, S. R., Taylor, P. R. (1990): ‘Accurate quantum chemical calculations.’ Adv. Chem. Phys. 77, 103–162. [3]

    Google Scholar 

  • Beck, D. R., Nicolaides, C. A. (1978): ‘Theory of electronic structure of excited states in small systems with numerical applications to atomic states.’ In Excited States in Quantum Chemistry: Theoretical and Experimental Aspects of the Electronic Structure and Properties of the Excited States in Atoms, Molecules and Solids. Eds. C. A. Nicolaides and D. R. Beck; D. Reidel Publ. Co., Dordrecht, Boston, London, p. 105–142. [5]

    Google Scholar 

  • Beck, D. R., Nicolaides, C. A. (1982): ‘Specific correlation effects in inner-electron photoelectron spectroscopy.’ Phys. Rev. A 26, 857–862. [5]

    Google Scholar 

  • Becke, A. D. (1992): ‘Density-functional thermochemistry. I. The effect of the exchange-only gradient correction.’ J. Chem. Phys. 96, 2155–2160. [3]

    Google Scholar 

  • Becke, A. D. (1993): ‘Density-functional thermochemistry. III. The role of exact exchange.’ J. Chem. Phys. 98, 5648–5652. [3]

    Google Scholar 

  • Behrens, H., Ebel, G., Lück, W., Luksch, P., Müller, H.-W. (1985): ‘Data compilations in physics.’ Physics Data 3–5. [6]

    Google Scholar 

  • Behringer, J. (1958): ‘Zur Theorie des Resonanz-Raman-Effektes.’ Z. Elektrochem. 62, 906–914. [5]

    Google Scholar 

  • Bely, O. (1966): ‘Quantum defect theory. III. Electron scattering by He+.’ Proc. Phys. Soc. (London) 88, 833–842. [3]

    Google Scholar 

  • Bely, O., Griem, H. R. (1970): ‘Quantum-mechanical calculation for the electron-impact broadening of the resonance lines of singly ionized magnesium.’ Phys. Rev. A 1, 97–105. [7]

    Google Scholar 

  • Benedict, W. S., Kaplan, L. D. (1959): ‘Calculation of line widths in H2O - N2 collisions.’ J. Chem. Phys. 30, 388–399. [7]

    Google Scholar 

  • Benedict, W. S., Kaplan, L. D. (1964): ‘Calculation of the line widths in H2O – H2O and H2O – O2 collisions.’ J. Quant. Spectr. Rad. Transfer 4, 453–469. [7]

    Google Scholar 

  • Benedict, W. S., Gailar, N., Plyler, E. K. (1956): ‘Rotation–vibration spectra of deuterated water vapor.’ J. Chem. Phys. 24, 1139–1165. [5]

    Google Scholar 

  • Benedict, W. S., Herman, R., Moore, G. E., Silverman, S. (1957): ‘Infrared line and band strengths and dipole moment functions in HCl and DCl.’ J. Chem. Phys. 26, 1671–1677. [7]

    Google Scholar 

  • Ben-Reuven, A. (1966): ‘Impact broadening of microwave spectra.’ Phys. Rev. 145, 7–22. [7]

    Google Scholar 

  • Berestetskii, V. B., Lifshitz, E. M., Pitaevskii, L. P. (1971): Relativistic Quantum Theory. Pergamon Press, Oxford, New York. [5]

    Google Scholar 

  • Berger, R., Klessinger, M. (1997): ‘Algorithm for exact counting of energy levels of spectroscopic transitions at different temperatures.’ J. Comp. Chem. 18, 1312–1319. [7]

    Google Scholar 

  • Berger, R., Fischer, C., Klessinger, M. (1998): ‘Calculation of the vibronic fine structure in electronic spectra at high temperatures. I. Benzene and pyrazine.’ J. Phys. Chem. A 102, 7157–7167. [5, 7, 13]

    Google Scholar 

  • Bernstein, J., Dyson, F. J. (1959): ‘The continuous opacity and equations of state of light elements at low densities.’ General Atomic report GA-848. [11]

    Google Scholar 

  • Berrington, K. (1997a): The Opacity Project, Volume 2. Inst. of Physics Publishing, Bristol, Philadelphia. [1, 3, 4]

    Google Scholar 

  • Berrington, K. A. (1997b): ‘The opacity and iron projects - an overview.’ In Photon and Electron Collisions with Atoms and Molecules. Eds. P. G. Burke and C. J. Joachain. Plenum Press; New York, London, p. 297–312. [1, 7]

    Google Scholar 

  • Berrington, K. A., Eissner, W., Saraph, H. E., Seaton, M. J., Storey, P. J. (1987a): ‘A comparison of close-coupling calculations using UCL and QUB codes.’ Comp. Phys. Comm. 44, 105–119. [3]

    Google Scholar 

  • Berrington, K. A., Burke, P. G., Butler, K., Seaton, M. J., Storey, P. J., Taylor, K. T., Yan, Y. (1987b): ‘Atomic data for opacity calculations: II. Computational methods.’ J. Phys. B 20, 6379–6397. [3]

    Google Scholar 

  • Bethe, H. A. (1964): Intermediate Quantum Mechanics. W. A. Benjamin, Inc., New York, Amsterdam. [3]

    Google Scholar 

  • Bethe, H. A., Salpeter, E. E. (1957): Quantum Mechanics of One- and Two-Electron Atoms. Springer-Verlag, Berlin, Göttingen, Heidelberg. [3, 5, 7, 12]

    Google Scholar 

  • Biberman, L. M., Norman, G. E. (1967): ‘Continuous spectra of atomic gases and plasma.’ Soviet Phys. Usp. (Engl. trans.) 10, 52–90. [1, 5]

    Google Scholar 

  • Biedenharn, L. C., Blatt, J. M., Rose, M. E. (1952): ‘Some properties of the Racah and associated coefficients.’ Rev. Mod. Phys. 24, 249–257. [6]

    Google Scholar 

  • Biedenharn, L. C., Louck, J. D., Carruthers, P. A. (1981): Angular Momentum in Quantum Physics. Theory and Application. Encyclopedia of Mathematics and its Applications. 8, Addison-Wesley Publishing Co., Reading, MA, London, Amsterdam, Don Mills, Ontario, Sydney, Tokyo. [6]

    Google Scholar 

  • Bielińska-Waż, D., Karwowski, J. (1998): ‘Statistical theory of vibronic spectra: The intensity distributions.’ J. Quant. Spectr. Rad. Transfer 59, 39–51. [7]

    Google Scholar 

  • Biermann, L. (1933): ‘Stellar Atmospheres.’ Göttinger Nachrichten, Math. Phys. Klasse 3, 297–315 and 350–358. [2]

    Google Scholar 

  • Biggs, F., Lighthill, R. (1972): ‘Analytical Approximations for Photon-Atom Differential Scattering Cross Sections Including Electron Binding Effects.’ Sandia Laboratory report SC-RR-72 0659. [5]

    Google Scholar 

  • Billingsley II, F. P., Krauss, M. (1974): ‘MCSCF calculation of the dipole moment function of CO X\({{}^{1}\varSigma }^{+}\).’ J. Chem. Phys. 60, 4309–4316. [5]

    Google Scholar 

  • Birnbaum, G. (1994): ‘A memory function approach to the shape of pressure broadened molecular bands.’ Mol. Phys. 81, 519–532. [7]

    Google Scholar 

  • Birnbaum, G., Cohen, E. R. (1976a): ‘Theory of line shape in pressure-induced absorption.’ Can. J. Phys. 54, 593–602. [8, 13]

    Google Scholar 

  • Birnbaum, G., Cohen, E. R. (1976b): ‘Determination of molecular multipole moments and potential function parameters of non-polar molecules from far infra-red spectra.’ Mol. Phys. 32, 161–167. [8]

    Google Scholar 

  • Birnbaum, G., Cohen, E. R. (1976c): ‘Theory of line shape in pressure-induced absorption.’ Icarus 54, 593–602. [8]

    Google Scholar 

  • Birnbaum, G., Borysow, A. (1991): ‘On the problem of detailed balance and model line shapes in collision-induced rotovibrational bands: H2-H2 and H2-He.’ Mol. Phys. 73, 57–68. [8]

    Google Scholar 

  • Birnbaum, G., Guillot, B., Bratos, S. (1982): ‘Theory of collision-induced line shapes – absorption and light scattering at low density.’ Adv. Chem. Phys. 51, 49–112. [8]

    Google Scholar 

  • Birnbaum, G., Chu, S.-I., Dalgarno, A., Frommhold, L., Wright, E. L. (1984): ‘Theory of collision-induced translation-rotation spectra: H2 – He.’ Phys. Rev. A 29, 595–604. [8]

    Google Scholar 

  • Bishop, D. M. (1973): Group Theory and Chemistry. Clarendon Press, Oxford. [3, 5]

    Google Scholar 

  • Bjorken, J. D., Drell, S. D. (1965): Relativistic Quantum Fields. McGraw-Hill Book Co., Inc., New York. [5]

    Google Scholar 

  • Blanco, M. A., Flórez, M., Bermejos, M. (1997): ‘Evaluation of the rotation matrices in the basis of real spherical harmonics.’ J. Mol. Struct. (Theochem) 419, 19–27. [5]

    Google Scholar 

  • Blenski, T., Grimaldi, A., Perrot, F. (1997): ‘Hartree–Fock statistical approach to atoms and photoabsorption in plasmas.’ Phys. Rev. E 55, R4889-R4892. [13]

    Google Scholar 

  • Blenski, T., Grimaldi, A., Perrot, F. (2000): ‘A superconfiguration code based on the local density approximation.’ J. Quant. Spectr. Rad. Transfer 65, 91–100. [13]

    Google Scholar 

  • Bode, G. (1965): ‘Die kontinuierliche Absorption von Sternatmosphären in Abhängigkeit von Druck, Temperatur und Elementhäufigkeiten.’ Institut für Theoretische Physik und Sternwarte der Universität Kiel report. [1]

    Google Scholar 

  • Boercker, D. B. (1987): ‘Collective effects on Thomson scattering in the solar interior.’ Astrophys. J. Lett. 316, L95–L98. [6]

    Google Scholar 

  • Bogatyrev, K. N. Makarov, V. P. (1994): ‘On the vibrational spectrum of a linear molecule.’ Bull. Lebedev Phys. Inst. Nr. 10, p. 18–22. [5]

    Google Scholar 

  • Bogatyrev, K. N. Makarov, V. P. (1996): ‘Vibration–rotation Hamiltonian of a linear molecule.’ Kratkie Soobshcheniya po Fizike, No. 9–10, p. 31–36. Bull. Lebedev Phys. Inst. Nr. 9, p. 26–31. [5]

    Google Scholar 

  • Bogatyrev, K. N. Makarov, V. P. (1997a): ‘On the theory of the vibration–rotation spectra of linear molecules. I. The molecular Hamiltonian and the “Dirac Rules”.’ Optika Spectrosk. 83, 733–735. [5]

    Google Scholar 

  • Bogatyrev, K. N. Makarov, V. P. (1997b): ‘On the theory of the vibration–rotation spectra of linear molecules. II. The molecular Hamiltonian.’ Optika Spectrosk. 83, 916–920. [5]

    Google Scholar 

  • Bohm, D. (1951): Quantum Theory. Prentice-Hall, Inc., New York. [7]

    Google Scholar 

  • Bohren, C. F., Huffman, D. R. (1983): Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore. [5]

    Google Scholar 

  • Boissoles, J., Menous, V., Le Doucen, R., Boulet, C., Robert, D. (1989): ‘Collisionally induced population transfer effect infrared absorption spectra. II. Theory of the Ar-broadened ν 3 band of CO2.’ J. Chem. Phys. 91, 2163–2171. [7]

    Google Scholar 

  • Boissoles, J., Boulet, C., Hartmann, J. M., Perrin, M. Y., Robert, D. (1990): ‘Collision-induced population transfer in infrared absorption spectra. III. Temperature dependence of absorption in the Ar-broadened wing of CO2 ν 3 band. J. Chem. Phys. 93, 2217–2221. [7]

    Google Scholar 

  • Bollé, D. (1981): ‘Application of few-body methods to statistical mechanics.’ Nucl. Phys. A 353, 377c–389c. [4]

    Google Scholar 

  • Bond Jr., J. W., Watson, K. M., Welch Jr., J. A. (1965): Atomic Theory of Gas Dynamics. Addison-Wesley, Reading, MA. [7]

    Google Scholar 

  • Bonham, R. A., Lively, M. L. (1984): ‘Photon- and electron-impact ionization and ejected-electron angular distributions from molecules including retardation effects: Nonrelativistic theory.’ Phys. Rev. A 29, 1224–1235. [5]

    Google Scholar 

  • Boon, M. H., Seligman, T. H. (1973): ‘Canonical transformations applied to the free Landau electron.’ J. Math. Phys. 14, 1224–1227. [5]

    Google Scholar 

  • Borrelli, R., Peluso, A. (2006): ‘The vibrational progressions of the N–¿V electronic transition of ethylene: A test case for the computation of Franck-Condon factors of highly flexible photoexcited molecules.’ J. Chem. Phys. 125, 194308–194308-8. [5]

    Google Scholar 

  • Borghese, F., Denti, P., Toscano, G., Sindoni, O. I. (1979): ‘Electromagnetic scattering by a cluster of spheres.’ Appl. Optics 18, 116–120. [5]

    Google Scholar 

  • Borysow, A. (1991): ‘Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K.’ Icarus 92, 273–279. [8]

    Google Scholar 

  • Borysow, J., Frommhold, L. (1985): ‘The infrared and Raman line shapes of pairs of interacting molecules.’ In Phenomena Induced by Intermolecular Interactions. Ed. G. Birnbaum; Plenum Press, New York, London, p. 67–94. [8]

    Google Scholar 

  • Borysow, A., Frommhold, L. (1990): ‘A new computation of the infrared absorption by H2 pairs in the fundamental band at temperatures from 600 to 5000 K.’ Astrophys. J. 348, L41–L43. [8]

    Google Scholar 

  • Borysow, A., Frommhold, L., Moraldi, M. (1989): ‘Collision-induced infrared spectra of H2-He pairs involving 0 ¡–¿ 1 vibrational transitions and temperatures from 18 to 7000 K.’ Astrophys. J. 336, 495–503. [8]

    Google Scholar 

  • Bosomworth, D. R., Gush, H. P. (1965): ‘Collision-induced absorption of compressed gases in the far infrared. II.’ Can. J. Phys. 43, 751–769. [13]

    Google Scholar 

  • Botschwina, P. (1984): ‘An ab initio calculation of the frequencies and IR intensities of the stretching vibrations of HN\(_{2}^{+}\).’ Chem. Phys. Lett. 107, 535–541. [5]

    Google Scholar 

  • Botschwina, P., Rosmus, P., Reinsch, E.-A. (1983): ‘Spectroscopic properties of the hydroxonium ion.’ Chem. Phys. Lett. 102, 299–306. [3]

    Google Scholar 

  • Botschwina, P., Schutz, B., Horn, M., Matuschewski, M. (1995): ‘Ab initio calculations of stretching vibrational transitions for the linear molecules HCN, HNC, HCCF, and HC3N up to high overtones.’ Chem. Phys. 190, 345–362. [5]

    Google Scholar 

  • Boulet, C., Boissoles, J., Robert, D. (1988): ‘Collisionally induced population transfer effect in infrared absorption spectra. I. A line-by-line coupling theory from resonances to the far wings.’ J. Chem. Phys. 89, 625–634. [7]

    Google Scholar 

  • Boyle, J. J., Kutzner, M. D. (1998): ‘Many-body effects in single photoionization processes.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 93–124. [5]

    Google Scholar 

  • Boynton, F. P., Ludwig, C. B. (1971): ‘Total emissivity of hot water vapor: II – Semi-empirical charts deduced from long-path spectral data.’ Int. J. Heat Mass Transfer 14, 963–973. [13]

    Google Scholar 

  • Brandt, W., Lundqvist, S. (1963a): ‘Possible new atomic resonances.’ Phys. Lett. 4, 47–48. [5]

    Google Scholar 

  • Brandt, W., Lundqvist, S. (1963b): ‘Atomic response function.’ Phys. Rev. 132, 2135–2143. [5]

    Google Scholar 

  • Brandt, W., Lundqvist, S. (1965a): ‘Many-electron effects in the dipolar spectra of closed shell atoms.’ Arkiv Fysik 28, 399–414. [5]

    Google Scholar 

  • Brandt, W., Lundqvist, S. (1965b): ‘Atomic oscillations in the statistical approximation.’ Phys. Rev. 139, A612–A617. [5]

    Google Scholar 

  • Brandt, W., Lundqvist, S. (1967): ‘Collective effects in the photoabsorption cross sections of atoms and molecules.’ J. Quant. Spectr. Rad. Transfer 7, 411–421. [5]

    Google Scholar 

  • Braunstein, M., McKoy, V. (1989): ‘Vibrational branching ratios and shape resonant photoionization dynamics in N2O.’ J. Chem. Phys. 90, 1535–1543. [5]

    Google Scholar 

  • Breene, R. G. (1958): ‘Infrared emissivity of NO in high-temperature air.’ J. Chem. Phys. 29, 512–516. [7]

    Google Scholar 

  • Breene Jr., R. G. (1961): The Shift and Shape of Spectral Lines. Pergamon Press, New York, Oxford, London, Paris. [7]

    Google Scholar 

  • Breene Jr., R. G. (1981): Theories of Spectral Line Shapes. Wiley, New York. [7]

    Google Scholar 

  • Breene Jr., R. G., Todd Jr., M. N. (1958): ‘Vibrational matrix elements of NO.’ J. Chem. Phys. 28, 11–15. [7]

    Google Scholar 

  • Breit, G. (1926): ‘An application of Pauli’s method of coordination to atoms having four magnetic parts.’ Phys. Rev. 28, 334–340. [7]

    Google Scholar 

  • Breit, G. (1933): ‘Quantum theory of dispersion (continued). Parts VI and VII.’ Rev. Mod. Phys. 5, 91–140. [7]

    Google Scholar 

  • Brink, D. M., Satchler, G. R. (1962): Angular Momentum. Clarendon Press, Oxford. [5]

    Google Scholar 

  • Brion, C. E., Tan, K. H. (1978): ‘Partial oscillator strengths for the photoionization of N2O and CO2 (20–60 eV).’ Chem. Phys.1978 34, 141–151. [5]

    Google Scholar 

  • Brion, C. E., Tan, K. H. (1981): ‘Photoelectron branching ratios and partial oscillator strengths for the photoionization of NO (20–60 eV).’ J. Electron Spectr. Related Phenom. 23, 1–11. [5]

    Google Scholar 

  • Brion, C. E., Thomson, J. P. (1984): ‘Compilation of dipole oscillator strengths (cross sections) for the photoabsorption, photoionization and ionic fragmentation of molecules.’ J. Electron Spectr. Related Phenom. 33, 301–331. [5]

    Google Scholar 

  • Brown, R. T. (1972): ‘Incoherent-scattering function for atomic carbon.’ Phys. Rev. A 5, 2141–2144. [5]

    Google Scholar 

  • Bruna, P. J., Peyerimhoff, S. D. (1987): ‘Excited state potentials.’ Adv. Chem. Phys. 67, 1–97. [3]

    Google Scholar 

  • Bruneau, J., Decoster, A., Desenne, D., Dumont, H., LeBreton, J.-P., Boivineau, M., Perrine, J.-P., Bayle, S., Louis-Jaquet, M., Geindre, J.-P., Chenais-Popovics, C., Gauthier, J.-C. (1991): ‘Time-resolved study of hot dense germanium by L-shell absorption spectroscopy.’ Phys. Rev. A 44, R832–R835. [13]

    Google Scholar 

  • Bruning, J. H., Lo, Y. T. (1971a): ‘Multiple scattering of EM waves by spheres. Part I. Multipole expansion and ray-optical solutions’ IEEE Trans. Antennas Prop. AP-19, 378–390. [5]

    Google Scholar 

  • Bruning, J. H., Lo, Y. T. (1971b): ‘Multiple scattering of EM waves by spheres. Part II. Umerical and experimental results.’ IEEE Trans. Antennas Prop. AP-19, 391–400. [5]

    Google Scholar 

  • Brush, S. G., Sahlin, H. L., Teller, E. (1966): ‘Monte Carlo study of a one-component plasma. I.’ J. Chem. Phys. 45, 2102–2118. [6, 9]

    Google Scholar 

  • Brussaard, P. J., van de Hulst, H. C. (1962): ‘Approximation formulas for nonrelativistic bremsstrahlung and average Gaunt factors for a Maxwellian electron gas.’ Rev. Mod. Phys. 34, 507–520. [6]

    Google Scholar 

  • Brysk, H., Zerby, C. D. (1967): ‘Low energy photoelectric cross section calculations.’ Union Carbide Corp. Defense and Space Systems Dept. report UCC/DSSD-299, DASA-2023. [3, 5]

    Google Scholar 

  • Brysk, H., Zerby, C. D. (1968): ‘Photoelectric cross sections in the keV range.’ Phys. Rev. 171, 292–298. [5]

    Google Scholar 

  • Brysk, H., Zerby, C. D., Penny, S. K. (1969): ‘Bremsstrahlung cross sections at moderate energies.’ Phys. Rev. 180, 104–111. [5]

    Google Scholar 

  • Brysk, H., Campbell, P. M., Hammerling, P. (1975): ‘Thermal conduction in laser fusion.’ Plasma Phys. 17, 473–484. [9]

    Google Scholar 

  • Buchler, J. R., Yueh, W. R. (1975): ‘Compton scattering opacity.’ Phys. Lett. B 58, 463–466. [6]

    Google Scholar 

  • Buchler, J. R., Yueh, W. R. (1976): ‘Compton scattering opacities in a partially degenerate electron plasma at high temperatures.’ Astrophys. J. 210, 440–446. [6]

    Google Scholar 

  • Buckingham, A. D., Orr, B. J., Sichel, J. M. (1970): ‘Angular distribution and intensity in molecular photoelectron spectroscopy. I. General theory for diatomic molecules.’ Phil. Trans. Roy. Soc. London, Ser. A 268, 147–157. [5]

    Google Scholar 

  • Buenker, R. J. (1982): ‘Implementation of the table CI method: Configurations differing by two in the number of open shells.’ Stud. Phys. Theor. Chem. 21, 17–34. [5]

    Google Scholar 

  • Buenker, R. J., Peyerimhoff, S. D. (1974a): ‘Calculations on the electronic spectrum of water.’ Chem. Phys. Lett. 29, 253–259. [5]

    Google Scholar 

  • Buenker, R. J., Peyerimhoff, S. D. (1974b): ‘Individualized configuration selection in CI calculations with subsequent energy extrapolation.’ Theor. Chim. Acta 35, 33–58. [5]

    Google Scholar 

  • Buenker, R. J., Peyerimhoff, S. D. (1975): ‘Energy extrapolation in CI calculations.’ Theor. Chim. Acta 39, 217–228. [5]

    Google Scholar 

  • Buenker, R. J., Peyerimhoff, S. D. (1983): ‘Ab initio calculations close to the full CI level of accuracy and their use for the interpretation of molecular spectra.’ In New Horizons of Quantum Chemistry. Eds. P.-O. Löwdin and B. Pullman; D. Reidel Publ. Co., Boston, London, p. 183–219. [5]

    Google Scholar 

  • Buenker, R. J., Peyerimhoff, S. D., Butscher, W. (1978): ‘Applicability of the multi-reference double-excitation CI (MRD-CI) method to the calculation of electronic wave functions and comparison with related techniques.’ Mol. Phys. 35, 771–791. [5]

    Google Scholar 

  • Buenker, R. J., Peyerimhoff, S. D., Perić, M. (1979): ‘Calculation of vibrational wavefunctions and energies using MRD-CI techniques.’ In Excited States in Quantum Chemistry: Theoretical and Experimental Aspects of the Electronic Structure and Properties of the Excited States in Atoms, Molecules and Solids. Eds. C. A. Nicolaides and D. R. Beck; D. Reidel Publ. Co., Dordrecht, Boston, London, p. 63–77. [5]

    Google Scholar 

  • Bunker, P. R. (1979): ‘Symmetry in (H2)2, (D2)2,.(HD)2 and H2-D2 van der Waals complexes.’ Can. J. Phys. 57, 2099–2105. [7]

    Google Scholar 

  • Bunker, P. R. (1985): ‘Theoretical predictions of the infrared and microwave spectra of small molecules.’ In Molecular Astrophysics: State of the Art and Future Directions. Eds. G. H. F. Diercksen, W. F. Huebner, and P. W. Langhoff; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, p. 491–496. [3]

    Google Scholar 

  • Bunker, P. R., Jensen, P. (1983): ‘A refined potential surface for the \(\tilde{\mathrm{{X}}}^{3}\mathrm{B}_{1}\) state of methylene CH2.’ J. Chem. Phys. 79, 1224–1228. [3]

    Google Scholar 

  • Bunker, P. R., Langhoff, S. R. (1983): ‘Ab initio rotation–vibration transition moments for CH2 in the X3​B1 and \(\tilde{\mathrm{{a}}}^{1}\!\) A1 electronic states.’ J. Mol. Spectr. 102, 204–211. [3]

    Google Scholar 

  • Bunker, P. R., Kraemer, W. P., Spirko, V. (1983a): ‘Ab initio rotation-vibration energies of H3O+.’ J. Mol. Spectr. 101, 180–185. [3]

    Google Scholar 

  • Bunker, P. R., Sears, T. J., McKellar, A. R. W. (1983b): ‘The rotational spectrum of the CD2 radical.’ J. Chem. Phys. 79, 1211–1219. [3]

    Google Scholar 

  • Burch, D. E. (1981): ‘Continuum absorption by H2O.’ Air Force Geophysical Laboratory report AFGL-TR-81-0300. [7]

    Google Scholar 

  • Burch, D. E. (1985): ‘Absorption by H2O in narrow windows between 3000 and 4200 cm−1.’ Air Force Geophys. Lab. report AFGL-TR-850036. [7]

    Google Scholar 

  • Burch, D. E., Alt, R. L. (1984): ‘Continuum absorption by H2O in 700–1200 cm−1 and 2400–2800 cm−1 Windows.’ Air Force Geophys. Lab. report AFGL-TR-840128 (ADA 1473917 XSP). [7]

    Google Scholar 

  • Burch, D. E., Singleton, E. B., Williams, D. (1962): ‘Absorption line broadening in the infrared.’ Appl. Optics 1, 359–363. [7]

    Google Scholar 

  • Burden, F. R., Wilson R. M. (1972): ‘Optimum atomic orbitals for molecular calculations. A review.’ Adv. Phys. 21, 825–915. [3]

    Google Scholar 

  • Burger, H. C., Dorgelo, H. B. (1924): ‘Beziehung zwischen inneren Quantenzahlen und Intensitäten von Mehrfachlinien’. Z. Phys. 23, 258–266. [5]

    Google Scholar 

  • Burgess, A., Seaton, M. J. (1960): ‘A general formula for the calculation of atomic photoionization cross sections.’ Mon. Not. Roy. Astron. Soc. 120, 121–151. [5]

    Google Scholar 

  • Burke, P. G. (1965): ‘Resonances in electron scattering and photon absorption.’ Adv. Phys. 14, 521–567. [5]

    Google Scholar 

  • Burke, P. G., Seaton, M. J. (1971): ‘Numerical solutions of the integro-differential equations of electron – collision theory’. Meth. Comp. Phys. 10, 1–80. [3]

    Google Scholar 

  • Burke, P. G., Eissner, W. (1983): ‘Low-energy electron collisions with complex atoms and ions.’ In Atoms in Astrophysics. Eds. P. G. Burke, W. Eissner, D. G. Hummer, I. C. Percival; Plenum Press, New York, London, p. 1–54. [3]

    Google Scholar 

  • Burke, P. G., Hibbert, A., Robb, W. D. (1971): ‘Electron scattering by complex atoms.’ J. Phys. B 4, 153–161. [3]

    Google Scholar 

  • Cade, P. E., Huo, W. (1973): ‘Hartree–Fock–Roothaan wavefunctions for diatomic molecules: I. First- and second-row hydrides AH, AH±, AH.’ Atomic Data Nucl. Data Tables 12, 415–466. [3]

    Google Scholar 

  • Cade, P. E., Huo, W. M. (1975): ‘Hartree–Fock–Roothaan wavefunctions for diatomic molecules: III. First-row heteronuclear systems, AB, AB±, AB.’ Atomic Data Nucl. Data Tables 15, 1–39. [3]

    Google Scholar 

  • Cade, P. E., Wahl, A. C. (1974): ‘Hartree–Fock–Roothaan wavefunctions for diatomic molecules: II. First-row homonuclear systems A2, A\(_{2}^{\pm }\), A\(_{2}^{{\ast}}\).’ Atomic Data Nucl. Data Tables 13, 339–389. [3]

    Google Scholar 

  • Cade, P. E., Sales, K. D., Wahl, A. C. (1966): ‘Electronic structure of diatomic molecules. III. A. Hartree–Fock wavefunctions and energy quantities for N2 (X\({}^{1}\!\varSigma _{\mathrm{g}}^{+}\)) and N\(_{2}^{+}\)(X\({}^{2}\!\varSigma _{\mathrm{g}}^{+}\), A\({}^{2}\!\varPi _{\mathrm{u}}\), B\({}^{2}\!\varSigma _{\mathrm{u}}^{+}\)) molecular ions.’ J. Chem. Phys. 44, 1973–2003. [3]

    Google Scholar 

  • Caldwell, C. D., Krause, M. O. (1996): ‘Photon-atom interactions: Low energy.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 690–700. [5]

    Google Scholar 

  • Callomon, J. H., Dunn, T. M., Mills, I. M. (1966): ‘Rotational analysis of the 2600 angstrom absorption system of benzene.’ Phil. Trans. Roy. Soc. London, Ser. A 259, 499–532. [13]

    Google Scholar 

  • Cambi, R., von Niessen, W. (1983): ‘On the photoelectron spectra of HCP and FCP: A Green’s function study.’ Chem. Phys. Lett. 101, 412–418. [5]

    Google Scholar 

  • Cameron, A. G. W., Pine, M. R. (1973): ‘Numerical models of the primitive solar nebula.’ Icarus 18, 377–406. [6]

    Google Scholar 

  • Camy-Peyret, C., Flaud, J.-M. (1985): ‘Vibration-rotation dipole moment operator for asymmetric rotors.’ In Molecular Spectroscopy: Modern Research. Ed. K. N. Rao; Academic Press, London, Vol. 3, p. 70–110. [5]

    Google Scholar 

  • Canuto, V. (1970): ‘Electrical conductivity and conductive opacity of a relativistic electron gas.’ Astrophys. J. 159, 641–652. [9]

    Google Scholar 

  • Capitelli, M., Colonna, G., Gorse, C., Giordano, D. (1994): ‘Survey of methods of calculating high-temperature thermodynamic properties of air species.’ European Space Agency report ESA STR-236. [4]

    Google Scholar 

  • Carbon, D. F. (1974): ‘A comparison of the straight-mean, harmonic-mean, and multiple-picket approximations of the line opacities in cool model atmospheres.’ Astrophys. J. 187, 135–145. [2]

    Google Scholar 

  • Carbon, D. F. (1984): ‘Line blanketing.’ In Methods of Radiative Transfer. Ed. W. K. Kalkofen; Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, p. 395–426. [7]

    Google Scholar 

  • Carbon, D. F., Gingerich, O. (1969): ‘The grid of model stellar atmospheres from 4000o to 10,000o.’ In Theory and Observation of Normal Stellar Atmospheres. Ed. O. Gingerich; The MIT Press, Cambridge, p. 377–400. [7]

    Google Scholar 

  • Carlon, H. (1979): ‘Do clusters contribute to the IR absorption spectrum of water vapor?’ Infrared Phys. 19, 549–558. [7]

    Google Scholar 

  • Carlson, T. A., Durić, N., Erman, P., Larsson, M. (1979): ‘Collisional transfer to the B state in N2.’ Phys. Scripta 19, 25–28. [5]

    Google Scholar 

  • Carlson, T. A., Keller, P. R., Taylor, J. W., Whitley, T., Grimm, F. A. (1983): ‘Angle-resolved photoelectron spectroscopy of N2O measured as a function of photon energy from 14 to 70 eV.’ J. Chem. Phys. 79, 97–106. [5]

    Google Scholar 

  • Carney, G. D., Porter, R. N. (1976): ‘H3 +: Ab initio calculation of the vibration spectrum.’ J. Chem. Phys. 65, 3547–3565. [3]

    Google Scholar 

  • Carson, T. R. (1971): ‘Stellar opacities.’ In Progress in High Temperature Physics and Chemistry, Vol. 4. Ed. C. A. Rouse; Pergamon Press, Oxford, New York. [1, 9]

    Google Scholar 

  • Carson, T. R. (1972): ‘Stellar opacity.’ In Stellar Evolution. Eds. H.-Y. Chiu, A. Muriel; MIT Press, Cambridge, MA, London, England. [1]

    Google Scholar 

  • Carson, T. R. (1976): ‘Stellar opacities.’ Ann. Rev. Astron. Astrophys. 14, 95–117. [1]

    Google Scholar 

  • Carson, T. R., Hollingsworth, H. M. (1968): ‘A critique of the hydrogenic approximation in the calculation of stellar opacity.’ Mon. Not. Roy. Astron. Soc. 141, 77–108. [1, 4]

    Google Scholar 

  • Carson, T. R., Mayers, D. F., Stibbs, D. W. N. (1968): ‘The calculation of stellar radiative opacity.’ Mon. Not. Roy. Astron. Soc. 140, 483–536. [1, 4, 5, 12, 13]

    Google Scholar 

  • Cartwright, D. C., Dunning, T. H. (1975): ‘New electronic states of molecular nitrogen (+).’ J. Phys. B 8, L100–L104. [3]

    Google Scholar 

  • Carvajal, M., Arias, J. M., Gómez-Camacho, J. (1999): ‘Analytic evaluation of Franck–Condon integrals for anharmonic vibrational wave functions.’ Phys. Rev. A 59, 3462–3470. [5, 13]

    Google Scholar 

  • Case, D. A. (1982): ‘Electronic structure calculations using the Xα method.’ Ann. Rev. Phys. Chem. 33, 151–171. [3]

    Google Scholar 

  • Cassisi, S., Potekhin, A. Y., Pietriferni, A., Catelan, M., Salaris, M. (2007): ‘Updated electron-conduction opacities: The impact on low-mass stellar models.’ Astrophys. J. 661, 1094–1104. [9]

    Google Scholar 

  • Castor, J. I. (1972): ‘Radiative transfer in spherically symmetric flows.’ Astrophys. J. 178, 779–792. [2]

    Google Scholar 

  • Challacombe, M., Schwegler, E., Almlöf, J. (1996): ‘Developments in Hartee-fock Theory: Fast methods for computing the Coulomb matrix.’ In Computational Chemistry: Reviews of Current Trends. Ed., J. Leszczynski, World Scientific, Singapore, New Jersey, London, Hong Kong, Bangalore, Taipei., p. 53–108. [3]

    Google Scholar 

  • Chandrasekhar, S. (1943): ‘Stochastic problems in physics and astronomy.’ Rev. Mod. Phys. 15, 1–89. [7]

    Google Scholar 

  • Chandrasekhar, S. (1960): Radiative Transfer. Dover Publications, New York. [2, 5]

    Google Scholar 

  • Chang, E. S. (1985): ‘Radiative lifetime of hydrogenic and quasihydrogenic atoms.’ Phys. Rev. A 31, 495–498. [5]

    Google Scholar 

  • Chang, T.-N. (1998): ‘Photoionization dominated by double excitation in two-electron and divalent atoms.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 125–149. [5]

    Google Scholar 

  • Chase Jr., M. W., Davies, C. A., Downey Jr., J. R., Frurip, D. J., McDonald, R. A., Syverud, A. N. (1985): ‘JANAF thermodynamical tables,’ 3rd ed. J. Phys. Chem. Ref. Data 14, Suppl. 1. [4]

    Google Scholar 

  • Chase Jr., M. W. (Ed.) (1998): ‘NIST-JANAF Thermodynamic Tables, Fourth Edition. J. Phys. Chem. Ref. Data Monograph No. 9, Am. Chem. Soc., Washington, DC. [4]

    Google Scholar 

  • Chau, F.-T., Dyke, J. M., Lee, E. P. F., Wang, D. (1998): ‘Franck–Condon analysis of photoelectron and electronic spectra of small molecules.’ J. Electron. Spectr. Rel. Phen. 97, 33–47. [5, 7, 13]

    Google Scholar 

  • Chau, F.-T., Dyke, J. M., Lee, E. P. F., Mok, D. K.-W. (2003): ‘Potential energy functions of the \({\tilde{X}}^{2}B_{1}\), \({\tilde{A}}^{2}B_{2}\), \({\tilde{B}}^{2}A_{1}\), and \({\tilde{C}}^{2}A_{2}\) states of Cl2O+ and the \({\tilde{X}}^{1}A_{1}\) state of Cl2O: Franck–Condon simulations of photoelectron bands of Cl2O which include anharmonicity.’ J. Chem. Phys. 118, 4025–4036. [5]

    Google Scholar 

  • Chen, P. (1994): ‘Photoelectron spectroscopy of reactive intermediates.’ In Unimolecular and Biomolecular Ion-Molecule Reaction Dynamics. Eds. C. Y. Ng, T. Baer, I. Powis, Wiley, New York, p. 371–425. [5]

    Google Scholar 

  • Chenais-Popovics, C., Merdji, H., Missalla, T., Gilleron, F., Gauthier, J.-C., Blenski, T., Perrot, F., Klapisch, M., Bauche-Arnoult, C., Bauche, J., Bachelier, A., Eidmann, K. (2000): ‘Opacity studies of iron in the 15–30 eV temperature range.’ Astrophys. J. Suppl. Ser. 127, 275–281. [13]

    Google Scholar 

  • Child, M. S., Lawton, R. T. (1982): ‘Local mode degeneracies in the vibrational spectrum of H2O.’ Chem. Phys. Lett. 87, 217–220. [5]

    Google Scholar 

  • Chin, C.-W. (1965): ‘The opacity due to Compton scattering at relativistic temperatures in a semidegenerate electron gas.’ Astrophys. J. 142, 1481–1487. [6]

    Google Scholar 

  • Christy, R. F. (1966): ‘A study of pulsation in RR Lyrae models.’ Astrophys. J. 144, 108–179. [11]

    Google Scholar 

  • Chrysons, M., Kouzov, A. P., Egorova, N. I., Rachet, F. (2008): ‘Exact low-order classical moments in collision-induced bands by linear rotors: CO2–CO2.’ Phys. Rev. Lett. 100, 133007–133010. [8]

    Google Scholar 

  • Chueh, P. L., Prausnitz, J. M. (1967): ‘Vapor-liquid equilibria at high pressures: Calculation of critical temperatures, volumes, and pressures of nonpolar mixtures.’ Am. Inst. Chem. Eng. J. 13, 1107–1113. [4]

    Google Scholar 

  • Čížek, J. (1966): ‘On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods.’ J. Chem. Phys. 45, 4256–4266. [3]

    Google Scholar 

  • Clark, T. (1985): A Handbook of Computational Chemistry: A Practical Guide to Chemical Structure and Energy Calculations. Wiley, New York. [3]

    Google Scholar 

  • Clark, R. E. H., Merts, A. L. (1987): ‘Quantum defect method applied to oscillator strengths.’ J. Quant. Spectr. Rad. Transfer 38, 287–293. [3, 5]

    Google Scholar 

  • Clementi, E., Raimondi, D. L. (1963): ‘Atomic screening constants from SCF functions.’ J. Chem. Phys. 38, 2686–2689. [3]

    Google Scholar 

  • Clementi, E., Raimondi, D. L., Reinhardt, W. P. (1967): ‘Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons.’ J. Chem. Phys. 47, 1300–1307. [3]

    Google Scholar 

  • Clough, S. A. (1995): ‘The water vapor continuum and its role in remote sensing.’ Opt. Remote Sensing Atmosph. (Opt. Soc. Am. Dig. Ser.) 2, 76–78. [7]

    Google Scholar 

  • Clough, S. A., Kneizys, F. X., Davies, R. W. (1989): ‘Line shape and the water vapor continuum.’ Atmos. Res. 23, 229–241. [7]

    Google Scholar 

  • Cloutman, L. D. (1973): ‘On the accuracy of the Thomas–Fermi atom for opacities.’ Astrophys. J. 184, 675–686. [12]

    Google Scholar 

  • Coester, F., Kümmel, H. (1960): ‘Short-range correlations in nuclear wave functions.’ Nucl. Phys. 17, 477–485. [3]

    Google Scholar 

  • Cohen, H. D., Vik, R. C. (1972): ‘A Study of Equations of State/Opacity of Ionized Gases.’ Systems, Science and Software report 3SR-859-1, DNA 2794F-1. [4]

    Google Scholar 

  • Cohen, H. D., Parks, D. E., Petschek, A. G. (1971): ‘A Study of Equations of State/Opacity of Ionized Gases.’ Systems, Science, and Software report 3SR-465, DASA 2597-1. [7]

    Google Scholar 

  • Cohen, R. S., Spitzer Jr., L., Routly, P. McR. (1950): ‘The electrical conductivity of an ionized gas.’ Phys. Rev. 80, 230–238. [9]

    Google Scholar 

  • Coker, D. F., Miller, R. E., Watts, R. O. (1985): ‘The infrared predissociation spectra of water clusters.’ J. Chem. Phys. 82, 3554–3562. [5]

    Google Scholar 

  • Colgan, J., Fontes, C. J., Abdallah, Jr., J. (2006): ‘Collisional radiative studies of carbon plasmas.’ High Energy Dens. Phys. 2, 90–96. [14]

    Google Scholar 

  • Collins, L. A., Schneider, B. (1984): ‘Molecular photoionization in the linear algebraic approach: H2, N2, NO, and CO2.’ Phys. Rev. A 29, 1695–1708. [5]

    Google Scholar 

  • Colvin, M. E., Raine, G. P., Schaefer III, H. F. (1983): ‘Infrared intensities of H3O+, H2DO+, HD2O+, and D3O+.’ J. Chem. Phys. 79, 1551–1552. [3]

    Google Scholar 

  • Condon, E. U. (1928): ‘Nuclear motions associated with electron transitions in diatomic molecules.’ Phys. Rev. 32, 858–872. [6]

    Google Scholar 

  • Condon, E. U., Shortley, G. H. (1953): The Theory of Atomic Spectra. University Press, Cambridge, 1935 (reprinted with corrections 1953). [3, 5, 7]

    Google Scholar 

  • Condon, E. U., Odabaşı, H. (1980): Atomic Structure. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney. [3]

    Google Scholar 

  • Cooley, J. W. (1961): ‘An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields.’ Math. Comp. 15, 363–374. [3]

    Google Scholar 

  • Coolidge, A. S., James, H. M., Present, R. D. (1936): ‘A study of the Franck–Condon principle.’ J. Chem. Phys. 4, 193–211. [6]

    Google Scholar 

  • Coon, J. B., DeWames, R. E., Loyd, C. M. (1962): ‘The Franck–Condon principle and the structures of excited electronic states of molecules.’ J. Mol. Spectr. 8, 285–299. [5]

    Google Scholar 

  • Cooper, D. M., Langhoff, S. R. (1981): ‘Theoretical study of selected singlet and triplet states of the CO molecule.’ J. Chem. Phys. 74, 1200–1210. [10]

    Google Scholar 

  • Cooper, J. W. (1964): ‘Interaction of maxima in the absorption of soft x rays.’ Phys. Rev. Lett. 13, 762–764. [5]

    Google Scholar 

  • Cooper, J., Zare, R. N. (1968): ‘Angular distribution of photoelectrons.’ J. Chem. Phys. 48, 942–943. [5]

    Google Scholar 

  • Corben, H. C., Schwinger, J. (1940): ‘The electromagnetic properties of mesotrons.’ Phys. Rev. 58, 953–968. [5]

    Google Scholar 

  • Corliss, C. H., Bozman, W. R. (1962): Experimental Transition Probabilities for Spectral Lines of Seventy Elements. National Bureau of Standards Monograph 53. [5]

    Google Scholar 

  • Costescu, A., Vrejoiu, C., Bogatu, N. (1981): ‘On the average bremsstrahlung spectral distribution and energy loss in fully ionized plasmas.’ Rev. Roum. Phys. 26, 281–301. [5]

    Google Scholar 

  • Courtin, R. (1988): ‘Pressure-induced absorption coefficients for radiative transfer calculations in Titan’s atmosphere.’ Icarus 75, 245–254. [8, 13]

    Google Scholar 

  • Cousin, C., Le Doucen, R., Boulet, C. (1986): ‘Line coupling in the temperature and frequency dependencies of absorption in the microwindows of the 4.3 μm CO2 band.’ J. Quant. Spectr. Rad. Transfer 36, 521–538. [7]

    Google Scholar 

  • Cowan, R. D. (1967): ‘Atomic self-consistent-field calculations using statistical approximations for exchange and correlation.’ Phys. Rev. 163, 54–61. [3]

    Google Scholar 

  • Cowan, R. D. (1968): ‘Theoretical calculation of atomic spectra using digital computers.’ J. Opt. Soc. Am. 58, 808–818. [3]

    Google Scholar 

  • Cowan, R. D. (1981): The Theory of Atomic Structure and Spectra. University of California Press, Berkeley, Los Angeles, London. [3, 4, 5, 7]

    Google Scholar 

  • Cowan, R. D., Andrew, K. L. (1965): ‘Coupling considerations in two-electron spectra.’ J. Opt. Soc. Am. 55, 502–516. [3]

    Google Scholar 

  • Cowan, R. D., Ashkin, J. (1957): ‘Extension of the Thomas–Fermi–Dirac statistical theory of the atom to finite temperatures.’ Phys. Rev. 105, 144–157. [4]

    Google Scholar 

  • Cowan, R. D., Kirkwood, J. G. (1958a): ‘Quantum statistical theory of plasmas and liquid metals.’ J. Chem. Phys. 29, 264–271. [4]

    Google Scholar 

  • Cowan, R. D., Kirkwood, J. G. (1958b): ‘Quantum statistical theory of electron correlation.’ Phys. Rev. 111, 1460–1466. [4]

    Google Scholar 

  • Cowley, C. R. (1970): Theory of Stellar Spectra. Gordon & Breach Science Publishers, New York, London, Paris. [1]

    Google Scholar 

  • Cox, A. N. (1965): ‘Stellar absorption coefficients and opacities.’ In Stars and Stellar Systems, Vol. 8: Stellar Structure, p. 195–268. Eds. L. H. Aller, D. B. McLaughlin; The University of Chicago Press, Chicago. [1, 4, 9, 11]

    Google Scholar 

  • Cox, A. N. (2000): Allen’s Astrophysical Quantities. 4th edition, Springer, AIP Press, New York, NY. [7]

    Google Scholar 

  • Cox, A. N., Stewart, J. N. (1965): ‘Radiative and conductive opacities for eleven astrophysical mixtures.’ Astrophys. J. Suppl. Ser. 11, 22–46. [1, 9, 12]

    Google Scholar 

  • Cox, A. N., Stewart, J. N., Eilers, D. D. (1965): ‘Effects of bound-bound absorption on stellar opacities.’ Atrophys. J. Suppl. Ser. 11, 1–21. [1]

    Google Scholar 

  • Cox, J. P., Giuli, R. T. (1968): Principles of Stellar Structure. Gordon Beach, New York. [6]

    Google Scholar 

  • Craig, D. P., Thirunamachandran, T. (1984): Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions. Academic Press, New York, Orlando, San Diego. [3, 5]

    Google Scholar 

  • Crawford Jr., B. L., Dinsmore, H. L. (1950): ‘Vibrational intensities. I. Theory of diatomic infra-red bands.’ J. Chem. Phys. 18, 983–987; 18, 1682–1683. [5, 7]

    Google Scholar 

  • Crecely, R. W., Wilson, D. J. (1964): ‘Thermodynamic functions of Morse oscillators.’ J. Chem. Phys. 41, 1564–1567. [4]

    Google Scholar 

  • Crees, M. A., Seaton, M. J., Wilson, P. M. H. (1978): ‘Impact, a program for the solution of the coupled integro-differential equations of electron – atom collision theory.’ Comp. Phys. Comm. 15, 23–83. [3]

    Google Scholar 

  • Cromer, D. T. (1969): ‘Compton scattering factors for aspherical free atoms.’ J. Chem. Phys. 50, 4857–4859. [5]

    Google Scholar 

  • Cromer, D. T., Mann, J. B. (1967): ‘Compton scattering factors for spherically symmetric free atoms.’ J. Chem. Phys. 47, 1892–1893. [5]

    Google Scholar 

  • Cromer, D. T., Waber, J. T. (1964): ‘Scattering Factors Computed from Relativistic Dirac–Slater Wave Functions.’ Los Alamos Scientific Laboratory report LA-3056. [5]

    Google Scholar 

  • Cross, P. C., Hainer, R. M., King, G. W. (1944): ‘The asymmetric rotor. II. Calculation of dipole intensities and line classification.’ J. Chem. Phys. 12, 210–243. [5]

    Google Scholar 

  • Crowley, B. J. B., Harris, J. W. (2001): ‘Modelling of plasmas in an average-atom local density approximation: The CASSANDRA code.’ J. Quant. Spectr. Rad. Transfer 71, 257–272. [13]

    Google Scholar 

  • Cruzan, O. R. (1962): ‘Translational addition theorems for spherical vector wave functions.’ Quart. Appl. Math. 20, 33–40. [5]

    Google Scholar 

  • Csanak, G., Kilcrease D. (1993): ‘Photo absorption in hot dense plasmas - the average atom (AA), the spherical cell (SC), and the random phase approximation.’ J. Quant. Spectr. Rad. Transfer 58, 537–551. [4]

    Google Scholar 

  • Cunio, B. E., Jansson, R. E. W. (1968): ‘The electronic transition moment of the N2 first positive system (N2 1PG).’ J. Quant. Spectr. Rad. Transfer 8, 1763–1771. [5]

    Google Scholar 

  • Curtis, A. R. (1952): ‘A statistical model fro water-vapour absorption.’ Quart. J. Roy. Met. Soc. 78, 638–640. [7]

    Google Scholar 

  • Curtis, L. J. (1996): ‘Precision oscillator strength and lifetime measurements.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 206–212. [5]

    Google Scholar 

  • Däppen, W., Anderson, L., Mihalas, D. (1987): ‘Statistical mechanics of partially ionized stellar plasmas: The Planck–Larkin partition function, polarization shifts, and simulations of optical spectra.’ Astrophys. J. 319, 195–206. [4]

    Google Scholar 

  • Däppen, W., Mihalas, D., Hummer, D. G., Weibel Mihalas, B. (1988): ‘The equation of state for stellar enveloopes. III. Thermodynamic quantities.’ Astrophys. J. 332, 261–270. [4]

    Google Scholar 

  • Dagdeviren, N. R., Koonin, S. E. (1987): ‘Effect of ion correlations on free–free opacities.’ Astrophys. J. 319, 192–194. [6]

    Google Scholar 

  • Dagg, I. R., Anderson, A., Yan, S., Smith, W., Read, L. A. A. (1986a): ‘Collision-induced absorption in nitrogen at low temperatures.’ Can. J. Phys. 63, 625–631. [13]

    Google Scholar 

  • Dagg, I. R., Anderson, A., Yan, S., Smith, W., Joslin, G. G., Read, L. A. A. (1986b): ‘Collision-induced absorption in gaseous mixtures of nitrogen and methane.’ Can. J. Phys. 64, 1467–1474. [13]

    Google Scholar 

  • Danese, J. B., Connolly, J. W. D. (1974): ‘Calculation of the total energy in the multiple scattering- method. I. General theory.’ J. Chem. Phys. 61, 3063–3080. [3]

    Google Scholar 

  • Da Silva, L. B., MacGowen, B. J., Kania, D. R., Hammel, B. A., Back, C. A., Hsieh, E., Doyas, R., Iglesias, C. A., Rogers, F. J., Lee, R. W. (1992): ‘Absorption measurements demonstrating the importance of Δ n = 0 transitions in the opacity of iron.’ Phys. Rev. Lett. 69, 438–441. [13]

    Google Scholar 

  • Davenport, J. W. (1977): ‘Multiple scattering theory of photoemission.’ Int. J. Quantum Chem. Symp. 11, 89–96. [5]

    Google Scholar 

  • Davidson, E. R., Feller, D. (1986): ‘Basis set selection for molecular calculations.’ Chem. Rev. 86, 681–696. [3]

    Google Scholar 

  • Davidson, S. J., Foster, J. M., Smith, C. C., Warburton, K. A., Ross, S. J. (1989): ‘Investigation of the opacity of hot, dense Al in the region of its K-edge.’ Appl. Phys. Lett. 52, 847–849. [13]

    Google Scholar 

  • Davies, R. W., Tipping, R. H., Clough, S. A. (1982): ‘Dipole auto-correlation function for molecular pressure broadening: A quantum theory which satisfies the fluctuation-dissipation theorem.’ Phys. Rev. A 26, 3378–3394. [7]

    Google Scholar 

  • Davis, J. (1974): ‘Effective Gaunt factors for electron impact excitation of multiply charged nitrogen and oxygen ions.’ J. Quant. Spectr. Rad. Transfer 14, 549–554. [7]

    Google Scholar 

  • Davis, J., Kepple, P. C., Blaha, M. (1975): ‘Distorted wave calculations for multiply charged nitrogen and oxygen.’ J. Quant. Spectr. Rad. Transfer 15, 1145–1148. [7]

    Google Scholar 

  • Davydkin, V. A., Zon, B. A. (1981): ‘Radiation and polarization characteristics of Rydberg atomic states.’ Optics Spectrosc. 51 13–15. [5]

    Google Scholar 

  • Dawson, J. M. (1964): ‘On the production of plasma by giant pulse lasers.’ Phys. Fluids 7, 981–987. [6]

    Google Scholar 

  • Dawson, J., Oberman, C. (1962): ‘High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma.’ Phys. Fluids 5, 517–524. [6, 9]

    Google Scholar 

  • Dawson, J., Oberman, C. (1963): ‘Effect of ion correlations on high-frequency plasma conductivity.’ Phys. Fluids 6, 394–397. [6, 9]

    Google Scholar 

  • Day, K. L. (1979): ‘Mid-infrared optical properties of vapor-condensed magnesium silicates.’ Astrophys. J. 234, 158–161. [6]

    Google Scholar 

  • Dehmer, J. L., Dill, D. (1979): ‘The continuum multiple-scattering approach to electron–molecule scattering and molecular photoionization.’ In Electron–Molecule and Photon–Molecule Collisions. Eds. T. Rescigno, V. McKoy, and B. Schneider; Plenum Press, New York, London, p. 225–263. [5]

    Google Scholar 

  • Dehmer, J. L., Parr, A. C., Southworth, S. H., Holland, D. M. P. (1983a): ‘Triply differential photoelectron studies of molecular photoionization.’ In 13 th Int. Conf. on the Physics of Electronic and Atomic Collisions, Berlin. North-Holland, Amsterdam, p. 341–408. [5]

    Google Scholar 

  • Dehmer, J. L., Dill, D., Parr, A. C. (1983b): ‘Photoionization dynamics of small molecules.’ In Photophysics and Photochemistry in the Vacuum Ultraviolet. Eds. S. McGlynn, G. Finley, and R. Huebner; D. Reidel Publishing Co., Dordrecht, p. 341–408. [5]

    Google Scholar 

  • Dehmer, J. L., Parr, A. C., Southworth, S. H. (1987): ‘Resonances in molecular photoionization.’ In Handbook on Synchrotron Radiation. Vol. 2, Ed. G. V. Marr; North-Holland, Amsterdam, Oxford, New York, Tokyo, p. 241–353. [5]

    Google Scholar 

  • Deirmendjian, D. (1969): Electromagnetic Scattering on Spherical Polydispersions. American Elsevier Publishing Co., Inc., New York. [5]

    Google Scholar 

  • Dennison, D. M. (1926): ‘The rotation of molecules.’ Phys. Rev. 28, 318–333. [5]

    Google Scholar 

  • Dennison, D. M. (1940): ‘Infra-red spectra of polyatomic molecules. Part II.’ Rev. Mod. Phys. 12, 175–214. [5]

    Google Scholar 

  • Desclaux, J. P. (1983a): ‘Numerical Dirac–Fock calculations for atoms.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 115–144. [3]

    Google Scholar 

  • Desclaux, J. P. (1983b): ‘Dirac–Fock one-centre expansion method.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 213–226. [3]

    Google Scholar 

  • Detrich, J. H., Roothaan, C. C. J. (1981): ‘Calculation of relativistic effects in atoms and molecules from the Schrödinger wave function.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 169–182. [3]

    Google Scholar 

  • DeWitt, H. E., Rogers, F. J. (1972): ‘Quantum statistical mechanics of dense partially ionized hydrogen.’ Phys. Earth Planet. Interiors 6, 51–59. [4]

    Google Scholar 

  • De Zotti, G. (1975): ‘Free-free opacity of dense stellar matter.’ Astrophys. Space Sci. 33, 359–367. [6]

    Google Scholar 

  • Diercksen, G. H. F., Sadlej, A. J. (1985): ‘Finite-field many-body perturbation theory. VII. A complete fourth-order MBPT study of multipole moments of the CO molecule.’ Chem. Phys. 96, 17–41. [5]

    Google Scholar 

  • Diercksen, G. H. F., Kraemer, W. P., Rescigno, T. N., Bender, C. F., McKoy, B. V., Langhoff, S. R., Langhoff, W. P. (1982): ‘Theoretical studies of photoexcitation and ionization in H2O.’ J. Chem. Phys. 76, 1043–1057. [5]

    Google Scholar 

  • Diercksen, G. H. F., Grüner, N. E., Steuerwald, J. (1983a): ‘Computers and computations.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, Vol. 113, p. 335–350. [3]

    Google Scholar 

  • Diercksen, G. H. F., Roos, B. O., Sadlej, A. (1983b): ‘Electron correlation and properties of many-electron systems.’ Int. J. Quantum Chem. Symp. 17, 265–288. [3]

    Google Scholar 

  • Diesendorf, M., Ninham, B. W. (1968): ‘Quantum corrections to the pair distribution function of a classical plasma.’ J. Math. Phys. 9, 745–752. [6]

    Google Scholar 

  • Diesendorf, M., Ninham, B. W. (1969): ‘The effect of quantum correlations on electron-scattering opacities.’ Astrophys. J. 156, 1069–1073. [6]

    Google Scholar 

  • Dill, D., Dehmer, J. L. (1974): ‘Electron–molecule scattering and molecular photoionization using the multiple-scattering method.’ J. Chem. Phys. 61, 692–699. [5]

    Google Scholar 

  • Dill, D., Starace, A. F., Manson, S. T. (1975): ‘Effects of anisotropic electron–ion interactions in atomic photoelectron angular distribution.’ Phys. Rev. A 11, 1596–1606. [5]

    Google Scholar 

  • Dingle, R. B. (1957): ‘The Fermi–Dirac integrals: \(\mathcal{F}_{\wp }(\eta ) = {(\wp !)}^{-1}\!\int _{0}^{\infty }{\varepsilon }^{\wp }{({e}^{\varepsilon -\eta } + 1)}^{-1}d\varepsilon.^\prime \) Appl. Sci. Res. 6B, 225–239. [9, App. C]

    Google Scholar 

  • Dirac, P. A. M. (1927a): ‘The quantum theory of emission and absorption of radiation.’ Proc. Roy. Soc. (London), Ser. A 114, 243–265. [5]

    Google Scholar 

  • Dirac, P. A. M. (1927b): ‘The quantum theory of dispersion.’ Proc. Roy. Soc. (London), Ser. A 114, 710–728. [7]

    Google Scholar 

  • Dirac, P. A. M. (1930): ‘Note on exchange phenomena in the Thomas atom.’ Proc. Cambridge Phil. Soc. 26, 376–385. [3]

    Google Scholar 

  • Doggett, J. A., Spencer, L. V. (1956): ‘Elastic scattering of electrons and positrons by point nuclei.’ Phys. Rev. 103, 1597–1601. [9]

    Google Scholar 

  • Dogliani, H. O., Bailey, W. F. (1969): ‘A relativistic correction to the Thomas–Kuhn sum rule.’ J. Quant. Spectr. Rad. Transfer 9, 1643–1645. [6]

    Google Scholar 

  • Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1975): ‘Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck–Condon principle.’ J. Mol. Spectr. 56, 1–20. [5, 7]

    Google Scholar 

  • Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1976): ‘Dynamical symmetry of vibronic transitions with degenerate vibrations and the Franck–Condon factors.’ J. Phys. B 9, 507–514. [5]

    Google Scholar 

  • Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1977a): ‘The Franck–Condon principle and sum rules for vibronic transitions in polyatomic molecules.’ Chem. Phys. Lett. 46, 183–187. [7]

    Google Scholar 

  • Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1977b): ‘Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle.’ J. Mol. Spectr. 64, 302–326. [5, 7]

    Google Scholar 

  • Domcke, W., Cederbaum, L. S., Köppel, H., von Niessen, W. (1977): ‘A comparison of different approaches to the calculation of F–C factors for polyatomic molecules.’ Molec. Phys. 34, 1759–1770. [5]

    Google Scholar 

  • Domoto, G. A. (1974): ‘Frequency integration for radiative transfer problems involving homogeneous non-gray gases: The inverse transmission function.’ J. Quant. Spectr. Rad. Transfer 14, 935–42. [7]

    Google Scholar 

  • Dorschner, J. (1970): ‘Theoretische Untersuchung über den interstellaren Staub. II. Optische Eigenschaften kugelförmiger Staubteilchen aus meteoritischen Silikaten und aus schmutzigem Eis.’ Astron. Nachrichten 292, 71–78. [5]

    Google Scholar 

  • Dragalov, V. V., Novikov, V. G. (1988): ‘Distribution of spectral lines in plasma with respect to the fluctuations of the filling number.’ Teplofizika Vysokikh Temperatur 25, 1057–1061 (High Temp. 25, 762–766). [7]

    Google Scholar 

  • Dragalov, V. V., Novikov, V. G. (1989a): ‘Average-atom calculation of the energy of dipole transitions in highly ionized plasmas of heavy elements.’ Fiz. Plazmy 15, 493–495 (Sov. J. Plasma Phys. 15, 288–289). [7]

    Google Scholar 

  • Dragalov, V. V., Novikov, V. G. (1989b): ‘Approximate ion-configuration correction in calculating photoionization cross sections for a dense hot plasma.’ Teplofizika Vysokikh Temperatur 27, 214–219 (High Temp. 27, 161–165). [6]

    Google Scholar 

  • Dragalov, V. V., Nikiforov, A. F., Novikov, V. G., Uvarov, V. B. (1990): ‘Statistical method for calculating the absorption of photons in dense high-temperature plasmas.’ Fiz. Plazmy 16, 77–85 (Sov. J. Plasma Phys. 16, 44–49). [7]

    Google Scholar 

  • Dufresne, J. I., Fournier, R., Grandpeix, J. Y. (1999): ‘Inverse Gaussian k-distributions.’ J. Quant. Spectr. Rad. Transfer 61, 433–441. [7]

    Google Scholar 

  • Dufty, J. W., Boerker, D. B., Iglesias, C. A. (1985): ‘Electric field distributions in strongly coupled plasmas.’ Phys. Rev. A 31, 1681–1686. [7]

    Google Scholar 

  • Dunham, J. L. (1930): ‘Intensities of vibration-rotation bands with special reference to those of HCl.’ Phys. Rev. 85, 1347–1354. [7]

    Google Scholar 

  • Dunham, J. L. (1932): ‘The Wentzel-Brillouin-Kramers method of solving the wave equation.’ Phys. Rev. 41, 713–720. [3]

    Google Scholar 

  • Dunning Jr., T. H., McKoy, V. (1968): ‘Nonempirical calculations on excited states: The formaldehyde molecule.’ J. Chem. Phys. 48, 5263–5270. [3]

    Google Scholar 

  • Dunning Jr., T. H., Hunt, W. J., Goddard III, W. A. (1969): ‘The theoretical description of the (π π ) excited states of ethylene.’ Chem. Phys. Lett. 4, 147–150. [3]

    Google Scholar 

  • Dunning Jr., T. H., Cartwright, D. C., Hunt, W. J., Hay, P. J., Bobrowicz, F. W. (1976): ‘Generalized valence bond calculations in the ground state (X\({}^{1}\!\varSigma _{\mathrm{g}}^{+}\)) of nitrogen.’ J. Chem. Phys. 64, 4755–4766. [3]

    Google Scholar 

  • Dupuis, M., Wendoloski, J. J. (1984): ‘Systematic GVB study of harmonic vibrational frequencies and dipole moment derivatives; the vinyl radical C2H3 and other simple molecules.’ J. Chem. Phys. 80, 5696–5702. [5]

    Google Scholar 

  • Duschinsky, F. (1937): ‘Zur Deutung der Elektronenspektren mehratomiger Moleküle. I. Über das Franck–Condon Prinzip.’ Acta Physicochim. URSS 7, 551–566. [5]

    Google Scholar 

  • Dykstra, G. E. (1984): Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. D. Reidel Publ. Co., Dordrecht, Boston, Lancaster. [3]

    Google Scholar 

  • Dykstra, C. E., Schaefer III, H. F. (1976a): ‘A theory of self-consistent electron pairs. Computational methods and preliminary applications.’ J. Chem. Phys. 65, 2740–2750. [5]

    Google Scholar 

  • Dykstra, C. E., Schaefer III, H. F. (1976b): ‘Electron correlation in small metal clusters. Application of a theory of self-consistent electron pairs to the Be4 system.’ J. Chem. Phys. 65, 5141–5146. [5]

    Google Scholar 

  • Dykstra, C. E., Schaefer III, H. F. (1984): ‘Computer technology in quantum chemistry.’ In Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. Ed. C. E. Dykstra; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster. p. 197–202. [3]

    Google Scholar 

  • Dyson, F. J. (1958): ‘Note on maximum opacity.’ General Atomic report GAMD-469. [11]

    Google Scholar 

  • Ebeling, W., Kraeft, W. D., Kremp, D. (1977): Theory of Bound States and Ionization Equilibrium in Plasmas and Solids. Akademie Verlag, Berlin. [4]

    Google Scholar 

  • Eby, P. B., Sung, C. C. (1986): ‘Comparison of exact and approximate formulas for the Mott correction to energy loss of relativistic heavy ions.’ Phys. Rev. A 33, 3767–3773. [9]

    Google Scholar 

  • Eckart, C. (1935): ‘Some studies concerning rotating axes and polyatomic molecules.’ Phys. Rev. 47, 552–558. [3, 5]

    Google Scholar 

  • Ecker, G., Müller, K. G. (1958): ‘Plasmapolarisation und Trägerwechselwirkung.’ Z. Phys. 153, 317–330. [7]

    Google Scholar 

  • Ederer, D. L. (1964): ‘Photoionization of the 4d electrons in xenon.’ Phys. Rev. Lett. 13, 760–762. [5]

    Google Scholar 

  • Edmonds, A. R. (1957): Angular Momentum in Quantum Mechanics. Princeton U. Press, Princeton, N.J. [5]

    Google Scholar 

  • Edmonds, A. R., Picart, J., Tran Minh, N., Pullen, R. (1979): ‘Tables for the computation of radial integrals in the Coulomb approximation.’ J. Phys. B 12, 2781–2787. [5]

    Google Scholar 

  • Edwards, D. K., Flornes, B. J., Glassen, L. K., Sun, W. (1965): ‘Correlation of absorption by water vapor at temperatures from 300 to 1100 K.’ Appl. Optics 4, 715–721. [13]

    Google Scholar 

  • Eissner, W. (1972): ‘Computer methods and packages in electron – atom collisions (II). In The Physics of Electronic and Atomic Collisions. Eds. T. R. Grovers and F. J. de Heer. North-Holland Publ. Co., Amsterdam, London, p. 460–478. [3]

    Google Scholar 

  • Eissner, W., Seaton, M. J. (1972): ‘Computer programs for the calculation of electron – atom collision cross sections. I. General formulation.’ J. Phys. B 5, 2187–2198. [3]

    Google Scholar 

  • Eissner, W., Jones, M., Nussbaumer, H. (1974): ‘Techniques for the calculation of atomic structures and radiative data including relativistic corrections.’ Comp. Phys. Comm. 8 270–306. [3]

    Google Scholar 

  • Elliott, P., Furche, F., Burke, K. (2009): ‘Excited states from time-dependent density functional theory.’ In Rev. Comp. Chem. 26, 91–165. Eds. K. B. Lipkowitz, T. R. Cundari; John Wiley Sons. [3]

    Google Scholar 

  • Elsasser, W. M. (1938): ‘Mean absorption and equivalent absorption coefficient of a band spectrum.’ Phys. Rev. 54, 126–129. [7, 11]

    Google Scholar 

  • Elsasser, W. M. (1942): ‘Heat transfer by IR radiation in the atmosphere.’ Harvard Meteorological Studies No. 6, Milton, MA, and Oxford U. Press, London. [7]

    Google Scholar 

  • Elwert, G. (1939): ‘Intensity and polarization in the continuous x-ray spectrum.’ Ann. Phys. 34, 178–208. [6]

    Google Scholar 

  • Elwert, G. (1954): ‘Die weiche Röntgenstrahlung der ungestörten Sonnenkorona.’ Z. Naturforsch. 9a, 637–653. [6]

    Google Scholar 

  • Elwert, G., Haug, E. (1969): ‘Calculation of bremsstrahlung cross sections with Sommerfeld-Maue eigenfunctions.’ Phys. Rev. 183, 90–105. [5]

    Google Scholar 

  • Engel, E., Vosco, S. H. (1990): ‘Wave-vector dependence of the exchange contribution to the electron-gas response functions: An analytic derivation.’ Phys. Rev. B 42, 4940–4953. [3]

    Google Scholar 

  • Engel, E., Vosko, S. H. (1993): ‘Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations.’ Phys. Rev. B 47, 13164–13174. [3]

    Google Scholar 

  • Engel, V., Schinke, R., Staemmler, V. (1986): ‘An ab initio calculation of the absorption cross section of water in the first absorption continuum.’ Chem. Phys. Lett. 130, 413–418. [5]

    Google Scholar 

  • Engel, V., Staemmler, V., Vander Wal, R. L., Crim, F. F., Sension, R. J., Hudson, B., Andresen, P., Hennig, S., Weide, K., Schinke, R. (1992): ‘Photodissociation of water in the first absorption band: A prototype for dissociation on a repulsive potential energy surface.’ J. Phys. Chem. 96, 3201–3213. [5]

    Google Scholar 

  • Engelhardt, A. G., Phelps, A. V., Risk, C. G. (1964): ‘Determination of momentum transfer and inelastic collision cross sections for electrons in nitrogen using transport coefficients.’ Phys. Rev. 135, A1566–A1574. [6]

    Google Scholar 

  • Engler, E. M., Andose, J. D., Schleyer, P. V. R. (1973): ‘Critical evaluation of molecular mechanics.’ J. Am. Chem. Soc. 95, 8005–8025. [3]

    Google Scholar 

  • Enskog, D. (1922): ‘Kinetic theory of heat conductivity, viscosity and diffusion in certain condensed gases and liquids.’ Kungl. Svenska Vetenskap. Handl. 63, 1–44. [9]

    Google Scholar 

  • Erdelyi, A. (1953): Higher Transcendental Functions, Vol. 2. McGraw-Hill, New York, Toronto, London. [5]

    Google Scholar 

  • Eriksson, G. (1971): ‘Thermodynamic studies of high temperature equilibria. III. SOLGAS, a computer program for calculating the composition and heat condition of an equilibrium mixture.’ Acta Chem. Scandinavica 25, 2651–2658. [4]

    Google Scholar 

  • Eriksson, G. (1975): ‘Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium compositions in multiphase systems.’ Chem. Scripta 8, 100–103. [4]

    Google Scholar 

  • Eriksson, G., Rosén, E. (1973): ‘Thermodynamic studies of high temperature equilibria. VIII. General equations for the calculation of equilibria in multiphase systems.’ Chem. Scripta 4, 193–194. [4]

    Google Scholar 

  • Ermler, W. C., Rosenberg, B. J., Shavitt, I. (1985): ‘Ab-initio SCF and CI studies on the ground state of the water molecule. III. Vibrational analysis of potential energy and property surfaces.’ In Comparison of Ab Initio Calculations with Experiment: State of the Art. Ed. R. Bartlett; D. Reidel Publ. Co., Dordrecht, p. 171–216. [5]

    Google Scholar 

  • Eschrig, H. (1989): Optimized LCAO method and the electronic structure of extended systems. Springer-Verlag, Berlin. [3]

    Google Scholar 

  • Evans, J. S., Schexnayder Jr., C. J. (1961): ‘An investigation of the effect of high temperature on the Schumann-Runge ultraviolet absorption continuum of oxygen.’ National Aeronautic and Space Administration report NASA TR R-92. [6]

    Google Scholar 

  • Ewart, G. M., Guyer, R. A., Greenstein, G. (1975): ‘Electrical conductivity and magnetic field decay in neutron stars.’ Astrophys. J. 202, 238–247. [9]

    Google Scholar 

  • Eyler, E. E., Pipkin, F. M. (1983): ‘Lifetime measurements of the B\({}^{3}\!\varPi _{\mathrm{g}}\) state of N2 using laser excitation.’ J. Chem. Phys. 79, 3654–3659. [5]

    Google Scholar 

  • Faddeyeva, V. N., Terentev, V. M. (1961): Tables of the Probability Integral for Complex Argument. Pergamon Press, New York. [7]

    Google Scholar 

  • Fano, U. (1961): ‘Effects of configuration interaction on intensities and phase shifts.’ Phys. Rev. 124, 1866–1878. [5]

    Google Scholar 

  • Fano, U., Cooper, J. W. (1965): ‘Line profiles in the far-UV absorption spectra of the rare gases.’ Phys. Rev. 137, A1364–A1379. [5]

    Google Scholar 

  • Fano, U., Cooper, J. W. (1968): ‘Spectral distribution of atomic oscillator strengths.’ Rev. Mod. Phys. 40, 441–507. [1, 5]

    Google Scholar 

  • Fermi, E. (1949): Nuclear Physics. The University of Chicago Press. [5, 7]

    Google Scholar 

  • Fermi, E., Amaldi, E. (1934): ‘Le orbite s degli elementi.’ Mem. Reale Accad. Italia 6, 119–149. [3]

    Google Scholar 

  • Ferriso, C. C., Ludwig, C. B. (1964): ‘Spectral emissivities and integrated intensities of the 2.7 micron H2O band between 530 and 2200 K.’ J. Quant. Spectr. Rad. Transfer 4, 215–227. [13]

    Google Scholar 

  • Ferriso, C. C., Ludwig, C. B., Thomson, A. L. (1966): ‘Empirically determined infrared absorption coefficients of H2O from 300 to 3000 K.’ J. Quant. Spectr. Rad. Transfer 6, 241–275. [13]

    Google Scholar 

  • Feynman, R. P., Metropolis, N., Teller, E. (1949): ‘Equations of state of elements based on the generalized Fermi–Thomas theory.’ Phys. Rev. 75, 1561–1573. [4]

    Google Scholar 

  • Finn, G. D., Mugglestone, D. (1965): ‘Tables of the line broadening function H(a, v).’ Mon. Not. Roy. Astron. Soc. 129, 221–235. [7]

    Google Scholar 

  • Fiolhais, C., Nogueira, F., Marques, M. (Eds.) (2003): A Primer in Density Functional Theory. Lecture Notes in Physics, 620, Springer-Verlag, New York, NY. [3]

    Google Scholar 

  • Fischer, C. F. (1996): ‘Atomic structure: Multiconfiguration Hartree–Fock theories.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 243–257. [3]

    Google Scholar 

  • Fischer, J. (1931a): ‘Beiträge zur Theorie der Absorption von Röntgenstrahlen.’ Ann. Physik 8, 821–850. [5]

    Google Scholar 

  • Fischer, J. (1931b): ‘Über die retardierten Matrixelemente in der Theorie der Streuung und Absorption von Röntgenstrahlen.’ Ann. Physik 11, 489–520. [5]

    Google Scholar 

  • Flaud, J.-M., Camy-Peyret, C., Toth, R. A. (1981): Parametres des raies de la vapeur d’eau des micro-ondes a l’infrarouge moyen (Atlas des positions et intensites des raies de H \(_{2}^{16}\) O, H \(_{2}^{17}\) O et H \(_{2}^{18}\) O entre 0 et 4350 cm −1). Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt. [7]

    Google Scholar 

  • Flowers, E., Itoh, N. (1976): ‘Transport properties of dense matter.’ Astrophys. J. 206, 218–242. [9]

    Google Scholar 

  • Flowers, E., Itoh, N. (1981): ‘Transport properties of dense matter. III Analytic formulae for thermal conductivity.’ Astrophys. J. 250, 750–752. [9]

    Google Scholar 

  • Ford, A. L., Docken, K. K., Dalgarno, A. (1975): ‘The photoionization and dissociative ionization of H2, HD, and D2.’ Astrophys. J. 195, 819–824. [5]

    Google Scholar 

  • Foster, J. M., Hoarty, D. J., Smith, C. C., Rosen, P. A., Davidson, S. J., Rose, S. J., Perry, T. S., Serduke, F. J. D. (1991): ‘L-shell absorption spectrum of an open-M-shell germanium plasma: Comparison of experimental data with a detailed configuration-accounting calculation.’ Phys. Rev. Lett. 67, 3255–3258. [13]

    Google Scholar 

  • Fox, J. L. (1991): ‘Cross sections and reaction rates of relevance to aeronomy.’ Revs. Geophys. 29, Suppl. 2, 1110–1131. [5]

    Google Scholar 

  • Fox, K., Ozier, I. (1971): ‘The importance of methane to pressure-induced absorption in the atmospheres of the outer planets.’ Astrophys. J. Lett. 166, L95–L100. [8, 13]

    Google Scholar 

  • Fraga, S., Saxena, K. M. S., Karwowski, J. (1979): Atomic Energy Levels: Data for Parametric Calculations. Elsevier Scientific Publ. Co.; Amsterdam, New York. [3, 4]

    Google Scholar 

  • Frank-Kamenetski, D. A. (1962): ‘Macroscopic theory of radiant energy transport processes.’ Translated by M. J. Nowak. In Physical Processes in Stellar Interiors, Chap. 5. (1959): Jerusalem, Israel Program for Scientific Translations (Office of Tech. Services, US Dept. Commerce, Washington, DC); General Atomic report GA-TR-3004. [2]

    Google Scholar 

  • Fraser, A. P. (1954): ‘A method of determining the electronic transition moments for diatomic molecules.’ Can. J. Phys. 32, 515–21 [5]

    Google Scholar 

  • Fraser, A. R. (1966): ‘The fundamental equations of radiation hydrodynamics.’ UK Atomic Energy Authority report AWRE O-82/65. [2]

    Google Scholar 

  • Freemann, B. E. (1965): ‘Polarization effects on radiation diffusion in a Compton scattering medium.’ General Atomic report GAMD-6157. [2]

    Google Scholar 

  • Fried, B. D., Conte, S. D. (1961): The Plasma Dispersion Function. Academic Press, New York. [7]

    Google Scholar 

  • Friedman, B., Russek, J. (1954): ‘Addition theorems for sphericalwaves.’ Quart. Appl. Math. 12, 13–23. [5]

    Google Scholar 

  • Frisch, M. J., Nielsen, A. B., Frisch, A. E. (1998): Gaussian 98 Programmer’s Reference. 2nd ed., Gaussian, Inc., Pittsburgh, PA. See also: www.gaussian.com. [3]

  • Frommhold, L., Meyer, W. (1987): ‘Collision-induced rotovibrational spectra of H2−He pairs from first principles.’ Phys. Rev. A 35, 632–638. [8]

    Google Scholar 

  • Frost, B. S. (1973): ‘Theory of pressure-induced absorption by symmetric top molecules.’ J. Chem. Soc. Faraday Trans. 2, 8, 1142–1154. [8]

    Google Scholar 

  • Fuhr, J. R., Martin, G. A., Wiese, W. L., Younger, S. M., (1981): ‘Atomic transition probabilities for iron, cobalt, and nickel. (A critical data compilation of allowed lines).’ J. Phys. Chem. Ref. Data 10, 305–565. [5]

    Google Scholar 

  • Fuhr, J. R., Martin, G. A., Wiese, W. L. (1988): ‘Atomic transition probabilities iron through nickel.’ J. Phys. Chem. Ref. Data (Suppl. 4) 17, 1–504. [5]

    Google Scholar 

  • Fuller, K. A. (1995): ‘Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation.’ J. Opt. Soc. Am. A 11, 3251–3260. [5]

    Google Scholar 

  • Fuller, K. A., Kattawar, G. W. (1988a): ‘Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. I.’ Opt. Lett. 13, 90–92. [5]

    Google Scholar 

  • Fuller, K. A., Kattawar, G. W. (1988b): ‘Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. II.’ Opt. Lett. 13, 1063–1065. [5]

    Google Scholar 

  • Furry, W. H. (1951): ‘Approximate wave functions for high energy electrons in Coulomb fields.’ Phys. Rev. 46, 391–396. [5]

    Google Scholar 

  • Furssow, W., Wlassow, A. (1936): ‘Zur Theorie der Verbreiterung von Spektrallinien in homogenem Gas.’ Physik Z. Sowjet Union 10, 378–412. [7]

    Google Scholar 

  • Furssow, V., Wlassow, A. (1939): ‘The breadth of spectral lines at large densities of a homogeneous gas.’ J. Phys. (USSR) 1, 335–340. [7]

    Google Scholar 

  • Gallagher, J. W., Rumble, J. R., Beaty, E. C. (1979): ‘Bibliography of Low Energy Electron and Photon Cross Section Data (January 75 through December 77).’ NBS Special Publication 426, Suppl. 1. [6]

    Google Scholar 

  • Gallagher, J. W., Brion, C. E., Samson, J. A. R., Langhoff, P. W. (1988): ‘Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes.’ J. Phys. Chem. Ref. Data 17, 9–153. [5]

    Google Scholar 

  • Gamache, R. R., Lynch, R., Neshyba, S. P. (1998): ‘New developments in the theory of pressure-broadening and pressure-shifting of spectral lines of H2O: The complex Robert–Bonamy formalism.’ J. Quant. Spectr. Rad. Transfer 59, 319–335. [7]

    Google Scholar 

  • Garibyan, G. M. (1953): ‘Bremsstrahlung and the creation of pairs in the field of the electron.’ Zh. Eksper. Teor. Fiz. 24, 617–621. [5]

    Google Scholar 

  • Gáspár, R. (1954): ‘Über eine Approximation des Hartree–Fockschen Potentials durch eine universelle Potentialfunktion.’ Acta Phys. Acad. Sci. Hung. 3, 263–286. [3]

    Google Scholar 

  • Gaunt, J. A. (1929): ‘On the triplets of helium.’ Phil. Trans. Roy. Soc. London, Ser. A 228, 151–196. [5]

    Google Scholar 

  • Gaunt, J. A. (1930): ‘V. Continuous absorption.’ Phil. Trans. Roy. Soc. London, Ser. A 229, 163–204. [5, 6]

    Google Scholar 

  • Gaustad, J. E. (1963): ‘The opacity of diffuse cosmic matter and the early stages of star formation.’ Astrophys. J. 138, 1050–1073. [6]

    Google Scholar 

  • Gear, C. W. (1971): Numerical Initial Value Problems in Ordinary Differential Equations. Prentice–Hall, Englewood Cliffs, NJ. [14]

    Google Scholar 

  • Gelinas, R. J. (1971): ‘Statistical aspects of the average atom model.’ Lawrence Radiation Laboratory (Livermore) report UCID-15844. [4]

    Google Scholar 

  • Gell-Mann, M., Low, F. (1951): ‘Bound states in quantum field theory.’ Phys. Rev. 84, 350–354. [5]

    Google Scholar 

  • Geltman, S. (1973): ‘Free-free radiation in electron-neutral atomic collisions.’ J. Quant. Spectr. Rad. Transfer 13, 601–613. [6]

    Google Scholar 

  • Generosa, J. J., Harris, R. A. (1970): ‘Effects of high rotational quantum numbers on R–K–R F–C factors.’ J. Chem. Phys. 53, 3147–3152. [3]

    Google Scholar 

  • Generosa, J. I., Harris, R. A., Sullo, L. R. (1971): ‘Franck–Condon factors for various air species.’ Air Force Weapons Laboratory report AFWL-TR-70-108. [5, 10]

    Google Scholar 

  • Gérardy, G. M., Ausloos, M. (1982): ‘Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres.’ Phys. Rev. B 25, 4204–4229. [5]

    Google Scholar 

  • Gerratt, J. (1971): ‘General theory of spin-coupled wave functions for atoms and molecules.’ Adv. Atom. Mol. Phys. 7, 141–219. [3]

    Google Scholar 

  • Gibson, G. E., Bayliss, N. S. (1933): ‘Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part I. Experimental, the absorption spectrum of chlorine.’ Phys. Rev. 44, 188–192. [6]

    Google Scholar 

  • Gilmore, F. R. (1965): ‘The contribution of generally-neglected band systems and continua to the absorption coefficient of high-temperature air.’ J. Quant. Spectr. Rad. Transfer 5, 125–135. [4, 7]

    Google Scholar 

  • Gilra, D. P.(1972): ‘Scientific Results from OAO.’ NASA report SP-31, Washington, DC, Government Printing Office. [6]

    Google Scholar 

  • Gingerich, O. (1970): ‘The ultraviolet solar opacity.’ In International Astronomical Union Symposium No. 36, Ultraviolet Stellar Spectra and Related Ground Based Observations. Eds. L. Houziaux, H. E. Butler; D. Reidel Publ. Co., Dordrecht-Holland, p. 140–142. [7]

    Google Scholar 

  • Gingerich, O., Latham, D. (1970): ‘The effect of silicon and carbon opacity on ultraviolet stellar spectra.’ In International Astronomical Union Symposium No. 36, Ultraviolet Stellar Spectra and Related Ground-Based Observations. Eds. L. Houziaux, H. E. Butler; D. Reidel Publ. Co., Dordrecht-Holland, p. 64–72. [7]

    Google Scholar 

  • Giordano, D., Capitelli, M., Colonna, G., Gorse, C. (1994): ‘Tables of internal partition functions and thermodynamic properties of high-temperature air species from 50 K to 100 000 K.’ European space Agency report ESA STR-237. [4]

    Google Scholar 

  • Givens, W. (1954): ‘Numerical computation of the characteristic values of a real symmetric matrix.’ Oak Ridge National Laboratory report ORNL 1574. [3]

    Google Scholar 

  • Glauber, R. J. (1963a): ‘Coherent and incoherent states of the radiation field.’ Phys. Rev. 131, 2766–2788. [5]

    Google Scholar 

  • Glauber, R. J. (1963b): ‘Photon correlations.’ Phys. Rev. Lett. 10, 84–86. [5]

    Google Scholar 

  • Godfredsen, E. (1966): ‘Atomic term energies for atoms and ions with 11 to 28 electrons.’ Astrophys. J. 145, 308–332. [3]

    Google Scholar 

  • Godson, W. L. (1953): ‘The evaluation of infra-red radiative fluxes due to atmospheric water vapour.’ Quart. J. Roy. Met. Soc. 79, 367–379. [7]

    Google Scholar 

  • Godson, W. L. (1955): ‘The computation of infrared transmission by atmospheric water vapor.’ J. Meteorol. 12, 272–284. [7]

    Google Scholar 

  • Goldberg, L. (1935): ‘Relative multiplet strengths in LS coupling.’ Astrophys. J. 82, 1–25. [5]

    Google Scholar 

  • Goldberg, L. (1936): ‘Note on absolute multiplet strengths.’ Astrophys. J. 84, 11–13. [5]

    Google Scholar 

  • Golden, S. A. (1962): ‘Approximate spectral absorption coefficients for pure rotational transitions in diatomic molecules.’ J. Quant. Spectr. Rad. Transfer 2, 201–211. [7]

    Google Scholar 

  • Golden, S. A. (1967a): ‘Approximate spectral absorption coefficients of electronic transitions in diatomic molecules.’ J. Quant. Spectr. Rad. Transfer 7, 225–250. [7]

    Google Scholar 

  • Golden, S. A. (1967b): ‘The Doppler analog of the Elsasser band model.’ J. Quant. Spectr. Rad. Transfer 7, 483–494. [7]

    Google Scholar 

  • Golden, S. A. (1968): ‘The Doppler analog of the Elsasser band model – II. Integrated emissivity.’ J. Quant. Spectr. Rad. Transfer 8, 877–897. [7]

    Google Scholar 

  • Golden S. A. (1969): ‘The Voigt analog of an Elsasser band.’ J. Quant. Spectr. Rad. Transfer 9, 1067–1081. [7]

    Google Scholar 

  • Goldman, A., Kyle, T. G. (1968): ‘A comparison between statistical model and line-by-line calculations with applications to the 9.6 μm ozone and the 2.7 μm water vapor bands.’ Appl. Optics 7, 1167–1176. [7]

    Google Scholar 

  • Goldstein, H. (1950): Classical Mechanics. Addison-Wesley Publ. Co., Inc., Reading, MA, Palo Alto, London, Dallas, Atlanta. [3]

    Google Scholar 

  • Goldstein, R. (1964): ‘Measurements of infrared absorption by water vapor at temperatures to 1000 K.’ J. Quant. Spectr. Rad. Transfer 4, 343–352. [11, 13]

    Google Scholar 

  • Gombás, P. (1949): Die Statistische Theorie des Atoms und ihre Awendungen. Springer-Verlag, Wien. [3]

    Google Scholar 

  • Gombás, P. (1956): ‘Statistische Behandlung des Atoms.’ In Handbuch der Physik, Atome II, XXXVI. Ed. S. Flügge; Springer-Verlag, Berlin, Göttingen, Heidelberg, p. 109–231. [3]

    Google Scholar 

  • Goody, R. M. (1952): ‘A statistical model for water vapour absorption.’ Quart. J. Roy. Met. Soc. 78, 165–169. [7]

    Google Scholar 

  • Goody, R. M. (1964): Atmospheric Radiation, I. Theoretical Basis. Clarendon Press, Oxford. [2]

    Google Scholar 

  • Goody, R. M., Yung, Y L. (1989): Atmospheric Radiation: Theoretical Basis. 2nd ed., Oxford University Press, New York, Oxford. [7]

    Google Scholar 

  • Goody, R., West, R., Chen, L., Crisp, D. (1989): ‘The correlated-k method for radiation calculations in nonhomogeneous atmospheres.’ J. Quant. Spectr. Rad. Transfer 42, 539–550. [7]

    Google Scholar 

  • Gordon, R. G. (1965): ‘Molecular motion in infrared and Raman spectra.’ J. Chem. Phys. 43, 1307–1312. [5, 7]

    Google Scholar 

  • Gordon, R. G. (1968): ‘Correlation functions for molecular motion.’ Adv. Mag. Resonance 3, 1–42. [7]

    Google Scholar 

  • Gordy, W., Smith, W. V., Trambarulo, R. F. (1953): Microwave Spectroscopy. John Wiley & Sons, Inc., New York, and Chapman & Hall, Ltd., London. [4]

    Google Scholar 

  • Graboske Jr., H. C., Harwood, D. J., DeWitt, H. E. (1971): ‘Thermodynamic properties of nonideal gases. II. The strongly ionized gas.’ Phys. Rev. A 3, 1419–1431. [4]

    Google Scholar 

  • Grant, I. P. (1958): ‘Calculation of Gaunt factors for free – free transitions near positive ions.’ Mon. Not. Roy. Astron. Soc. 118, 241–257. [7]

    Google Scholar 

  • Grant, I. P. (1961): ‘Relativistic self-consistent fields.’ Proc. Roy. Soc. (London), Ser. A 262, 555–576. [3]

    Google Scholar 

  • Grant, I. P. (1992): ‘Relativistic electron structure theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 513–518. [3, 5]

    Google Scholar 

  • Grant, I. P. (1994): ‘Relativistic electronic structure of atoms and molecules.’ Adv. Atom. Mol. Phys. 32, 169–186. [3]

    Google Scholar 

  • Grant, I. P. (1996): ‘Relativistic atomic structure.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 258–286. [3, 5]

    Google Scholar 

  • Grant, W. B. (1990): ‘Water vapor absorption coefficients in the 8–13 μm spectral region: A critical review.’ Appl. Optics 29, 451–462. [7]

    Google Scholar 

  • Gray, C. G. (1971): ‘Theory of collision-induced absorption for spherical top molecules.’ J. Phys. B 4, 1661–1669. [8]

    Google Scholar 

  • Gray, L. D. (1963): ‘Theoretical calculations of equilibrium infrared gas emissivities from spectroscopic data. Representative radiative energy calculations for transparent and optically dense media.’ Ph. D. Thesis, California Institute of Technology. Pasadena, CA. [13]

    Google Scholar 

  • Gray, L. D., Penner, S. S. (1965): ‘Approximate band absorption calculations for methane.’ J. Quant. Spectr. Rad. Transfer 5, 611–620. [5, 7]

    Google Scholar 

  • Green, J. M. (1960): ‘Fermi–Dirac averages of the free-free hydrogenic Gaunt factor.’ RAND Corp. report RM-2580-AEC. [6]

    Google Scholar 

  • Green, J. M. (1964): ‘The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom.’ J. Quant. Spectr. Rad. Transfer 4, 639–662. [3, 4]

    Google Scholar 

  • Green, S. (1990): ‘Raman Q-branch line shapes as a test of the H2-Ar intermolecular potential.’ J. Chem. Phys. 93, 1496–1501. [7]

    Google Scholar 

  • Green, S., Boissoles, J., Boulet, C. (1988): ‘Accurate collision-induced line coupling parameters for the fundamental band of CO in He.’ J. Quant. Spectr. Rad. Transfer 39, 33–42. [7]

    Google Scholar 

  • Greenberg, J. M., Libelo, L., Lind, A., Wang, R. T. (1962): ‘Scattering by nonspherical particles whose size is of the order of the wave length.’ Electromagnetic Theory and Antennas Symposium. Ed. E. C. Jordan; Pergamon Press Ltd., Oxford, England, p. 81–92. [5]

    Google Scholar 

  • Greene, J. (1959): ‘Bremsstrahlung for a Maxwellian gas.’ Astrophys. J. 130, 693–701. [6]

    Google Scholar 

  • Grevesse, N. (1984): ‘Accurate atomic data and solar photospheric spectroscopy.’ Phys. Scripta T8, 49–58. [13]

    Google Scholar 

  • Grevesse, N., Sauval, A. J., van Dishoeck, E. F. (1984): ‘An analysis of vibration–rotation lines of OH in the solar infrared spectrum.’ Astron. Astrophys. 141, 10–16. [5, 13]

    Google Scholar 

  • Griem, H. R. (1962): ‘Wing formulae for Stark broadened hydrogen and hydrogenic lines.’ Astrophys. J. 136, 422–430. [7]

    Google Scholar 

  • Griem, H. (1964): Plasma Spectroscopy. McGraw-Hill Book Co., Inc., New York, San Francisco, Toronto, London. [4, 5, 7, 12, 13]

    Google Scholar 

  • Griem, H. R. (1974): Spectral line broadening by plasmas. Academic Press, New York, London. [7]

    Google Scholar 

  • Griem, H. R., Shen, K. Y. (1961): ‘Stark broadening of hydrogenic ion lines in a plasma.’ Phys. Rev. 122, 1490–1496. [7]

    Google Scholar 

  • Griem, H. R., Baranger, M., Kolb, A. C., Oertel, G. (1962): ‘Stark broadening of neutral helium lines in a plasma.’ Phys. Rev. 125, 177–195. [7]

    Google Scholar 

  • Grimaldi, F., Grimaldi-Lecourt, A. (1982): ‘Quasi-static electron density fluctuations of atoms in hot compressed matter.’ J. Quant. Spectr. Rad. Transfer 27, 373–385. [3, 4]

    Google Scholar 

  • Gross, E. P. (1955): ‘Shape of collision-broadened spectral lines.’ Phys. Rev. 97, 395–403. [7]

    Google Scholar 

  • Gross, E. K. U. (2009): Websites: http://users.physik.fu-berlin.de/~ag-gross/ and http://online.itp.ucsb.edu/online/cem02/gross/. [3]

  • Gross, E. K. U., Dreizler, R. M. (Eds.) (1995): Density Functional Theory. Proc. NATO Advanced Study Institute. Plenum ASI series B 337, Spinger-Verlag New York. [3]

    Google Scholar 

  • Gross, E. K. U., Toepfer, A., Jacob, B., Horbatsch, M., Luedde, H. J., Dreizler, R. M. (1983): ‘Density functional approach to molecular structure and atomic scattering.’ In Molecular Ions, Geometric and Electronic Structures, Eds. J. Berkowitz and K. O. Groeneveld, Plenum Press, New York, p. 419–422. [3]

    Google Scholar 

  • Gruner, D., Brumer, P. (1987): ‘Efficient evaluation of harmonic polyatomic Franck–Condon factors.’ Chem. Phys. Lett. 138, 310–314. [5]

    Google Scholar 

  • Guest, M. F., Wilson, S. (1981): ‘The use of vector processors in quantum chemistry: Experience in the U. K.’ In Supercomputers in Chemistry. Eds. P. Lykos and I. Shavitt; ACS Symposium Ser. 173, Am. Chem. Soc. Washington. [3]

    Google Scholar 

  • Gustafson, B. Å. S. (1996): ‘Microwave analog to light scattering measurements: A modern implementation of a proven method to achieve precise control.’ J. Quant. Spectr. Rad. Transfer 55, 663–672. [5]

    Google Scholar 

  • Gustafsson, B., Bell, R. A., Eriksson, K., Nordlund, Å. (1975): ‘A grid of madel atmospheres for metal-deficient giant stars I.’ Astron. Astrophys. 42, 407–432. [7]

    Google Scholar 

  • Gustafsson, T., Levinson, H. J. (1981): ‘Shape resonances in diatomic molecules: NO.’ Chem. Phys. Lett. 78, 28–31. [5]

    Google Scholar 

  • Gyldén, N., Einarsson, B. (1969): ‘Classical calculation of inverse bremsstrahlung cross sections in screened potentials.’ J. Quant. Spectr. Rad. Transfer 9, 1117–1132. [6]

    Google Scholar 

  • Hakel, P., Sherrill, M. E., Mazevet, S., Abdallah Jr., J., Colgan, J., Kilcrease, D. P., Magee, N. H., Fontes, C. J., Zhang, H. L. (2006): ‘The new Los Alamos opacity code ATOMIC.’ J. Quant. Spectr. Rad. Transfer 99 265–271. [14]

    Google Scholar 

  • Hakim, R., Mangeney, A. (1971): ‘Collective oscillations of a relativistic radiating electron plasma.’ Phys. Fluids 14, 2751–2761. [6]

    Google Scholar 

  • Hamermesh, M. (1962): Group Theory and Its Application to Physical Problems. Addison-Wesley Publ. Co., Reading, MA, London. [7]

    Google Scholar 

  • Hamilton, D. R. (1947): ‘The resonance radiation induced by elliptically polarized light.’ Astrophys. J. 106, 457–465. [5]

    Google Scholar 

  • Hammond, B. L., Lester, Jr., W. A., Reynolds, P. J. (1994): Monte Carlo Methods in Ab-Initio Quantum Chemistry. World Scientific, London, Singapore, River Edge, New Jersey. [3]

    Google Scholar 

  • Hansen, J. P. (1973): ‘Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one-component plasma.’ Phys. Rev. A 8, 3096–3109. [6]

    Google Scholar 

  • Hansen, W. W. (1935): ‘A new type of expansion in radiation problems.’ Phys. Rev. 47, 139–143. [5]

    Google Scholar 

  • Harris III, D. L. (1948): ‘On the line-absorption coefficient due to Doppler effect and damping.’ Astrophys. J. 108, 112–115. [7]

    Google Scholar 

  • Harris, F. E. (1960): ‘Molecular orbital studies of diatomic molecules. I. Method of computations of heteronuclear systems.’ J. Chem. Phys. 32, 3–18. [3]

    Google Scholar 

  • Harris, F. E. (1967): ‘Open-shell orthogonal molecular orbital theory.’ J. Chem. Phys. 46, 2769–2776. [3]

    Google Scholar 

  • Harris, R., Blackledge, M., Generosa, J. (1969): ‘Rydberg–Klein–Rees F–C factors for the O2 Schumann-Runge system including high vibrational quantum numbers.’ J. Mol. Spectr. 30, 506–512. [3]

    Google Scholar 

  • Harrison, A. J., Cederholm, B. J., Terwilliger, M. A. (1959): ‘Absorption of acyclic oxygen compounds in the vacuum ultraviolet. I. Alcohols.’ J. Chem. Phys. 30, 355–356. [5]

    Google Scholar 

  • Harter, W. G. (1996): ‘Molecular symmetry and dynamics.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 378–393. [3]

    Google Scholar 

  • Harter, W. G., Patterson, C. W., da Paixao, F. J. (1978): ‘Frame transformation relations and multipole transitions in symmetric polyatomic molecules.’ Rev. Mod. Phys. 50, 37–83. [3]

    Google Scholar 

  • Hartmann, J. M., Taine, J., Bonamy, J., Labani, B., Robert, D. (1987): ‘Collisional broadening of rotation–vibration lines for asymmetric–top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range.’ J. Chem. Phys. 86, 144–156. [7]

    Google Scholar 

  • Hartree, D. R. (1957): The Calculation of Atomic Structures. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London. [3]

    Google Scholar 

  • Hartree, D. R. (1958): Numerical Analysis. 2nd ed., Oxford University Press, London. [4]

    Google Scholar 

  • Hauschildt, P. H. (1992): ‘A fast operator perturbation method for the solution of the special relativistivc equation of radiative transfer in spherical symmetry.’ J. Quant. Spectr. Rad. Transfer 47, 433–453. [14]

    Google Scholar 

  • Hauschildt, P. H. (1993): ‘Multi-level non-LTE radiative transfer in expanding shells.’ J. Quant. Spectr. Rad. Transfer 50, 301–318. [14]

    Google Scholar 

  • Hauschildt, P. H., Störzer, H., Baron, E. (1994): ‘Convergence properties of the accelerated Λ-iteration method for the solution of radiative transfer problems.’ J. Quant. Spectr. Rad. Transfer 51, 875–891. [14]

    Google Scholar 

  • Hauschildt, P. H., Starrfield, S., Shore, S. N., Allard, F., Baron, E. (1995): ‘The physics of early nova spectra.’ Astrophys. J. 447, 829–847. [14]

    Google Scholar 

  • Hauschildt, P. H., Baron, E., Starrfield, S., Allard, F. (1996): ‘The effect of Fe II non-LTE on nova atmospheres and spectra.’ Astrophys. J. 462, 386–403. [14]

    Google Scholar 

  • Hauschildt, P. H., Allard, F., Alexander, D. R., Baron, E. (1997a): ‘Non-local thermodynamic equilibrium effects of Ti I in M dwarfs and giants.’ Astrophys. J. 488, 428–442. [14]

    Google Scholar 

  • Hauschildt, P. H., Baron, E., Allard, F. (1997b): ‘Parallel implementation of the PHOENIX generalized stellar atmosphere program.’ Astrophys. J. 483, 390–398. [14]

    Google Scholar 

  • Hauschildt, P. H., Lowenthal, D. K., Baron, E. (2001): ‘Parallel implementation of the PHOENIX generalized stellar atmosphere program. III. A parallel algorithm for direct opacity sampling.’ Astrophys. J. Suppl. Ser. 134, 323–329. [14]

    Google Scholar 

  • Hay, P. J. (1981): ‘Electronic structure of molecules using relativistic effective core potentials.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 383–402. [3]

    Google Scholar 

  • Head-Gordon, M., Artacho, E. (2008): ‘Chemistry on the computer.’ Phys. Today April, 58–63. [3]

    Google Scholar 

  • Heaps, H. S., Herzberg, G. (1952): ‘Intensity distribution in the rotation–vibration spectrum of the OH molecule.’ Z. Physik 133, 48–64. [5]

    Google Scholar 

  • Hefferlin, R., Kuznetsova, L. A. (1999): ‘Systematics of diatomic molecular transition moments.’ J. Quant. Spectr. Rad. Transfer 62, 765–774. [3, 5]

    Google Scholar 

  • Hehre, W. J. (1986): Ab Initio Molecular Orbital Theory. Wiley, New York. [3]

    Google Scholar 

  • Heitler, W. (1954). The Quantum Theory of Radiation. Clarendon Press, Oxford. [5, 7]

    Google Scholar 

  • Helgaker, T. (1992): ‘Calculation of geometrical derivatives in molecular electronic structure theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 353–422. [5]

    Google Scholar 

  • Heller, E. J. (1981): ‘The semiclassical way to molecular spectroscopy.’ Acc. Chem. Res. 14, 368–375. [5]

    Google Scholar 

  • Henke, B. L., Elgin, R. L. (1970): ‘X-ray absorption tables for the 2-to-200 Å region.’ In Advances in X-Ray Analysis 13. Eds. B. L. Henke, J. B. Newkirk, G. R. Mallett; Plenum Press, New York, NY, p. 639–665. [5]

    Google Scholar 

  • Herman, F., Skillman, S. (1963): Atomic Structure Calculations. Prentice Hall, Inc., Englewood Cliffs, NJ. [3]

    Google Scholar 

  • Herman, R. C., Wallis, R. F. (1955): ‘Influence of vibration–rotation interaction on line intensities in vibration–rotation bands of diatomic molecules.’ J. Chem. Phys. 23, 637–646. [5, 7]

    Google Scholar 

  • Hermann, M. R. (1984): ‘Explicit Hilbert-space representations of atomic and molecular photoabsorption spectra.’ Ph. D. Dissertation, Indiana University, Bloomington, IN. [5]

    Google Scholar 

  • Herzberg, G. (1945): Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Co., Inc., Princeton, NJ, Toronto, London, New York. [3, 4, 5]

    Google Scholar 

  • Herzberg, G. (1950): Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. D. van Nostrand Co., Inc., Princeton, NJ, Toronto, London, New York. [3, 4, 5]

    Google Scholar 

  • Herzberg, G. (1966): Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. D. Van Nostrand Co., Inc., Princeton, NJ, Toronto, London, New York. [3, 5, 7]

    Google Scholar 

  • Hess Jr., B. A., Schaad, L. J., Čársky, P., Zahradník, R. (1986): ‘Ab initio calculations of vibrational spectra and their use in the identification of unusual molecules.’ Chem. Rev. 86, 709–730. [5]

    Google Scholar 

  • Hesser, J. E. (1968): ‘Absolute transition probabilities in ultraviolet molecular spectra.’ J. Chem. Phys 48, 2518–2535. [5]

    Google Scholar 

  • Hibbert, A. (1975): ‘CIV3 – A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths.’ Comp. Phys. Comm. 9, 141–172. [3]

    Google Scholar 

  • Hinderling, J., Sigrist, M. W., Kneubühl, F. K. (1987): ‘Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8–14 μm atmospheric window.’ Infrared Phys. 27, 63–120. [7]

    Google Scholar 

  • Hilborn, R. C. (1982): ‘Einstein coefficients, cross sections, f values, dipole moments, and all that’ Am. J. Phys. 50, 982–986; updated: http://arxiv.org/abs/physics/0202029. [5]

  • Hirota, F. (1976): ‘Calculation of the molecular photoionization cross sections in the UV region. I. Diatomic molecules.’ J. Electron Spectr. Related Phenom. 9, 149–167. [5]

    Google Scholar 

  • Hirschfelder, J. O., Magee, J. L. (1945): ‘Opacity and thermodynamic properties of air at high temperatures.’ Los Alamos Scientific Laboratory report LA-296. [1]

    Google Scholar 

  • Hirschfelder, J. O., Curtiss, C. F., Bird, R. B. (1954): Molecular Theory of Gases and Liquids. J. Wiley & Sons, Inc., New York, Chapman & Hall, Limited, London. [9]

    Google Scholar 

  • Hjerting, F. (1938): ‘Tables facilitating the calculation of line absorption coefficients.’ Astrophys. J. 88, 508–515. [7]

    Google Scholar 

  • Hochstrasser, UẆ. (1972): ‘Orthogonal Polynomials,’ Chap. 22 In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz, M., Stegun, I. A., (Eds.) (1972), NBS Applied Mathematics Series 55, U.S. Dept. Commerce, Washington, DC. Tenth printing, December 1972, with corrections. [13]

    Google Scholar 

  • Hönl, H. (1926): ‘Zum Intensitätsproblem der Spektrallinien.’ Ann. Phys. Ser. 4 79, 273–323. [5]

    Google Scholar 

  • Hönl, H., London, F. (1925): ‘Über die Intensitäten der Bandenlinien.’ Z. Phys. 33, 803–809. [5]

    Google Scholar 

  • Hohenberg, P., Kohn, W. (1964): ‘Inhomogeneous Electron Gas.’ Phys. Rev. B 136, 864–871. [3]

    Google Scholar 

  • Hollstein, M., Lorents, D. C., Peterson, J. R., Sheridan, J. R. (1969): ‘Time of flight measurement of N2 and N2 + lifetimes.’ Can. J. Chem. 47, 1858–1861. [5]

    Google Scholar 

  • Holtsmark, J. (1919a): ‘Über die Verbreiterung von Spektrallinien.’ Ann. Physik 58, 577–630. [7]

    Google Scholar 

  • Holtsmark, J. (1919b): ‘Über die Verbreiterung von Spektrallinien.’ Physik. Z. 20, 162–168. [7]

    Google Scholar 

  • Holtsmark, J. (1924): ‘Über die Verbreiterung von Spektrallinien. II.’ Physik. Z. 25, 73–84. [7]

    Google Scholar 

  • Holweger, H., Müller, E. A. (1974): ‘The photospheric barium spectrum: Solar abundance and collision broadening of Ba II lines by hydrogen.’ Solar Physics 39, 19–30. [5]

    Google Scholar 

  • Hottel, H. C. (1954): ‘Radiant heat transfer.’ In Heat Transmission. Ed. W. H. McAdams; 3rd ed., McGraw-Hill Book Co., Inc., New York, p. 55–125. [7]

    Google Scholar 

  • Houdeau, J. P., Boulet, C., Robert, D. (1985): ‘A theoretical and experimental study of the infrared line shape from resonance to the wings for uncoupled lines.’ J. Chem. Phys. 82, 1661–1673. [7]

    Google Scholar 

  • Hougen, J. T., Watson, J. K. G. (1965): ‘Anomalous rotational line intensities in electronic transitions of polyatomic molecules: Axis-switching.’ Can. J. Phys. 43, 298–320. [5, 7]

    Google Scholar 

  • Hougen, J. T., Bunker, P. R., Johns, J. W. C. (1970): ‘The vibration–rotation problem in triatomic molecules allowing for a large-amplitude bending motion.’ J. Mol. Spectr. 34, 136–172. [3]

    Google Scholar 

  • Hoy, A. R., Bunker, P. R. (1974): ‘The effective rotation-bending Hamiltonian of a triatomic molecule and its application to extreme centrifugal distortion in the water molecule.’ J. Mol. Spectr. 52, 439–456. [3]

    Google Scholar 

  • Hoy, A. R., Mills, I. M., Strey, G. (1972): ‘Anharmonic force constant calculations.’ Mol. Phys. 24, 1265–1290. [3]

    Google Scholar 

  • Hsu, D. K. (1981): ‘Experimental lifetimes, F–C factors, and vibrational and rotational oscillator strengths.’ In Handbook of Spectroscopy. III. Ed. J. W. Robinson, CRC Press, Boca Raton, p. 269–402. [5]

    Google Scholar 

  • Hubač, I., Svrček, M. (1992): ‘Many-body perturbation theory for vibrational-electronic molecular Hamiltonian.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 471–512. [3]

    Google Scholar 

  • Hubbard, W. B. (1966): ‘Studies in stellar evolution. V. Transport coefficients of degenerate stellar matter.’ Astrophys. J. 146, 858–870. [9]

    Google Scholar 

  • Hubbard, W. B., Lampe, M. (1969): ‘Thermal conduction by electrons in stellar matter.’ Astrophys. J. Suppl. Ser. 18, 297–346. [9]

    Google Scholar 

  • Huber, D. L., van Vleck, J. H. (1966): ‘The role of Boltzmann factors in line shape.’ Rev. Mod. Phys. 38, 187–204. [8]

    Google Scholar 

  • Huber, K. P., Herzberg, G. (1979): Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules. Van Nostrand Reinhold Co., New York. [3]

    Google Scholar 

  • Huebner, W. F. (1967): ‘Some estimates of the radiative Rosseland mean opacity.’ J. Quant. Spectr. Rad. Transfer 7, 943–949. [11]

    Google Scholar 

  • Huebner, W. F. (1968): ‘Electron–Electron Interaction from Single-Electron Theory.’ Los Alamos Scientific Laboratory report LA-3899. [3]

    Google Scholar 

  • Huebner, W. F. (1970): ‘Electron–electron interaction in energy level determination.’ J. Quant. Spectr. Rad. Transfer 10, 949–973; 11, 142. [3]

    Google Scholar 

  • Huebner, W. F. (1986): ‘Atomic and Radiative Processes in the Solar Interior.’ In Physics of the Sun. Ed. P. A. Sturrock; D. Reidel Publishing Co., Dordrecht, Boston, Lancaster, Tokyo, Vol. 1, p. 33–75. [1, 6, 13]

    Google Scholar 

  • Huebner, W. F., Fullerton, L. W. (1974): ‘Status of molecular opacities of interest in the modeling of a proto-solar nebula.’ In Exploration of the Planetary System, Eds. A. Woszczyk and C. Iwaniszewska. IAU Symposium 65, Torun, Poland, D. Reidel Pub. Co. Dordrecht-Holland, Boston, p. 13–20. [2]

    Google Scholar 

  • Huebner, W. F., Stuart, R. S. (1964): ‘Status Report on Opacity Calculations.’ Los Alamos Scientific Laboratory report LAMS-3002. [5]

    Google Scholar 

  • Huebner, W. F., Stuart, R. S. (1965): ‘Status Report on Opacity Calculations.’ Los Alamos Scientific Laboratory report LAMS-3002 Suppl. I. [5]

    Google Scholar 

  • Huebner, W. F., Mayer, H., Meyerott, R. E., Penner, S. S., (Eds.) (1965): ‘Opacities. Proceedings of the second international conference.’ J. Quant. Spectr. Rad. Transfer 5, 1–280. [1, 13]

    Google Scholar 

  • Huebner, W. F., Generosa, J., Harris, R. (1967): ‘Status Report on Opacity Calculations.’ Los Alamos Scientific Laboratory report LA-3002-MS Suppl. II. [5]

    Google Scholar 

  • Huebner, W. F., Merts, A. L., Magee Jr., N. H., Argo, M. F. (1977): Astrophysical Opacity Library. Los Alamos Scientific Laboratory report LA-6760-M. [10]

    Google Scholar 

  • Huebner, W. F., Keady, J. J., Lyon, S. P. (1992): ‘Solar Photo Rates for Planetary Atmospheres and Atmospheric Pollutants.’ Astrophys. Space Sci. 195, 1–294. [4, 5]

    Google Scholar 

  • Huffman, R. E., Tanaka, Y., Larrabee, J. C. (1963): ‘Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions.’ J. Chem. Phys. 39, 902–909. [5]

    Google Scholar 

  • Hummer, D. G. (1962): ‘Non-coherent scattering.’ Mon. Not. Roy. Astron. Soc. 125, 21–37. [7]

    Google Scholar 

  • Hummer, D. G. (1965): ‘The Voigt function. An eight-significant-figure table and generating procedure.’ Memoirs, Roy. Astron. Soc. 70, 1–31. [7]

    Google Scholar 

  • Hummer, D. G. (1991): ‘The opacity project and the practical utilization of atomic data.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 431–439. [1, 3]

    Google Scholar 

  • Hummer, D. G., Mihalas, D. (1988): ‘The equation of state for stellar envelopes. I. An occupation probability formalism for the truncation of internal partition functions.’ Astrophys. J. 331, 794–814. [4]

    Google Scholar 

  • Hund, F. (1925a): ‘Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel.’ Z. Physik 33, 345–371. [7]

    Google Scholar 

  • Hund, F. (1925b): ‘Zur Deutung verwickelter Spektren. II.’ Z. Physik 34, 296–308. [7]

    Google Scholar 

  • Hundley, R. O. (1962): ‘Bremsstrahlung During the Collision of Low-Energy Electrons with Neutral Atoms and Molecules.’ Rand Corporation report RM 3334-ARPA. [6]

    Google Scholar 

  • Hüpper, B., Eckhardt, B. (1999): ‘Uniform semiclassical calculation of the direct part of the photodissociation cross section of water.’ J. Chem. Phys. 110, 11749–11755. [5]

    Google Scholar 

  • Hüpper, B., Eckhardt, B., Engel, V. (1997): ‘Semiclassical photodissociation cross section for H2O.’ J. Phys. B 30, 3191–3209. [5]

    Google Scholar 

  • Hurley, A. C. (1962): ‘Equivalence of Rydberg–Klein–Rees and simplified Dunham potentials.’ J. Chem. Phys. 36, 1117–1118. [3]

    Google Scholar 

  • Hurley, A. C. (1976a): Introduction to the Electron Theory of Small Molecules. Academic Press, London, New York, p. 165–168. [3]

    Google Scholar 

  • Hurley, A. C. (1976b): Electron Correlation in Small Molecules. Theoretical Chemistry Monographs 6. Academic Press, London, New York. [3, 5]

    Google Scholar 

  • Iachello, F., Levine, R. D. (1995): Algebraic Theory of Molecules. Oxford University Press. [5]

    Google Scholar 

  • Iben Jr., I. (1968): ‘Electron conduction in Red Giants.’ Astrophys. J. 154, 557–579. [9]

    Google Scholar 

  • Iben Jr., I. (1975): ‘Thermal pulses; p-capture, α-capture s-process nucleosynthesis; and convective mixing in a star of intermediate mass.’ Astrophys. J. 196, 525–547. [9]

    Google Scholar 

  • Iglesias, C. A., Rogers, F. J. (1991): ‘Opacities for the solar radiative interior.’ Astrophys. J. 371, 408–417. [13]

    Google Scholar 

  • Iglesias, C. A., Rogers, F. J. (1996): ‘Updated Opal Opacities.’ Astrophys. J. 464, 943–953. [13]

    Google Scholar 

  • Infeld, L. (1947): ‘The influence of the width of the gap upon the theory of antennas.’ Quart. Appl. Math. 5, 113–132. [5]

    Google Scholar 

  • Inglis, D. R. (1931): ‘Energy relations in complex spectra.’ Phys. Rev. 38, 862–872. [3]

    Google Scholar 

  • Ishikawa, Y., Malli, G. L. (1981): ‘Fully relativistic effective core potentials (FRECP).’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 363–382. [3]

    Google Scholar 

  • Ishikawa, Y., Kaldor, U. (1996): ‘Relativistic many-body calculations on atoms and molecules.’ In Computational Chemistry: Reviews of Current Trends. Ed., J. Leszczynski, World Scientific, Singapore, New Jersey, London, Hong Kong, Bangalore, Taipei., p. 1–52. [3]

    Google Scholar 

  • Islampour, R. (1989): ‘Electronic spectral line shape of a polyatomic molecule.’ Chem. Phys. 133, 425–435. [7]

    Google Scholar 

  • Islampour, R., Kasha, M. (1983a): ‘Molecular translational-rovibronic Hamiltonian. I. Non-linear molecules.’ Chem. Phys. 74, 67–76. [7]

    Google Scholar 

  • Islampour, R., Kasha, M. (1983b): ‘Molecular translational-rovibronic Hamiltonian. II. Linear molecules.’ Chem. Phys. 75, 157–164. [7]

    Google Scholar 

  • Islampour, R., Lin, S. H., (1991): ‘A new expression for multidimensional F–C integrals.’ Trends Chem. Phys. 1 249–275. [5]

    Google Scholar 

  • Islampour, R., Sutcliffe, B. T. (1987): ‘Theories of electronic spectral bandshape functions of molecules.’ Iran J. Chem. - Chem. Eng. 9, 3–25. [7]

    Google Scholar 

  • Islampour, R., Dehestani, M., Lin, S. H. (1999): ‘A new expression for multidimensional Franck–Condon integrals.’ J. Mol. Spectr. 194, 179–184. [5]

    Google Scholar 

  • Isnard, P., Boulet, C., Robert, D., Galatry, L. (1977): ‘Line-widths in the vibration–rotation spectra of diatomic molecules perturbed by tetrahedral molecules.’ Mol. Phys. 33, 259–280. [7]

    Google Scholar 

  • Isobe, S. (1971): ‘Graph of scattering for spherical particles and application to interstellar extinction.’ Ann. Tokyo Astron. Obs. 12, 263–285. [5]

    Google Scholar 

  • Itikawa, Y. (1978a): ‘Vibrational-rotational structure in the angular distribution and intensity of photoelectrons from diatomic molecules.’ Chem. Phys. 28, 461–471. [5]

    Google Scholar 

  • Itikawa, Y. (1978b): ‘Vibrational-rotational structure in the angular distribution and intensity of photoelectrons from diatomic molecules. II. H2.’ Chem. Phys. 30, 109–117. [5]

    Google Scholar 

  • Itikawa, Y. (1987): ‘Asymmetry parameters of the angular distribution of photoelectrons form the hydrogen molecule.’ Comments At. Mol. Phys. 20, 51–62. [5]

    Google Scholar 

  • Itikawa, Y., Hayashi, M., Ichimura, A., Onda, K., Sakimoto, K. Takayanagi, K., Nakamura, M., Nishimura, H., Takayanagi, T. (1986): ‘Cross sections for collisions of electrons and photons with nitrogen molecules.’ J. Phys. Chem. Ref. Data 15, 985–1010. [6]

    Google Scholar 

  • Itoh, N., Kohyama, Y. (1993): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. II. Impurity scattering.’ Astrophys. J. 404, 268–270. [9]

    Google Scholar 

  • Itoh, N., Kohyama, Y. (1994): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. II. Impurity scattering.’ Astrophys. J. 420, 943. [9]

    Google Scholar 

  • Itoh, N., Mitake, S., Iyetomi, H., Ichimaru, S. (1983): ‘Electrical and thermal conductivities of dense matter in the liquid metal phase. I. High-temperature results.’ Atrophys. J. 273, 774–782. [9]

    Google Scholar 

  • Itoh, N., Kohyama, Y., Matsumoto, N., Seki, M. (1984): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase.’ Astrophys. J. 285, 758–765. [9]

    Google Scholar 

  • Itoh, N., Nakagawa, M., Kohyama, Y. (1985): ‘Relativistic free–free opacity for high-temperature stellar plasma.’ Astrophys. J. 294, 17–22. [6]

    Google Scholar 

  • Itoh, N., Kojo, K., Nakagawa, M. (1990): ‘Relativistic free–free Gaunt factor of the dense high-temperature stellar plasma. II. Carbon and oxygen plasmas.’ Astrophys. J. Suppl. Ser. 74, 291–314. [6]

    Google Scholar 

  • Itoh, N., Hayashi, H., Kohyama, Y. (1993): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. III. Inclusion of lower densities.’ Astrophys. J. 418, 405–413. [9]

    Google Scholar 

  • Itoh, N., Hayashi, H., Kohyama, Y. (1994): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. III. Inclusion of lower densities.’ Astrophys. J. 436, 418. [9]

    Google Scholar 

  • Itoh, N., Sakamoto, T., Kusano, S., Nozawa, S., Kohyama, Y. (2000): ‘Relativistic thermal bremsstrahlung Gaunt factor for the intracluster plasma. II. Analytic fitting formulae.’ Astrophys. J. Suppl. Ser. 128, 125–138. [6]

    Google Scholar 

  • Iwata, S., Nagukura, S. (1974): ‘Theoretical study of the photoelectron intensities and angular distributions.’ Mol. Phys. 27, 425–440. [5]

    Google Scholar 

  • Jackson, J. D. (1962): Classical Electrodynamics. John Wiley & Sons, New York, p. 459. [9]

    Google Scholar 

  • Jacobsohn, B. A. (1947): ‘The opacity of uranium at high temperature.’ Ph. D. Dissertation, Dept. Physics, University of Chicago, Chicago, IL. [1, 5, 7]

    Google Scholar 

  • Jahn, H. A., Hope, J. (1954): ‘Symmetry properties of the Wigner 9j symbol.’ Phys. Rev. 93, 318–321. [5]

    Google Scholar 

  • Jahoda, F. C., Sawyer, G. A. (1971): ‘Optical refractivity of plasmas.’ Methods of Experimental Physics, Vol. 9B. Ed. L. Marton; Academic Press, New York, London. [13]

    Google Scholar 

  • Jarmain, W. R. (1959): ‘Simplified analytical representation of Klein-Dunham potential energy functions.’ J. Chem. Phys. 31, 1137–1138. [3]

    Google Scholar 

  • Jarmain, W. R. (1960): ‘Klein-Dunham potential energy functions in simplified analytical form.’ Can. J. Phys. 38, 217–230. [3]

    Google Scholar 

  • Jarmain, W. R., Nicholls, R. W. (1964): ‘A theoretical study of the O2 X\({}^{3}\!\varSigma _{\mathrm{g}}^{-}-\) B\({}^{3}\!\varSigma _{\mathrm{u}}^{-}\) photodissociation continuum.’ Proc. Phys. Soc. (London) 84, 417–424. [5]

    Google Scholar 

  • Jarmain, W. R., Fraser, P. A., Nicholls, R. W. (1953): ‘Vibrational transition probabilities of diatomic molecules: Collected results N2, N\(_{2}^{+}\), NO, O\(_{2}^{+}\).’ Astrophys. J. 118, 228–233. [11]

    Google Scholar 

  • Jauch, J. M., Rohrlich, F. (1976): The Theory of Photons and Electrons. 2nd ed., Springer-Verlag, New York, Heidelberg. [5]

    Google Scholar 

  • Jefferies, J. T. (1968): Spectral Line Formation. Blaisdell Publ. Co., Waltham, MA, Toronto, London. [7]

    Google Scholar 

  • Jensen, H. (1934): ‘Interchange in the Thomas–Fermi atom.’ Z. Physik 89, 713–719. [3]

    Google Scholar 

  • Jensen, P. (1983): ‘The non-rigid bender Hamiltonian for calculating the rotation–vibration energy levels of a triatomic molecule.’ Comp. Phys. Rep. 1, 1–55. [3]

    Google Scholar 

  • Jensen, P. (1992): ‘Calculation of molecular rotation–vibration energies directly from the potential energy function.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 423–470. [3]

    Google Scholar 

  • Jeunehomme, M. (1966): ‘Transition moment of the first positive band system of nitrogen.’ J. Chem. Phys. 45, 1805–1811. [5]

    Google Scholar 

  • Joens, J. A. (1987): ‘Gaussian approximation for the temperature dependence of a continuous electronic spectrum.’ Chem. Phys. Lett. 138, 512–515. [6]

    Google Scholar 

  • Jørgensen, U. G., Almlöf, J., Gustafsson, B., Larsson, M., Siegbahn, P. (1985): ‘CASSCF and CCI calculations of the vibrational band strengths of HCN.’ J. Chem. Phys. 83, 3034–3041. [5]

    Google Scholar 

  • Jørgensen, U. G., Almlöf, J., Siegbahn, P. E. M. (1989): ‘Complete active space self-consistent field calculations of the vibrational band strength for C3.’ Astrophys. J. 343, 554–561. [5]

    Google Scholar 

  • John, I. G., Bacskay, G. Z., Hush, N. S. (1980): ‘Finite field method calculations. VI. Raman scattering activities, infrared absorption intensities and higher-order moments: SCF and CI calculations for the isotopic derivatives of H2O and SCF calculation for CH4.’ Chem. Phys. 51, 49–60. [5]

    Google Scholar 

  • Johnson, C. R. (1949): An Introduction to Molecular Spectra. Pitman Publ. Corp., New York, London. [5]

    Google Scholar 

  • Johnson, H. R., Krupp, B. M. (1976): ‘Treatment of atomic and molecular line blanketing by opacity sampling.’ Astrophys. J. 206, 201–207. [7]

    Google Scholar 

  • Johnson, H. R., Collins, J. G., Krupp, B., Bell, R. A. (1977): ‘The line blanketing and structure of the atmosphere of Arcturus.’ Astrophys. J. 212, 760–767. [7]

    Google Scholar 

  • Johnson, K. H. (1973): ‘Scattered-wave theory of the chemical bond.’ Adv. Quantum Chem. 7, 143–185. [3]

    Google Scholar 

  • Johnson, W. R. (1998): ‘Relativistic many-body perturbation theory for highly charged ions.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 39–64. [3]

    Google Scholar 

  • Johnston, R. R., Landshoff, R. K. M., Platas, O. R. (1972): ‘Radiative properties of high temperature air,’ Lockheed Palo Alto Research Laboratory report LMSC D267205. [3, 7]

    Google Scholar 

  • Jones, T. W., Merrill, K. M. (1976): ‘Model dust envelopes around late-type stars.’ Astrphys. J. 209, 509–524. [6]

    Google Scholar 

  • Jones, W. W. (1973): ‘Comparison of measured and calculated Stark parameters for singly ionized atoms.’ Phys. Rev. A 7, 1826–1832. [12]

    Google Scholar 

  • Julienne, (1985): ‘Collision-induced radiative transitions at optical frequencies.’ In Phenomena Induced by Intermolecular Interactions. Ed. G. Birnbaum; Plenum Press, New York, London, p. 749–772. [8]

    Google Scholar 

  • Jungen, C., Ross, S. C. (1997): ‘Unified quantum-defect theory treatment of molecular ionization and dissociation.’ Phys. Rev. A 55, 2503–2506. [5]

    Google Scholar 

  • Kähler, H. (1971): ‘The computation of photoionization cross sections by means of the scaled Thomas–Fermi potential.’ J. Quant. Spectr. Rad. Transfer 11, 1521–1535. [12]

    Google Scholar 

  • Kähler, H. (1973): ‘A simplified Hartree–Fock method for opacity calculations.’ J. Quant. Spectr. Rad. Transfer 13, 401–416. [3]

    Google Scholar 

  • Kahn, F. D. (1959): ‘Long-range interactions in ionized gases in thermal equilibrium.’ Astrophys. J. 129, 205–216. [6]

    Google Scholar 

  • Kalkofen, W., (Ed.) (1984): Methods of Radiative Transfer. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney. [2]

    Google Scholar 

  • Kalkofen, W., (Ed.) (1987): Numerical Radiative Transfer. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney. [2]

    Google Scholar 

  • Kaplan, G. (1975): Symmetry of Many-Electron Systems. Academic Press, London, New York. [3]

    Google Scholar 

  • Kaplan, L. D. (1953): ‘Regions of validity of various absorption coefficient approximations.’ J. Atmos. Sci. 10, 100–104. [7]

    Google Scholar 

  • Karwowski, J. (1992): ‘The configuration interaction approach to electron correlation.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 65–98. [3]

    Google Scholar 

  • Karwowski, J., Planelles, J., Rajadell, F. (1997): ‘Average energy of an N-electron system in a finite-dimensional and spin-adapted model space.’ Int. J. Quantum Chem. 61, 63–65. [3]

    Google Scholar 

  • Karzas, W. J., Latter, R. (1961): ‘Electron radiative transitions in a Coulomb field.’ Astrophys. J. Suppl. Ser. 6, 167–212. [5, 6]

    Google Scholar 

  • Kassel, L. S. (1936): ‘The calculation of thermodynamic functions from spectroscopic data.’ Chem. Rev. 18, 277–313. [4]

    Google Scholar 

  • Kato, S., Ackerman, T. P., Mather, J. H., Clothiaux, E. E. (1999): ‘The k-distribution method and correlated-k approximation for a shortwave radiative transfer model.’ J. Quant. Spectr. Rad. Transfer 62, 109–121. [7]

    Google Scholar 

  • Kattawar, G. W., Humphreys, T. J. (1980): ‘Electromagnetic scattering from two identical pseudospheres.’ In Light Scattering by Irregular Shaped Particles, Ed. D. W. Schuerman, Plenum Press, New York, London, p. 177–190. [5]

    Google Scholar 

  • Keady, J. J., Huebner, W. F., Abdallah Jr., J., Magee Jr., N. H. (1990): ‘Progress in LTE and non-LTE radiative transport properties.’ In Physical Processes in Hot Cosmic Plasmas. Eds. W. Brinkmann, A. C. Fabian, F. Giovannelli; NATO ASI Ser. C. 305, p. 181–195. [6]

    Google Scholar 

  • Keck, J. C., Camm, J. C., Kivel, B., Wentink Jr., T. (1959): ‘Radiation from hot air. Part II. Shock tube study of absolute intensities.’ Ann. Phys. N. Y. 7, 1–38. [7]

    Google Scholar 

  • Keck, J. C., Allen, R. A., Taylor, R. L. (1963): ‘Electronic transition moments for air molecules.’ J. Quant. Spectr. Rad. Transfer 3, 335–353. [5]

    Google Scholar 

  • Keller, G., Meyerott, R. E. (1952): ‘The ionization of gas mixtures in stellar interiors.’ Argonne National Laboratory report ANL-4771. [4]

    Google Scholar 

  • Kelly, H. P. (1963): ‘Correlation effects in atoms.’ Phys. Rev. 131, 684–699. [5]

    Google Scholar 

  • Kelly, H. P. (1968): ‘Correlation structure in atoms.’ Advances in Theoretical Physics. Ed. K. A. Brueckner; Academic Press, New York, London, Vol. 2, p. 75–169. [5]

    Google Scholar 

  • Kelly, H. P. (1969): ‘Applications of many-body diagram techniques in atomic physics.’ In Advances in Chemical Physics. (Correlation Effects in Atoms and Molecules). Eds. R. Lefebvre, C. Moser; Interscience Publishers - John Wiley & Sons, Ltd., London, New York, Sydney, Toronto, Vol. 14, p. 129–190. [5]

    Google Scholar 

  • Kemper, M. J. H., van Dijk, J. M. F., Buck, H. M. (1978): ‘A backtracking algorithm for exact counting of internal molecular energy levels.’ Chem. Phys. Lett. 53, 121–124. [7]

    Google Scholar 

  • Kendall, M. G., Stuart, A. (1963): Advanced Theory of Statistics. Vol. 1. Distribution Theory. 2nd ed., Charles Griffin and Company Limited, London. [7]

    Google Scholar 

  • Kerker, M. (1969): The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York. [5]

    Google Scholar 

  • Kieffer, L. J. (1976): ‘Bibliography of Low Energy Electron and Photon Cross Section Data (through December 1974): Final Report.’ U. S. N. B. S. Special Publication 426. [6]

    Google Scholar 

  • Kilcrease, D. P. (2007): Private communication. [6]

    Google Scholar 

  • Kilcrease, D. P., Magee Jr., N. H. (2001): ‘Plasma non-ideality effects on the photo-electron scattering contribution to radiative opacity.’ J. Quant. Spectr. Rad. Transfer 71, 445–453. [6]

    Google Scholar 

  • Kim, D-S. (2001): ‘Photoionization of the excited 3s3p1, 3P0 states of atomic magnesium.’ J. Phys. B 34, 2615–2629. [5]

    Google Scholar 

  • Kirby, K. P. (1990): ‘Molecular photoabsorption processes.’ In Molecular Astrophysics. Ed. T. W. Hartquist; Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney, p. 159–180. [5]

    Google Scholar 

  • Kirby-Docken, K., Liu, B. (1977): ‘Theoretical study of molecular dipole moment functions. I. The X\({{}^{1}\varSigma }^{+}\) state of CO.’ J. Chem. Phys. 66, 4309–4316. [5, 10]

    Google Scholar 

  • Kirby, K. P., van Dishoeck, E. F. (1988): ‘Photodissociation processes.’ Adv. Atom. Mol. Phys. 25, 437–476. [5]

    Google Scholar 

  • Kirby, K., Uzer, T., Allison, A. C., Dalgarno, A. (1981): ‘Dissociative photoionization of H2 at 26.9 and 30.5 eV.’ J. Chem. Phys. 75, 2820–2825. [5]

    Google Scholar 

  • Kiss, Z. J., Welsh, H. L. (1959): ‘Pressure-induced infrared absorption of mixtures of rare gases.’ Phys. Rev. Lett. 2, 166–168. [8]

    Google Scholar 

  • Kittel, C. (1963): Quantum Theoy of Solids John Wiley & Sons, Inc., New York, London. [4]

    Google Scholar 

  • Kittel, C., Kroemer, H. (1980): Thermal Physics. 2nd ed., W. H. Freeman and Co., New York, San Francisco, London. [4]

    Google Scholar 

  • Kivel, B. (1954): ‘Opacity of Air at High Temperatures.’ Los Alamos National Laboratory report LA-1738. [1]

    Google Scholar 

  • Kivel, B. (1967a): ‘Neutral atom bremsstrahlung.’ J. Quant. Spectr. Rad. Transfer 7, 27–49. [6]

    Google Scholar 

  • Kivel, B. (1967b): ‘Bremsstrahlung in air.’ J. Quant. Spectr. Rad. Transfer 7, 51–60. [6]

    Google Scholar 

  • Kivel, B., Mayer, H., Bethe, H. (1957): ‘Radiation from hot air. Part I. Theory of nitric oxide absorption.’ Ann. Phys. (NY) 2, 57–80. [1, 7]

    Google Scholar 

  • Klein, O. (1932): ‘Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit Hilfe von Spektraltermen.’ Z. Physik 76, 226–235. [3]

    Google Scholar 

  • Klotz, I. M., Rosenberg, R. M. (2008): Chemical Thermodynamics, Basic Theory and Methods. 7th ed., John Wiley & Sons, Inc., Hoboken, N.J. [4]

    Google Scholar 

  • Kobus, J. (1997): ‘Diatomic molecules: Exact solutions of HF equations.’ In Advances in Quantum Chemistry: Recent Advances in Computational Chemsitry. Eds. P.-O. Lowden, J. R. Sabin, M. C. Zerner, J. Karwowski, M. Karelson; Academic Press, New York, London, p. 2–15. [3]

    Google Scholar 

  • Koch, H. W., Motz, J. W. (1959): ‘Bremsstrahlung cross-section formulas and related data.’ Rev. Mod. Phys. 31, 920–955. [5]

    Google Scholar 

  • Kohn, W., Sham, L. J. (1965): ‘Self-consistent equations including exchange and correlation effects.’ Phys. Rev. A 140, 1133–1138. [3, 4]

    Google Scholar 

  • Kong, F.-A. (1982): ‘The periodicity of diatomic molecules.’ J. Mol. Struct. 90, 17–28. [3]

    Google Scholar 

  • Koopmans, T. (1934): ‘Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms.’ Physica 1, 104–113. [3]

    Google Scholar 

  • Kourganoff, V. (1963): Basic Methods in Transfer Problems. Dover Publication, Inc., New York. [2]

    Google Scholar 

  • Kovács, I. (1969): Rotational Structure in the Spectra of Diatomic Molecules. American Elsevier Publ. Co., New York. [3, 5]

    Google Scholar 

  • Kovetz, A., Shaviv, G. (1973): ‘The electrical and thermal conductivities of stellar degenerate matter.’ Astron. Astrophys. 28, 315–318. [9]

    Google Scholar 

  • Kraeft, W. D., Schlanges, M., Kremp, D. (1986): ‘A quantum kinetic equation for nonideal gases in the three-particle collision approximation.’ J. Phys. A 19, 3251–3260. [4]

    Google Scholar 

  • Kraemer, W.-P., Diercksen, G. H. F. (1976): ‘Identification of interstellar X-ogen as HCO+.’ Astrophys. J. 205, L97–L100. [3]

    Google Scholar 

  • Kraemer, W. P., Bunker, P. R., Yoshimine, M. (1984): ‘Theoretical study of the rotation–vibration energy levels and dipole moment functions of CCN+, CNC+, and C3.’ J. Mol. Spectr. 107, 191–207. [3]

    Google Scholar 

  • Krainov, V. P., Reiss, H. R., Smirnov, B. M. (1997): Radiative Processes in Atomic Physics. Wiley & Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto. [5]

    Google Scholar 

  • Kramers, H. A. (1923): ‘On the theory of x-ray absorption and of the continuous x-ray spectrum.’ London, Edinburgh and Dublin Philos. Mag. J. Sci. Ser. 6 46, 836–871. [5]

    Google Scholar 

  • Kramers, H. A. (1927): ‘La diffusion de la lumière par les atomes.’ Atti Congr. Int. Fisico Como-Pavia-Roma 2, 545–557. [5]

    Google Scholar 

  • Krasnikov, Yu. G. (1968): ‘Concerning the thermodynamics of a dense plasma.’ Zh. Eksper. Teor. Fiz. 53, 2223–2232 (Sov. Phys. - JETP 26, 1252–1256). [4]

    Google Scholar 

  • Krasnikov, Yu. G. (1977): ‘Thermodynamics of nonideal low-temperature plasma.’ Zh. Eksper. Teor. Fiz. 73, 516–525 (Sov. Phys. - JETP 46, 270–274). [4]

    Google Scholar 

  • Krasnikov, Yu. G., Kucerenko, V. I. (1978): ‘Thermodynamics of nonideal low-temperature multicomponent plasma: Chemical model.’ High Temp. 16, 34–42 (Teplofizika Vysokikh Temperatur 16, 43–53.) [4]

    Google Scholar 

  • Kronig, R. de L. (1926): ‘On the theory of dispersion of x-rays.’ J. Opt. Soc. Am. 12, 547–557. [5]

    Google Scholar 

  • Kronig, R. de L. (1930): Band Spectra and Molecular Structure. MacMillan Co., New York; At the University Press, Cambridge, England. [3]

    Google Scholar 

  • Kronig, R. de L., Kramers, H. A. (1928): ‘Zur Theorie der Absorption und Dispersion in den Röntgenspektren.’ Z. Physik 48, 174–179. [5]

    Google Scholar 

  • Krügel, E. (2003): The Physics of Interstellar Dust. Institute of Physics and Astrophysics, Bristol, UK. [5]

    Google Scholar 

  • Krupenie, P. H. (1972): ‘The spectrum of molecular oxygen.’ J. Phys. Chem. Ref. Data 1, 423–534. [3, 5]

    Google Scholar 

  • Krupp, B. M., Collins, J. G., Johnson, H. R. (1978): ‘The effects of TiO opacity on the atmospheric structure of cool stars.’ Astrophys. J. 219, 963–969. [7]

    Google Scholar 

  • Kubo, R. (1956): ‘A general expression for the conductivity tensor.’ Can. J. Phys. 34, 1274–1277. [7]

    Google Scholar 

  • Kubo, R. (1957): ‘Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conductive problems.’ J. Phys. Soc. Japan 12, 570–586. [7]

    Google Scholar 

  • Kubo, R. (1959): ‘Some aspects of the statistical-mechanical theory of irreversible processes.’ In Lectures in Theoretical Physics, Vol. 1. Ed. W. E. Britten, L. G. Dunham; Interscience Publishers, Inc., New York, p. 120–203. [5, 8]

    Google Scholar 

  • Kubo, R. (1962a): ‘A stochastic theory of line-shape and relaxation.’ In Fluctuation, Relaxation, and Resonance in Magnetic Systems. Ed. D. ter Haar; Oliver and Boyd, Edinburg, p. 23–68. [7]

    Google Scholar 

  • Kubo, R. (1962b): ‘Generalized cumulant expansion method.’ J. Phys. Soc. Japan 17, 1100–1120. [7]

    Google Scholar 

  • Kubo, R. (1971): Statistical Mechanics. North Holland, Amsterdam. [7]

    Google Scholar 

  • Kuchitsu, K., Morino, Y. (1965): ‘Estimation of anharmonic potential constants. II. Bent XY2 molecules.’ Bull. Chem. Soc. Japan 38, 814–824. [5]

    Google Scholar 

  • Kuhn, H. G. (1969): Atomic Spectra. 2nd ed., Longmans, Green & Co. Ltd., London & Harlow. [5]

    Google Scholar 

  • Kuntz, M., Höpfner, M. (1999): ‘Efficient line-by-line calculation of absorption coefficients.’ J. Quant. Spectr. Rad. Transfer 63, 97–114. [7]

    Google Scholar 

  • Kupka, H., Cribb, P. H. (1986): ‘Multidimensional Franck–Condon integrals and Duschinsky mixing effects.’ J. Chem. Phys. 85, 1303–1315. [5]

    Google Scholar 

  • Kurucz, R. L. (1970): ‘ATLAS: A computer program for calculating model stellar atmospheres.’ Smithsonian Astrophysical Observatory special report 309. [1, 7]

    Google Scholar 

  • Kurucz, R. L. (1979): ‘Model atmospheres for G, F, A, B, and O stars.’ Astrophys. J. Suppl. Ser. 40, 1–340. [1, 7]

    Google Scholar 

  • Kurucz, R. L. (1991): ‘New opacity calculations.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 441–448. [1, 7]

    Google Scholar 

  • Kurucz, R. L., Avrett, E. H. (1981): ‘Solar spectrum synthesis.’ Smithsonian Astrophys. Obs. Special report 391. [7, 10]

    Google Scholar 

  • Kurucz, R. L., Peytremann, E., Avrett, E. H. (1975): Blanketed Model Atmospheres for Early-Type Stars. Smithsonian Institution Press, Washington, DC. [1, 7]

    Google Scholar 

  • Kuz’menko, N. E., Kuznetsova, L. A., Monyakin, A. P., Kuzyakov, Yu. Ya., Plastinin, Yu. A. (1979): ‘Electronic transition probabilities and lifetimes of electronically excited states of diatomic molecules.’ Usp. Fiz. Nauk 127, 451–478; Engl. trans. (Sov. Phys. Usp. 22, 160–173). [5]

    Google Scholar 

  • Kuz’menko, N. E., Kuznetsova, L. A., Monyakin, A. P., Kuzyakov, Yu. Ya. (1980): ‘Probabilities for electronic transitions of molecular systems of high-temperature air components – I. The Schumann–Runge system of the O2-molecule and the first positive system of the N2-molecule. J. Quant. Spectr. Rad. Transfer 24, 29–41. [5]

    Google Scholar 

  • Kuznetsova, L. A. (1987): ‘Electronic transition strengths for diatomic molecules.’ Spectr. Lett. 20, 665–723. [5]

    Google Scholar 

  • Kuznetsova, L. A., Kuz’menko, N. E., Kuzyakov, Yu. Ya., Plastinin, A. (1974): ‘Probabilities of optical transitions in electronic vibration–rotation spectra of diatomic molecules.’ Usp. Fiz. Nauk 113, 285–325; Engl. trans. (Sov. Phys. Usp. 17, 405–423). [5]

    Google Scholar 

  • Labani, B., Bonamy, J., Robert, C., Hartmann, J. M., Taine, J. (1986): ‘Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions.’ J. Chem. Phys. 84, 4256–4267. [7]

    Google Scholar 

  • Labzowsky, L. N., Klimchitskaya, G. L., Dmitriev, Yu. Yu. (1993): ‘Relativistic effects in the spectra of atomic systems.’ Institute of Physics Publishing, Bristol, Philadelphia. [5]

    Google Scholar 

  • Lacis, A. A., Oinas, V. J. (1991): ‘A description of the correlated-k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres.’ J. Geophys. Res. 96, 9027–9063. [7]

    Google Scholar 

  • Ladenburg, R. (1914): ‘Atoms concerned in emission of spectral lines.’ Verhandl. deut. physik. Ges. 16, 765–779. [6]

    Google Scholar 

  • Ladenburg, R. (1921): ‘Die quantentheoretische Deutung der Zahl der Dispersionselektronen.’ Z. Physik 4, 451–468. [6]

    Google Scholar 

  • Ladenburg, R., van Voorhis, C. C. (1933): ‘The continuous absorption of oxygen between 1750 and 1300 Å and its bearing upon the dispersion.’ Phys. Rev. 43, 315–321. [6]

    Google Scholar 

  • Ladik, J., Cizek, J., Mukherjee, P. K. (1981): ‘Relativistic Hartee-Fock theories for molecules and crystals in a linear combination of atomic orbitals form.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 305–334. [3]

    Google Scholar 

  • Lam, K. S. (1977): ‘Application of pressure broadening theory to the calculation of atmospheric oxygen and water vapor microwave absorption.’ J. Quant. Spectr. Rad. Transfer 17, 351–383. [7]

    Google Scholar 

  • Lampe, M. (1968a): ‘Transport coefficients of degenerate plasma.’ Phys. Rev. 170, 306–319. [9]

    Google Scholar 

  • Lampe, M. (1968b): ‘Transport theory of a partially degenerate plasma.’ Phys. Rev. 174, 276–289. [9]

    Google Scholar 

  • Landshoff, R. (1949): ‘Transport phenomena in a completely ionized gas in presence of a magnetic field.’ Phys. Rev. 76, 904–909. [9]

    Google Scholar 

  • Landshoff, R. K. M., Magee, J. L. (Eds.) (1969): Thermal Radiation Phenomena, Vol. 1: Radiative Properties of Air. IFI/Plenum Data Corp., Plenum Publ. Corp. New York, Washington. [1]

    Google Scholar 

  • Langhoff, P. W. (1983a): ‘Schrödinger Spectra.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel, Dordrecht, Boston, p. 299–333. [5]

    Google Scholar 

  • Langhoff, P. W. (1983b): ‘Aspects of electonic configuration interaction in molecular photoionization.’ In Electron–Atom and Electron–Molecule Collisions. Ed. J. Hinze; Plenum Press, New York, p. 297–313. [5]

    Google Scholar 

  • Langhoff, P. W. (1988): ‘Stieltjes methods for Schrodinger spectra: Hilbert-space approximations to the discrete and continuum eigenstates of spatially anisotropic Hamiltonian operators.’ In Mathematical Frontiers in Computational Chemical Physics. Ed. D. G. Truhlar; Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, p. 85–135. [5]

    Google Scholar 

  • Langhoff, P. W., Padial, N., Csanak, G., Rescigno, T. N., McKoy, B. V. (1980): ‘Theoretical studies of photoionization in diatomic and polyatomic molecules.’ Int. J. Quantum Chem. Symp. 14, 285–304. [5]

    Google Scholar 

  • Langhoff, S. R., van Dishoeck, E. F., Wetmore, R., Dalgarno, A. (1982): ‘Radiative lifetimes and dipole moments of the A2Σ +, B2Σ +, and C2Σ + states of OH.’ J. Chem. Phys. 77, 1379–1390. [5]

    Google Scholar 

  • Larimer, J. W. (1973): ‘Chemistry of the solar nebula.’ In Cosmochemistry. Ed. A. G. W. Cameron, Astrophys. Space Sci. Lib. 40, D. Reidel Publ. Co., Dordrecht-Holland, p. 103–120. [4]

    Google Scholar 

  • Larkin, A. I. (1960): ‘Thermodynamic functions of a low-temperature plasma.’ Zh. Eksper. Teor. Fiz. 38, 1896–1898 (Sov. Phys. - JETP 11, 1363–1364). [4]

    Google Scholar 

  • Larsson, M., Siegbahn, P. E. M. (1983): ‘A theoretical study of the radiation lifetime of the CH A2Δ state.’ J. Chem. Phys. 79, 2270–2277. [5]

    Google Scholar 

  • Lassettre, E. N., Skerbele, A. (1974): ‘Generalized oscillator strengths for 7.4 eV excitation of H2O at 300, 400, and 500 eV kinetic energy. Singlet–triplet energy differences.’ J. Chem. Phys. 60, 2464–2469. [5]

    Google Scholar 

  • Latter, R. (1955): ‘Temperature behavior of the Thomas–Fermi statistical model for atoms.’ Phys. Rev. 99, 1854–1870. [4]

    Google Scholar 

  • Lax, M. (1952): ‘The Franck–Condon principle and its application to crystals.’ J. Chem. Phys. 20, 1752–1760. [7]

    Google Scholar 

  • Layzer, D. (1959): ‘On a screening theory of atomic spectra.’ Ann. Phys. (NY) 8, 271–296. [3]

    Google Scholar 

  • Layzer, D., Bahcall, J. (1962): ‘Relativistic Z-dependent theory of many-electron atoms.’ Ann. Phys. (NY) 17, 177–204. [3]

    Google Scholar 

  • Lebedev, V. S., Beigman, I. I. (1998): Physics of Highly Excited Atoms and Ions. Springer-Verlag, Berlin, Heidelberg, New York. [5]

    Google Scholar 

  • Lee, B. I., Kesler, M. G. (1975): ‘A generalized thermodynamic correlation based on three-parameter corresponding states.’ Am. Inst. Chem. Eng. J. 21, 510–527. [4]

    Google Scholar 

  • Lee, C. M., Thorsos, E. I. (1978): ‘Properties of matter at high pressures and temperatures.’ Phys. Rev. A 17, 2073–2076. [4]

    Google Scholar 

  • Lee, C. M., Kissel, L., Pratt, R. H., Tseng, H. K. (1976): ‘Electron bremsstrahlung spectrum, 1–500 keV.’ Phys. Rev. A 13, 1714–1727. [5]

    Google Scholar 

  • Lee, R. W. (1987): ‘Very very very simple to use (and accurate) spectral line-broadening codes for hydrogen-, helium- and lithium-like ions in plasmas.’ Livermore Lawrence National Laboratory report UCID-21292. [7]

    Google Scholar 

  • Lee, T. D. (1950): ‘Hydrogen content and energy-productive mechanism of white dwarfs.’ Astrophys. J. 111, 625–640. [9]

    Google Scholar 

  • Lefebvre-Brion, H., Field, R. W. (1986): Perturbations in the Spectra of Diatomic Mmolecules. Academic Press, Orlando. [5]

    Google Scholar 

  • Lenard, A. (1960): ‘On Bogoliubov’s kinetic equation for a spatially homogeneous plasma.’ Ann. Phys. (NY) 10, 390–400. [9]

    Google Scholar 

  • Lengsfield, B. H., Jafri, J. A., Phillips, D. H., Bauschlicher Jr., C. W. (1981): ‘On the use of corresponding orbitals in the calculation of nonorthogonal transition moments.’ J. Chem. Phys. 74, 6849–6856. [5]

    Google Scholar 

  • Lenoble, J. (1985): Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak Publishing, Hampton, VA. [2]

    Google Scholar 

  • Lenoble, J. (1993): Atmospheric Radiative Transfer. A. Deepak Publishing, Hampton, VA. [7]

    Google Scholar 

  • LeRoy, R. J., Macdonald, R. G., Burns, G. (1976): ‘Diatom potential curves and transition moment functions from continuum absorption coefficients: Br2.’ J. Chem. Phys. 65, 1485–1500. [7]

    Google Scholar 

  • Leszczynski, J. (1996): Computational Chemistry: Reviews of Current Trends. World Scientific, Singapore, New Jersey, London, Hong Kong, Bangalore, Taipei. [3]

    Google Scholar 

  • Levi di Leon, R., Taine, J. (1986): ‘A fictive gas-method for accurate computation of low-resolution IR gas transmissivities: Application to the 4.3 μm CO2 band.’ Rev. Phys. App. 21, 825–832. [7]

    Google Scholar 

  • Levine, H. B., Birnbaum, G. (1967): ‘Classical theory of collision-induced absorption in rare-gas mixtures.’ Phys. Rev. 154, 86–92. [8]

    Google Scholar 

  • Levine, Z. H., Sovin, P. (1983): ‘Electron correlation effects in photoemission from the 1π u level in acetylene.’ Phys. Rev. Lett. 50, 2074–2077. [5]

    Google Scholar 

  • Lewis, G. N. (1901a): ‘The laws of physico-chemical change.’ Daedalus, Proc. Am. Acad. Arts Sci. 37, 49–69. [4]

    Google Scholar 

  • Lewis, G. N. (1901b): ‘Das Gesetz physiko-chemischer Vorgänge.’ Z. Phys. Chem. 38, 205–226. [4]

    Google Scholar 

  • Lewis, M. (1961): ‘Stark broadening of spectral lines by high-velocity charged particles.’ Phys. Rev. 121, 501–505. [7]

    Google Scholar 

  • Li, X., Paldus, J. (1997): ‘Perturbation theory for low-spin open-shell states.’ In Advances in Quantum Chemistry: Recent Advances in Computational Chemsitry. Eds. P.-O. Lowden, J. R. Sabin, M. C. Zerner, J. Karwowski, M. Karelson; Academic Press, New York, London, p. 16–33. [3]

    Google Scholar 

  • Liberman, D. (1962): ‘Upper Limits on the Rosseland Mean Opacity.’ Los Alamos Scientific Laboratory report LA-2700. [11]

    Google Scholar 

  • Liberman, D. (1979): ‘Self-consistent field model for condensed matter.’ Phys. Rev. B 20, 4981–4989. [4]

    Google Scholar 

  • Liberman, D., Waber, J. T., Cromer, D. T. (1965): ‘Self-consistent-field Dirac–Slater wave functions for atoms and ions. I. Comparison with previous calculations.’ Phys. Rev. 137, A27–A34. [3]

    Google Scholar 

  • Liberman, D. A., Cromer, D. T., Waber, J. T. (1971): ‘Relativistic self-consistent Field program for atoms and ions.’ Comp. Phys. Comm. 2, 107–113. [3]

    Google Scholar 

  • Lin, C. D. (1977): ‘Oscillator strengths of transitions between low-lying S and P states of helium-like ions.’ Astrophys. J. 217, 1011–1015. [5]

    Google Scholar 

  • Lin, S. C., Kivel, B. (1959): ‘Slow-electron scattering by atomic oxygen.’ Phys. Rev. 114, 1026–1027. [6]

    Google Scholar 

  • Lind, A. C., Greenberg, J. M. (1966): ‘Electromagnetic scattering by obliquely oriented cylinders.’ J. Appl. Phys. 37, 3195–3203. [5]

    Google Scholar 

  • Lindgren, I. (1998): ‘Development of atomic many-body theory.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 3–38. [3]

    Google Scholar 

  • Lindhard, J. (1954): ‘On the properties of a gas of charged particles.’ Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 28, No. 8. [5]

    Google Scholar 

  • Lindholm, E., Åsbrink, L. (1985): Molecular Orbitals and their Energies, Studied by the Semiempirical HAM Method. Springer-Verlag, Berlin, New York. [3]

    Google Scholar 

  • Linsky, J. L. (1969): ‘On the pressure-induced opacity of molecular hydrogen in late-type stars.’ Astrophys. J. 156, 989–1006. [8]

    Google Scholar 

  • Liu, Z. (1998): ‘Direct double photoionization in atoms.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 150–156. [5]

    Google Scholar 

  • Loftus, A., Krupenie, P. H. (1977): ‘The spectrum of molecular nitrogen.’ J. Phys. Chem. Ref. Data 6, 113–307. [3, 5]

    Google Scholar 

  • Löwdin, P.-O. (1955): ‘Quantum theory of many-particle systems. I. Physical interpretation by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction.’ Phys. Rev. 97, 1474–1489. [3]

    Google Scholar 

  • Löwdin, P.-O. (1963): ‘Studies in perturbation theory. Part I. An elementary iteration-variation procedure for solving the Schrödinger equation by partitioning techniques.’ J. Mol. Spectr. 10, 12–33. [5]

    Google Scholar 

  • Louck, J. C. (1976): ‘Derivation of the molecular vibration-rotation Hamiltonian from the Schrödinger equation for the molecular model.’ J. Mol. Spectr. 61, 107–137. [3]

    Google Scholar 

  • Lucas, N. J. D. (1973): ‘The Franck–Condon principle for polyatomic molecules.’ J. Phys. B 6, 155–163. [5]

    Google Scholar 

  • Lucchese, R. R., Raseev, G., McKoy, V. (1982): ‘Studies of differential and total photoionization cross sections of molecular nitrogen.’ Phys. Rev. A 25, 2572–2587. [5]

    Google Scholar 

  • Lucchese, R. R., Takatsuka, K., Watson, D. K., McKoy, V. (1983): ‘The Schwinger variational principle: An approach to electron–molecule collisions.’ In Electron–Atom and Electron–Molecule Collisions. Ed. J. Hinze; Plenum Press, New York, p. 29–49. [5]

    Google Scholar 

  • Lucchese, R. R., Zurales, R. W. (1990): ‘Comparison of the differential and total photoionization cross sections of N2 in the multichannel frozen-core Hartree–Fock and random phase approximations.’ Bull. Am. Phys. Soc. 35, 1166. [5]

    Google Scholar 

  • Ludwig, C. B. (1971): ‘Measurements of the curves-of-growth of hot water vapor.’ Appl. Optics 10, 1057–1073. [13]

    Google Scholar 

  • Ludwig, C. B., Ferriso, C. C. (1967): ‘Prediction of total emissivity of N2-broadened and self-broadened hot water vapor.’ J. Quant. Spectr. Rad. Transfer 7, 7–26. [7, 13]

    Google Scholar 

  • Ludwig, C. B., Malkmus, W., Reardon, J. E. Thomson, J. A. L. (1973): ‘Handbook of infrared radiation from combustion gases.’ NASA report SP-3080, Washington, DC. [7, 11, 13]

    Google Scholar 

  • Lukirskii, A. P., Brytov, I. A., Zimkina, T. M. (1964): ‘Photoionization absorption of He, Kr, Xe, CH4, and methylal in the 23.6–250 Å region.’ Optics Spectrosk. (USSR) 17, 234–237. [5]

    Google Scholar 

  • Lundqvist, S., Sjölander, A. (1964): ‘On polarization waves in van der Waals crystals.’ Arkiv Fysik 26, 17–34. [5]

    Google Scholar 

  • Luo, D., Pradhan, A. K. (1989): ‘Atomic data for opacity calculations: XI. The carbon isoelectronic sequence.’ J. Phys. B 22, 3377–3395. [3]

    Google Scholar 

  • Luzhkov, V., Warshel, A. (1991): ‘Microscopic calculations of solvent effects on absorption spectra of conjugated molecules.’ J. Am. Chem. Soc. 113, 4491–4499. [5]

    Google Scholar 

  • Lynch, R. (1995): ‘Halfwidths and line shifts of water vapor perturbed by both nitrogen and oxygen.’ Ph. D. dissertation, Phys. Dept., U. Massachusetts, Lowell. [7]

    Google Scholar 

  • Lynch, R., Gamache, R. R., Neshyba, S. P. (1998): ‘N2 and O2 induced halfwidths and line shifts of water vapor transitions in the (301) ← (000) and (221) ← (000) bands.’ J. Quant. Spectr. Rad. Transfer 59, 595–613. [7]

    Google Scholar 

  • Ma, Q., Tipping, R. H. (1991): ‘A far wing line-shape theory and its application to the water continuum absorption in the infrared region.’ J. Chem. Phys. 95, 6290–6301. [7]

    Google Scholar 

  • Ma, Q., Tipping, R. H. (1992a): ‘A far wing line-shape theory and its application to the water vibrational bands. (II).’ J. Chem. Phys. 96, 8655–8663. [7]

    Google Scholar 

  • Ma, Q., Tipping, R. H. (1992b): ‘A far wing line-shape theory and its application to the foreign-broadened water continuum absorption. III.’ J. Chem. Phys. 97, 818–828. [7]

    Google Scholar 

  • Ma, Q., Tipping, R. H. (1994): ‘The detailed balance requirement and general empirical formalisms for continuum absorption.’ J. Quant. Spectr. Rad. Transfer 51, 751–757. [7]

    Google Scholar 

  • Ma, Q., Tipping, R. H., Boulet, C. (1996): ‘The frequency detuning and band-average approximations in a far wing line shape theory satisfying detailed balance.’ J. Chem. Phys. 104, 9678–9688. [7]

    Google Scholar 

  • Mackowski, D. W. (1991): ‘Analysis of radiative scattering for multiple sphere configurations.’ Proc. Roy. Soc. London Ser. A 433, 599–614. [5]

    Google Scholar 

  • Mackowski, D. W. (1995): ‘Calculation of total cross sections of multiple-sphere clusters.’ J. Opt. Soc. Am. A 11, 2851–2861. [5]

    Google Scholar 

  • Madden, R. P., Codling, K. (1963): ‘New autoionizing atomic energy levels in He, Ne, and Ar.’ Phys. Rev. Lett. 10, 516–518. [5]

    Google Scholar 

  • Magee, J. L., Aroeste, H. (1967): ‘Thermal Radiation Phenomena,’ Vol. 1–4. Defense Atomic Support Agency report DASA 1917. [1]

    Google Scholar 

  • Magee Jr., N. H., Abdallah Jr., J., Clark, R. E. H., Cohen, J. S., Collins, L. A., Csanek, G., Fontes, C. J. Gauger, A., Keady, J. J., Kilcrease, D. P., Merts, A. L. (1995): ‘Atomic structure calculations and new Los Alamos astrophysical opacities.’ In Astrophysical Applications of Powerful New Databases: Joint Discussion no. 16 of the 22nd General Assembly of the IAU. Eds. S. J. Adelman, W. L. Wiese, Astronomical Society of the Pacific Conference Series, 78 San Francisco. [13]

    Google Scholar 

  • Mahan, G. D., Subbaswamy, K. R. (1990): Local Density Theory of Polarizability. Plenum Press, New York, London. [7]

    Google Scholar 

  • Mahapatra, S. (2002): ‘Unraveling the highly overlapping \({\tilde{A}}^{2}B_{2}\), \({\tilde{B}}^{1}A_{1}\), photoelectron bands of Cl2O: Nonadiabatic effects due to conical interactions.’ J. Chem. Phys. 116, 8817–8826. [5]

    Google Scholar 

  • Malkmus, W. (1963): ‘Infrared emissivity of carbon dioxide (4.3-μm band).’ J. Opt. Soc. Am. 53, 951–961. [7]

    Google Scholar 

  • Malkmus, W. (1967): ‘Random Lorentz band model with exponential-tailed S −1 line-intensity distribution function.’ J. Opt. Soc. Am. 57, 323–329. [7]

    Google Scholar 

  • Malkmus, W. (1968): ‘Random band models with lines of pure Doppler shape.’ J. Opt. Soc. Am. 58, 1214–1217. [7]

    Google Scholar 

  • Malkmus, W., Thomson, A. (1961): ‘Infrared emissivity of diatomic gases for the anharmonic vibrating-rotator model.’ J. Quant. Spectr. Rad. Transfer 2, 17–39. [7]

    Google Scholar 

  • Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., Frizzell, D. H. (1998): ‘NIST Standard Reference Database 17.’ NIST Chemical Kinetics Database U.S. Dep. of Commerce, Technology Administration, National Institute of Standards and Technology, Stand. Ref. Data, Gaithersburg, MD 20899. [4]

    Google Scholar 

  • Malli, G. L. (1981): ‘Relativistic self-consistent-field theory for molecules.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 183–212. [3]

    Google Scholar 

  • Mann, J. B. (1967): ‘Atomic Structure Calculations, I. Hartree–Fock Energy Results for the Elements Hydrogen to Lawrencium.’ Los Alamos Scientific Laboratory report LA-3690. [3, 4]

    Google Scholar 

  • Mann, J. B. (1968): ‘Atomic Structure Calculations, II. Hartree–Fock Wavefunctions and Radial Expectation Values: Hydrogen to Lawrencium.’ Los Alamos Scientific Laboratory report LA-3691. [3]

    Google Scholar 

  • Mann, J. B., Waber, J. T. (1970): ‘SCF relativistic Hartree–Fock calculations on the superheavy elements 118–131.’ J. Chem. Phys. 53, 2397–2406. [3]

    Google Scholar 

  • Manneback, C. (1951): ‘Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules.’ Physica 17, 1001–1010. [5]

    Google Scholar 

  • Manson, S. T., Kennedy, D. J. (1974): ‘X-ray emission rates in the Hartree–Slater approximation.’ Atomic Data Nucl. Data Tables 14, 111–120. [5]

    Google Scholar 

  • Mantz, A. W., Watson, J. K. G., Narahari Rao, K., Albritton, D. L., Schmeltekopf, A. L., Zare, R. N. (1971): ‘Rydberg–Klein–Rees potential for the X1 Σ + state of the CO molecule.’ J. Mol. Spectr. 39, 180–184. [5]

    Google Scholar 

  • Margenau, H. (1939): ‘Van der Waals forces.’ Rev. Mod. Phys. 11, 1–35. [7]

    Google Scholar 

  • Margenau, H., Watson, W. W. (1936): ‘Pressure effects on spectral lines.’ Rev. Mod. Phys. 8, 22–53. [7]

    Google Scholar 

  • Marić, D., Burrows, J. P. (1996): ‘Application of a Gaussian distribution function to describe molecular UV-visible absorption continua.’ J. Phys. Chem. 100, 8645–8659. [7]

    Google Scholar 

  • Marić, D., Burrows, J. P. (1999): ‘Analysis of UV absorption spectrum of ClO: A comparative study of four methods for spectral computation.’ J. Quant. Spectr. Rad. Transfer 62, 345–369. [7]

    Google Scholar 

  • Marin, O., Buckius, R. O. (1998): ‘A model of the cumulative distribution function for wide band radiative properties.’ J. Quant. Spectr. Rad. Transfer 59, 671–685. [7]

    Google Scholar 

  • Marques, M. A. L., Marques, C. A., Nogueira, F., Rubio, A., Burke, K., Gross, E. K. U. (2006): Time-Dependent Density Functional Theory, Series Lecture Notes in Physics 706, Springer-Verlag. [3]

    Google Scholar 

  • Marr, G. V. (1967): Photoionization Processes in Gases. Academic Press, New York, London. [1]

    Google Scholar 

  • Marr, G. V., Morton, J. M., Holmes, R. M., McCoy, D. G. (1979): ‘Angular distribution of photoelectrons from free molecules of N2 and CO as a function of photon energy.’ J. Phys. B 12, 43–52. [5]

    Google Scholar 

  • Marshak, R. E. (1945): ‘Opacity of Air, BeO, C, Fe, and U at High Temperatures.’ Los Alamos National Laboratory report LA-229. [1]

    Google Scholar 

  • Marshall, W. (1960): ‘The kinetic theory of an ionized gas.’ UK Atomic Energy Authority report AWRE T/R 2247, Part 2: 2352, Part 3: 2419, Harwell, Berkshire, England. [9]

    Google Scholar 

  • Martin, G. A., Fuhr, J. R., Wiese, W. L. (1988): ‘Atomic transition probabilities scandium through manganese.’ J. Phys. Chem. Ref. Data (Suppl. 3) 17, 1–523. [5]

    Google Scholar 

  • Martin, P. C., Schwinger, J. (1959): ‘Theory of many-particle systems. I.’ Phys. Rev. 115, 1342–1373. [4]

    Google Scholar 

  • Martin, W. C., Zalabas, R., Hagan, L. (1978): Atomic Energy Levels. Natl. Stand. Ref. Data Ser. National Bureau of Standards, 60. [3, 4]

    Google Scholar 

  • Matsubara, T. (1955): ‘A new approach to quantum-statistical mechanics.’ Prog. Theor. Phys. 14, 351–378. [4]

    Google Scholar 

  • Mayer, H. (1947): ‘Methods of Opacity Calculations.’ Los Alamos Scientific Laboratory report LA-647. [1, 2, 3, 4, 7, 11]

    Google Scholar 

  • Mayer, H. L., (Ed.) (1964): ‘Conference on opacities.’ J. Quant. Spectr. Rad. Transfer 4, 581–760. [1, 13]

    Google Scholar 

  • Mayer, J. E., Mayer, M. G. (1940): Statistical Mechanics. J. Wiley & Sons, New York. [7]

    Google Scholar 

  • McCallum, J. C. (1979): ‘Computational study of the accuracy of the r-centroid approximation.’ J. Quant. Spectr. Rad. Transfer 21, 563–572. [5]

    Google Scholar 

  • McCurdy Jr., C. W., Rescigno, T. N., Yeager, D. L., McKoy, V. (1977): ‘The equations of motion method: An approach to the dynamical properties of atoms and molecules.’ In Methods of Electronic Structure Theory. Ed. H. F. Schaefer, III; Plenum Press, New York, London, p. 339–386. [5]

    Google Scholar 

  • McDougall, J., Stoner, E. C. (1938): ‘The computation of Fermi–Dirac functions.’ Phil. Trans. Roy. Soc. London, Ser. A 237, 67–104. [4, 9]

    Google Scholar 

  • McGuire, E. J. (1968): ‘Photo-ionization cross sections of the elements helium to xenon.’ Phys. Rev. 175, 20–30. [5]

    Google Scholar 

  • McQuarrie, D. A. (1976): Statistical Mechanics. Harper and Row Publishers, New York, Evanston, San Francsco, London. [5, 7]

    Google Scholar 

  • McWeeny, R. (1992): ‘The electron correlation problem.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 47–56. [3]

    Google Scholar 

  • Mebel, A. M., Hayashi, M., Liang, K. K., Lin, S. H. (1999): ‘Ab initio calculations of vibronic spectra and dynamics for small polyatomic molecules: Role of Duschinsky effect.’ J. Phys. Chem. A 103, 10674–10690. [5, 7]

    Google Scholar 

  • Meerts, W. L., Dymanus, A. (1973): ‘Electric dipole moments of OH and OD by molecular beam electric resonance.’ Chem. Phys. Lett. 23, 45–47. [5]

    Google Scholar 

  • Meggers, W. F., Corliss, C. H., Scribner, B. F. (1975): Tables of Spectral Line Intensities. NBS Monograph 145, Part I, U. S. Government Printing Office, Washington, DC. [5]

    Google Scholar 

  • Mendoza, C. (1992): ‘Atomic data from the opacity project.’ In Atomic and Molecular Data for Space Astronomy – Needs, Analysis, and Availability. Eds. P. L. Smith, W. L. Wiese; Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, p. 85–119. [3, 10]

    Google Scholar 

  • Menzel, D. H. (1968): ‘Oscillator strengths for high-level transitions in H.’ Nature 218, 756–757. [5]

    Google Scholar 

  • Menzel, D. H. (1969): ‘Oscillator strengths, f, for high-level transitions in hydrogen.’ Astrophys. J. Suppl. Ser. 18, 221–246. [5]

    Google Scholar 

  • Menzel, D. H., Goldberg, L. (1936): ‘Multiplet strengths for transitions involving equivalent electrons.’ Astrophys. J. 84, 1–10. [5]

    Google Scholar 

  • Menzel, D. H., Pekeris, C. L. (1936): ‘Absorption coefficients and hydrogen line intensities.’ Mon. Not. Roy. Astron. Soc. 96, 77–111. [5]

    Google Scholar 

  • Menzel, D. H., Bhatnagar, P. L., Sen, H. K. (1963): Stellar Interiors. Chapman & Hall, London. [1]

    Google Scholar 

  • Mercier, R. P. (1964): ‘The radio-frequency emission coefficient of a hot plasma.’ Proc. Phys. Soc. (London) 83, 819–822. [6]

    Google Scholar 

  • Merdji, H, Mißalla, T., Gilleron, F., Chenais-Popovics, C., Gauthier, J. C., Renaudin, P., Gary, S., Bruneau, J. (1997): ‘Opacity measurements of a radiatively heated boron sample.’ J. Quant. Spectr. Rad. Transfer 58, 783–789. [13]

    Google Scholar 

  • Merts, A. L., Magee Jr., N. H. (1972): ‘On the contribution of autoionization lines to stellar opacities.’ Astrophys. J. 177, 137–143. [5, 12]

    Google Scholar 

  • Mestel, L. (1950): ‘On the thermal conductivity in dense stars.’ Proc. Cambridge Phil. Soc. 46, 331–338. [9]

    Google Scholar 

  • Meyer, W. (1976): ‘Theory of self-consistent electron pairs. An iterative method for correlated many-electron wavefunctions.’ J. Chem. Phys. 64, 2901–2907. [5]

    Google Scholar 

  • Meyer, W., Borysow, A., Frommhold, L. (1989): ‘Absorption spectra of H2 – H2 pairs in the fundamental band.’ Phys. Rev. A 40, 6931–6949. [8]

    Google Scholar 

  • Meyerott, R. E., Sokoloff, J., Nicholls, R. W. (1959): ‘Absorption Coefficients of Air.’ Lockheed Aircraft Corp. Missile and Space Div. Report LMSD-288052, Palo Alto. [7]

    Google Scholar 

  • Michels, H. H. (1972): ‘Theoretical Determination of Electronic Transition Probabilities for Diatomic Molecules.’ Air Force Weapons Laboratory report AFWL-TR-72-1. [3]

    Google Scholar 

  • Mie, G. (1908): ‘Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen.’ Ann. Physik 25, 377–445. [5]

    Google Scholar 

  • Mihalas, D. (1978): Stellar Atmospheres. 2nd ed., W. H. Freeman & Co., San Francisco. [1, 2]

    Google Scholar 

  • Mihalas, D., Mihalas, B. W. (1984): Foundations of Radiation Hydrodynamics. Oxford University Press, New York, Oxford. [2]

    Google Scholar 

  • Mihalas, D., Däppen, W., Hummer, D. G. (1988): ‘The equation of state for stellar envelopes. II. Algorithm and selected results.’ Astrophys. J. 331, 815–825. [4]

    Google Scholar 

  • Miller, M. S., McQuarrie, D. A., Birnbaum, G., Poll, J. D. (1972): ‘Constant acceleration approximation in collision-induced absorption.’ J. Chem. Phys. 57, 618–624. [8]

    Google Scholar 

  • Mínguez, E., Serrano, J. F., Gámez, M. L. (1988): ‘Analysis if atomic models for the extinction coefficient calculation.’ Laser Particle Beams 6, 265–275. [13]

    Google Scholar 

  • Mirone, A., Gauthier, J. C., Gilleron, F., Chenais-Popovics, C. (1997): ‘Non-LTE opacity calculations with nl splitting for radiative hydrodynamic codes.’ J. Quant. Spectr. Rad. Transfer 58, 791–802. [13]

    Google Scholar 

  • Mishchenko, M. I., Hovenier, J. W., Travis, L. D. (2000): Light Scattering by Nonspherical Particles. Theory, Measurements, and Applications. Academic Press San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo. [5]

    Google Scholar 

  • Mitake, S., Ichimaru, S., Itoh, N. (1984): ‘Electrical and thermal conductivities of dense matter in the liquid metal phase. II. Low-temperature quantum corrections.’ Astrophys. J. 277, 375–378. [9]

    Google Scholar 

  • Mjolsness, R. C., Ruppel, H. M. (1967a): ‘Bremsstrahlung emission from low-energy electrons on atoms.’ Phys. Rev. 154, 98–109. [5, 6]

    Google Scholar 

  • Mjolsness, R. C., Ruppel, H. M. (1967b): ‘Contributions of inverse neutral bremsstrahlung to the absorption coefficient of heated air.’ J. Quant. Spectr. Rad. Transfer 7, 423–427. [5, 6]

    Google Scholar 

  • Mjolsness, R. C., Ruppel, H. M. (1969): ‘Evaluation of electron – atom bremsstrahlung from elastic scattering.’ Phys. Rev. 186, 83–88. [6]

    Google Scholar 

  • Møller, C., Plesset, M. S. (1934): ‘Note on an approximation treatment for many-electron systems.’ Phys. Rev. 46, 618–622. [3]

    Google Scholar 

  • Mok, D. K. W., Lee, E. P. F., Chau, F.-T., Wang, D. C., Dyke, J. M. (2000): ‘A new method of calculation of Franck–Condon factors which includes allowance for anharmonicity and the Duschinsky effect: Simulation of the He I photoelectron spectrum of ClO2.’ J. Chm. Phys. 113, 5791–5803. [5]

    Google Scholar 

  • Moore, C. E. (1949): Atomic Energy Levels. Vol. I. National Bureau of Standards, Circ. 467. [3, 4]

    Google Scholar 

  • Moore, C. E. (1952): Atomic Energy Levels. Vol. II. National Bureau of Standards, Circ. 467. [3, 4]

    Google Scholar 

  • Moore, C. E. (1958): Atomic Energy Levels. Vol. III. National Bureau of Standards, Circ. 467. [3, 4]

    Google Scholar 

  • Moore, C. E. (1968): An Ultraviolet Multiplet Table. National Bureau of Standards, Circ. 488, Sect. 1–5. [5]

    Google Scholar 

  • Moore, C. E. (1971): Atomic Energy Levels. Vol. IV National Bureau of Standards, Circ. 467. [3, 4, 5]

    Google Scholar 

  • Moore, C. E. (1972): ‘Selected tables of atomic spectra, atomic energy levels, and multiplet tables. H, D, T’ National Bureau of Standards Reference Data Ser. 40 [5]

    Google Scholar 

  • Moore, C. E., Gallagher, J. W. (1993): Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions. Ed. J. W. Gallagher; CRC Press, Boca Raton. [3, 4]

    Google Scholar 

  • Moores, D. L. (1966): ‘Quantum defect theory. IV. The absorption of radiation by calcium atoms.’ Proc. Phys. Soc. (London) 88, 843–859. [3]

    Google Scholar 

  • More, R. M., Skupsky, S. (1976): ‘Nuclear motion corrections to the Thomas–Fermi equation of state for high-density matter.’ Phys. Rev. A 14, 474–479. [4]

    Google Scholar 

  • Moraldi, M., Borysow, A., Frommhold, L. (1988): ‘Rotovibrational collision-induced absorption by nonpolar gases and mixtures (H2-He pairs): Symmetry of line profiles.’ Phys. Rev. A 38, 1839–1847. [8]

    Google Scholar 

  • More, R. M., Warren, K. H. (1991): ‘Semicalssical calculation of matrix elements.’ Ann. Phys. 207, 282–342. [5]

    Google Scholar 

  • Mori, K., Wiese, W. L., Shirai, T., Nakai, Y., Ozama, K. (1986): ‘Spectral data and Grotrian diagrams for highly ionized titanium, Ti V – XXII.’ Atomic Data Nucl. Data Tables 34, 79–184. [5]

    Google Scholar 

  • Morris, J. C., Krey, R. U., Garrison, R. L. (1969): ‘Bremsstrahlung and recombination radiation of neutral and ionized nitrogen.’ Phys. Rev. 180, 167–183. [13]

    Google Scholar 

  • Morse, P., Feshbach, H. (1953): Methods of Theoretical Physics. McGraw-Hill Book Co., Inc., New York, Toronto, London. [5]

    Google Scholar 

  • Morton, D. C. (1970): ‘The Effective Temperatures of the O Stars.’ In International Astronomical Union Symposium No. 36, Ultraviolet Stellar Spectra and Related Ground-Based Observations. Eds. L. Houziaux, H. E. Butler; D. Reidel Publ. Co., Dordrecht-Holland. [7]

    Google Scholar 

  • Moszkowski, S. A. (1962): ‘On the energy distribution of terms and line arrays in atomic spectra.’ Prog. Theor. Phys. 28, 1–23. [7]

    Google Scholar 

  • Motte-Tollet, F., Delwiche, J., Heinesch, J., Hubin-Franskin, M. J., Gingell, J. M., Jones, N. C., Mason, N. J., Marston, G. (1998): ‘On the high-resolution HeI photoelectron spectrum of Cl2O.’ Chem. Phys. Lett. 284, 452–458. [5]

    Google Scholar 

  • Mozer, B. (1960): ‘Atomic Line Shapes from a Plasma.’ Ph. D. Dissertation, Carnegie Institute of Technology, report 3. [7]

    Google Scholar 

  • Mozer, B., Baranger, M. (1960): ‘Electric field distributions in an ionized gas. II.’ Phys. Rev. 118, 626–631. [7]

    Google Scholar 

  • Muchmore, D., Kurucz, R. L., Ulmschneider, P. (1988): ‘Effects of CO molecules on the outer solar atmosphere. Dynamical models with opacity distribution functions.’ Astron. Astrophys. 201, 138–142. [7]

    Google Scholar 

  • Müller, T., Vaccaro, P. H., Pérez-Bernal, F., Iachello, F. (1999): ‘The vibronically-resolved emission spectrum of disulfur monoxide (S2O): An algebraic calculation and quantitative interpretation of Franck–Condon transition intensities.’ J. Chem. Phys. 111, 5038–5055. [5]

    Google Scholar 

  • Muenter, J. S. (1975): ‘Electric dipole moment of CO.’ J. Mol. Spectr. 55, 490–491. [5]

    Google Scholar 

  • Mukai, S., Mukai, T., Giese, R. H. (1980): ‘Scattering of radiation by a large particle with a rough surface.’ In Light Scattering by Irregularly Shaped Particles, Ed. D. W. Schuerman, Plenum Press, New York, London, p. 219–225. [5]

    Google Scholar 

  • Mulliken, R. S., Ermler, W. C. (1977): Diatomic Molecules: Results of Ab Initio Calculations. Academic Press, New York, San Francisco, London. [3, 5]

    Google Scholar 

  • Mulliken, R. S., Ermler, W. C. (1981): Polyatomic Molecules: Results of ab Initio Calculations. Academic Press, New York, London, Toronto, Sydney, San Francisco. [3, 5]

    Google Scholar 

  • Murrell, J. N., Carter, S., Farantos, S. C., Huxley, P., Varandas, A. J. C. (1984): Molecular Potential Energy Functions. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore. [3]

    Google Scholar 

  • Mutschlecner, J. P., Keller, C. F. (1970): ‘Semi-empirical solar line blanketing. I. Statistical Basis and Method.’ Solar Phys. 14, 294–309. [7]

    Google Scholar 

  • Mutschlecner, J. P., Keller, C. F. (1972): ‘Semi-empirical solar line blanketing. II. The results of blanketing in solar model atmospheres.’ Solar Phys. 22, 70–87. [7]

    Google Scholar 

  • Nahar, S. N., Pradhan, A. K. (1997): ‘Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements. I. C and N.’ Astrophys. J. Suppl. Ser. 111, 339–355. [5]

    Google Scholar 

  • Nakagawa, M., Kohyama, Y., Itoh, N. (1987): ‘Relativistic free–free Gaunt factor of the dense high-temperature stellar plasma.’ Astrophys. J. Suppl. Ser. 63, 661–684. [6]

    Google Scholar 

  • Nandkumar, R., Pethick, C. J. (1984): ‘Transport coefficients of dense matter in the liquid metal regime.’ Mon. Not. Roy. Astron. Soc. 209, 511–524. [9]

    Google Scholar 

  • National Bureau of Standards (1949): Tables of Scattering Functions for Spherical Particles. NBS Applied Mathematics Series 4, Government Printing Office, Washington. [5]

    Google Scholar 

  • Neshyba, S. P., Lynch, R., Gamache, R., Gabard, T., Champion, J.-P. (1994): ‘Pressure-induced widths and shifts for the ν 3 band of methane.’ J. Chem. Phys. 101, 9412–9421. [7]

    Google Scholar 

  • Neuforge-Verheecke, C., Guzik, J. A., Keady, J. J., Magee Jr., N. H., Bradley, P. A., Noels, A. (2001): ‘Helioseismic tests of the new Los Alamos LEDCOP opacities.’ Astrophys. J. 561, 450–454. [13]

    Google Scholar 

  • Nicholls, R. W. (1964): ‘Transition probabilities of aeronomically important spectra.’ Annales Géophys. 20, 144–181. [5]

    Google Scholar 

  • Nicholls, R. W. (1977): ‘Transition probability data for molecules of astrophysical interest.’ Ann. Rev. Astron. Astrphys. 15, 197–234. [5]

    Google Scholar 

  • Nicholls, R. W., Jarmain, W. R. (1956): ‘r-centroids: Average internuclear separations associated with molecular bands.’ Proc. Phys. Soc. (London) A 69, 253–264. [5]

    Google Scholar 

  • Nicholls, R. W., Stewart, A. L. (1962): ‘Allowed Transitions.’ In Atomic and Molecular Processes. Ed. D. R. Bates; Academic Press, New York, London. [3, 5]

    Google Scholar 

  • Nicolaides, C. A. (1984): ‘State-specific theory of electron correlation in excited states.’ In Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. Ed. C. E. Dykstra; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, p. 161–184. [5]

    Google Scholar 

  • Nicolaides, C. A., Beck, D. R. (1978): ‘Time dependence, complex scaling, and the calculation of resonances in many-electron systems.’ Int. J. Quantum Chem. 14, 457–703. [5]

    Google Scholar 

  • Nicolaides, C. A., Theodorakopoulos, G. (1980): ‘FOTOS applied to molecules: Oscillator strengths in H2O.’ Int. J. Quantum Chem. Symp. 14, 315–322. [5]

    Google Scholar 

  • Nielson, H. H. (1951): ‘The vibration–rotation energies of molecules.’ Rev. Mod. Phys. 23, 90–136. [5]

    Google Scholar 

  • Nielson, H. H. (1959): ‘The vibration–rotation energies of molecules and their spectra in the infra-red.’ In Handbuch der Physik XXXVII/1. Ed. S. Flügge; Springer-Verlag, Berlin, Göttingen, Heidelberg. [7]

    Google Scholar 

  • Noci, G. (1971): ‘Atomic processes in the solar corona.’ In Physics of the Solar Corona. Ed. C. J. Macris; D. Reidel Publ. Co., Dordrecht-Holland, p. 13–28. [4]

    Google Scholar 

  • Normand, C. E. (1930): ‘The absorption coefficient for slow electrons in gases.’ Phys. Rev. 35, 1217–1225. [6]

    Google Scholar 

  • Nozawa, S., Itoh, N., Kohyama, Y. (1998): ‘Relativistic thermal bremsstrahlung Gaunt factor for the intracluster plasma.’ Astrophys. J. 507, 530–557. [6]

    Google Scholar 

  • Nozières, R., Pines, D. (1958): ‘Correlation energy of a free electron gas.’ Phys. Rev. 111, 442–454. [4]

    Google Scholar 

  • Numerov, B. (1932): ‘Anwendung der Extrapolationsmethode auf die numerische Integration linearer Differentialgleichungen zweiter Ordnung.’ Izvest. Akad. Nauk (SSSR) 1932, 1–8. [3]

    Google Scholar 

  • Nussbaumer, H., Storey, P. J. (1978): ‘[Fe VI] emission under nebular conditions.’ Astron. Astrophys. 70, 37–42. [3]

    Google Scholar 

  • Oddershede, J. (1978): ‘Polarization propagator calculations.’ Adv. Quantum Chem. 11, 275–352. [5]

    Google Scholar 

  • Oddershede, J. (1983): ‘Introductory polarization propagator theory.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel, Dordrecht, Boston, p. 249–271. [5]

    Google Scholar 

  • Oddershede, J. (1985): ‘Calculation of radiative lifetimes of allowed and forbidden transitions,’ In Molecular Astrophysics: State of the Art and Future Directions. Eds. G. H. F. Diercksen, W. F. Huebner, and P. W. Langhoff; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, p. 533–547. [5]

    Google Scholar 

  • Oddershede, J. (1987): ‘Propagator methods.’ Adv. Chem. Phys. 69, 201–239. [5]

    Google Scholar 

  • Oddershede, J. (1992): ‘Response and propagator methods.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 303–324. [5]

    Google Scholar 

  • Oddershede, J., Joergensen, P., Yeager, D. L. (1984): ‘Polarization propagator methods in atomic and molecular calculations.’ Comp. Phys. Rep. 2, 33–92. [5]

    Google Scholar 

  • Oddershede, J., Gruener, N. E., Diercksen, G. H. F. (1985): ‘Comparison between equation of motion and polarization propagator calculations.’ Chem. Phys. 97, 303–310. [5]

    Google Scholar 

  • Oellrich, L., Plöcker, U., Prausnitz, J. M., Knapp, H. (1981): ‘Equation-of-state methods for computing phase equilibria and enthalpies.’ Int. Chem. Eng. 21, 1–16. [4]

    Google Scholar 

  • Oertel, G. K., Shomo, L. R. (1968): ‘Tables for the calculation of radial multipole matrix elements by the Coulomb approximation.’ Astrophys. J. Suppl. Ser. 16, 175–218. [5]

    Google Scholar 

  • Özkan, I. (1990): ‘F–C principle for polyatomic molecules: Axis-switching effects and transformation of normal coordinates.’ J. Molec. Spectr. 139, 147–162. [5]

    Google Scholar 

  • Ogata, S., Ichimaru, S. (1987): ‘Critical examination of N dependence in the Monte Carlo calculations for a classical one-component plasma.’ Phys. Rev. A 36, 5451–5454. [9]

    Google Scholar 

  • Ohno, K., Morokuma, K. (1982): Quantum chemistry literature data base. Bibliography of ab initio calculations for 1978–1980. Elsevier, Amsterdam. [3, 5]

    Google Scholar 

  • Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Kashiwagi, H., Obara, S., Osamura, Y., Yamamoto, S., Kosugi, N., Nishimoto, K., Tanaka, K., Togasi, M., Yamabe, S. (1982): ‘Quantum chemistry literature data base. Supplement 1. Bibliography of ab initio calculations for 1981.’ J. Mol. Struct. 91; THEOCHEM 8, 1–252. [3, 5]

    Google Scholar 

  • Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kosugi, N., Nakatsuji, H., Nishimoto, K., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1983): ‘Quantum chemistry literature data base. Bibliography of ab initio calculations for 1982.’ J. Mol. Struct. 106; THEOCHEM 15, 1–215. [3, 5]

    Google Scholar 

  • Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kosugi, N., Nakatsuji, H., Nishimoto, K., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1984): ‘Quantum chemistry literature data base. Bibliography of ab initio calculations for 1983.’ J. Mol. Struct. 119; THEOCHEM 20, 1–229. [3, 5]

    Google Scholar 

  • Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kitaura, K., Kosugi, N., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1985): ‘Quantum chemistry literature data base. Supplement 4. Bibliography of ab initio calculations for 1984.’ J. Mol. Struct. 134; THEOCHEM 27, 1–298. [3, 5]

    Google Scholar 

  • Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Kashiwagi, H., Yamamoto, S., Kitaura, K., Kosugi, N., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1986): ‘Quantum chemistry literature data base. Supplement 5. Bibliography of ab initio calculations for 1985.’ J. Mol. Struct. 148; THEOCHEM 33, 181–500. [3, 5]

    Google Scholar 

  • Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kitaura, K., Kosugi, N., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1987): ‘Quantum chemistry literature data base. Supplement 6. Bibliography of ab initio calculations for 1986.’ J. Mol. Struct. 154; THEOCHEM 39, 1–315. [3, 5]

    Google Scholar 

  • Ohno, K., Morokuma, K., Hosoya, H., Hirota, F., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kitaura, K., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1988): ‘Quantum chemistry literature data base. Supplement 7. Bibliography of ab initio calculations for 1987.’ J. Mol. Struct. 182; THEOCHEM 51, 1–310. [3, 5]

    Google Scholar 

  • Oka, T. (1973): ‘Collision-induced transitions between rotational levels.’ Adv. Atom. Mol. Phys. 9, 127–206. [7]

    Google Scholar 

  • Omidvar, K., Guimaraes, P. T. (1990): ‘New tabulation of the bound–continuum optical oscillator strength in hydrogenic atoms.’ Astrophys. J. Suppl. Ser. 73, 555–602. [5]

    Google Scholar 

  • Omidvar, K., McAllister, A. M. (1995): ‘Evaluation of high-level bound–bound and bound–continuum hydrogenic oscillator strengths by asymptotic expansion.’ phys. Rev A 51, 1063–1066. [5]

    Google Scholar 

  • O’Neil, S. V., Reinhardt, W. P. (1978): ‘Photoionization of molecular hydrogen.’ J. Chem. Phys. 69, 2126–2142. [5]

    Google Scholar 

  • Onsager, L., (1931a): ‘Reciprocal relations in irreversible processes, I.’ Phys. Rev. 37, 405–426. [9]

    Google Scholar 

  • Onsager, L., (1931b): ‘Reciprocal relations in irreversible processes, II.’ Phys. Rev. 38, 2265–2279. [9]

    Google Scholar 

  • Ornstein, L. S., Burger, H. C. (1924): ‘Strahlungsgesetz und Intesität von Mehrfachlinien.’ Z. Phys. 24, 41–47. [5]

    Google Scholar 

  • O’Rourke, R. C. (1953): ‘Absorption of light by trapped electrons.’ Phys. Rev. 91, 265–270. [7]

    Google Scholar 

  • Oster, L. (1961): ‘Emission, absorption, and conductivity of a fully ionized gas at radio frequencies.’ Rev. Mod. Phys. 33, 525–543. [6, 9]

    Google Scholar 

  • Oster, L. (1970): ‘The free-free emission and absorption coefficients in the radio frequency range at very low temperatures.’ Astron. Astrophys. 9, 318–320. [6]

    Google Scholar 

  • Paldus, J. (1992a): ‘Unitary group approach in the many-electron correlation problem.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 57–64. [3]

    Google Scholar 

  • Paldus, J. (1992b): ‘Coupled cluster theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 99–194. [3]

    Google Scholar 

  • Panofsky, W. K. H., Phillips, M. (1962): Classical Electricity and Magnetism. 2nd ed., Addison-Wesley, New York. [5]

    Google Scholar 

  • Papoušek, D., Aliev, M. R. (1982): Molecular Vibrational-Rotational Spectra: Theory and Applications of High Resolution Infrared, Microwave, and Raman Spectroscopy of Polyatomic Molecules. Elsevier Scientific Publ. Co., Amsterdam, Oxford, New York. [3]

    Google Scholar 

  • Parks, D. E., Rotenberg, M. (1972): ‘Incoherent x-ray scattering by a statistical atom.’ Phys. Rev. A 5, 521–526. [5]

    Google Scholar 

  • Parks, D. E., Lane, G., Stewart, J. C., Peyton, S. (1968): Optical Constants of Uranium Plasma. NASA report NASA-CR-72348. [5, 7]

    Google Scholar 

  • Patch, R. W. (1971): ‘Absorption coefficients for pressure-induced H2−H2 vibrational absorption in the fundamental region.’ J. Quant. Spectr. Rad. Transfer 11, 1331–1353. [8]

    Google Scholar 

  • Patch, R. W., Shackleford, W. L., Penner, S. S. (1962): ‘Approximate spectral absorption coefficient calculations for electronic band systems belonging to diatomic molecules.’ J. Quant. Spectr. Rad. Transfer 2, 263–271. [7]

    Google Scholar 

  • Paulsen, D. E., Sheridan, W. F., Huffman, R. E. (1970): ‘Thermal recombination emission of NO2.’ J. Chem. Phys. 53, 647–658. [5]

    Google Scholar 

  • Peach, G. (1965): ‘A general formula for the calculation of absorption cross sections for free-free transitions in the field of positive ions.’ Mon. Not. Roy. Astron. Soc. 130, 361–377. [5]

    Google Scholar 

  • Peach, G. (1967): ‘A revised general formula for the calculation of atomic photoionization cross sections.’ Mem. R. Astr. Soc. 71, 13–45. [5, 12]

    Google Scholar 

  • Peach, G. (1970): ‘Continuous absorption coefficients for non-hydrogenic atoms.’ Mem. R. Astr. Soc. 73, 1–123. [5, 12]

    Google Scholar 

  • Peach, G., Saraph, H. E., Seaton, M. J. (1988): ‘Atomic data for opacity calculations: IX. The lithium isoelectronic sequence.’ J. Phys. B 21, 3669–3683. [3]

    Google Scholar 

  • Peacock, N. J., Hobby, M. G., Galanti, M. (1973): ‘Satellite spectra for helium-like ions in laser-produced plasmas.’ J. Phys. B 6, L298–L304. [13]

    Google Scholar 

  • Pegg, D. L. (1996): ‘Photodetachment.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 681–689. [5]

    Google Scholar 

  • Peng, D.-Y., Robinson, D. B. (1976): ‘New two-constant equation of state.’ Ind. Eng. Chem. Fundam. 15, 59–64. [4]

    Google Scholar 

  • Penner, S. S. (1959): Quantitative Molecular Spectroscopy and Gas Emissivities. Addison-Wesley Publ. Co., Reading, Massachusetts, USA. [5, 7, 11]

    Google Scholar 

  • Penner, S. S., Thomson, A. (1957): ‘Infrared emissivities and absorptivities of gases.’ J. Appl. Phys. 28, 614–623. [11]

    Google Scholar 

  • Penner, S. S., Gray, L. D. (1961): ‘Approximate IR emissivity calculations for HCl at elevated temperatures.’ j. Opt. Soc. Am. 51, 460–462. [7]

    Google Scholar 

  • Penner, S. S., Olfe, D. B. (1968): Radiation and Reentry. Academic Press, New York, London. [1, 2, 7, 11, 13]

    Google Scholar 

  • Penner, S. S., Varanasi, P. (1964): ‘Approximate band absorption and total emissivity calculations for CO2.’ J. Quant. Spectr. Rad. Transfer 4, 799–806. [7]

    Google Scholar 

  • Penner, S. S., Varanasi, P. (1965): ‘Approximate band absorption and total emissivity calculations for H2O.’ J. Quant. Spectr. Rad. Transfer 5, 391–401. [7, 11, 13]

    Google Scholar 

  • Penner, S. S., Varanasi, P. (1966): ‘Effect of (partial) overlapping of spectral lines on the total emissivity of H2O-CO2 mixtures (T ≈ > 800o K).’ J. Quant. Spectr. Rad. Transfer 6, 181–192. [13]

    Google Scholar 

  • Penner, S. S., Varanasi, P. (1967): ‘Spectral absorption coefficient in the pure rotation spectrum of water vapor.’ J. Quant. Spectr. Rad. Transfer 7, 687–690. [7]

    Google Scholar 

  • Penner, S. S., Sulzmann, K. G. P., Ludwig, C. B. (1961): ‘Approximate infrared emissivity calculations for NO at elevated temperatures.’ J. Quant. Spectr. Rad. Transfer 1, 96–103. [7]

    Google Scholar 

  • Perrot, F. (1996): ‘New approximation for calculating free – free absorption in hot dense plasmas.’ Laser Particle Beams 14, 731–748. [13]

    Google Scholar 

  • Perry, T. S., Davidson, S. J., Serduke, F. J. D., Bach, D. R., Smith, C. C., Foster, J. M., Doyas, R. J., Ward, R. A., Iglesias, C. A., Rogers, F. J., Abdallah Jr., J., Stewart, R. E., Kilkenny, J. D., Lee, R. W. (1991): ‘Opacity measurements in a hot dense medium.’ Phys. Rev. Lett. 67, 3784–3787. [13]

    Google Scholar 

  • Perry, T. S., Springer, P. T., Fields, D. F., Bach, D. R., Serduke, F. J., Iglesias, C. A., Rogers, F. J., Nash, J. K., Chen, M. H., Wilson, B. G., Goldstein, W. H., Rozsnyai, B., Ward, R. A., Kilkenny, J. D., Doyas, R., da Silva, L. B., Back, C. A., Cauble, R., Davidson, S. J., Foster, J. M., Smith, C. C., Bar-Shalom, A., Lee, R. W. (1996): ‘Absorption experiments on x-ray-heated mid-Z constrained samples.’ Phys. Rev. E 54, 5617–5631. [13]

    Google Scholar 

  • Petsalakis, I. D., Theodorakopoulos, G., Nicolaides, C. A., Buenker, R. J., Peyerimhoff, S. D. (1984): ‘Nonorthonormal CI for molecular excited states. I. The sudden polarization effect in 90 twisted ethylene.’ J. Chem. Phys. 81, 3161–3167. [5]

    Google Scholar 

  • Petschek, A., Cohen, H. D. (1972): ‘Continuous approximate treatment of ionization potential lowering.’ Phys. Rev. A 5, 383–389. [4]

    Google Scholar 

  • Peyerimhoff, S. D. (1984): ‘Calculation of molecular spectra.’ Faraday Symp. Chem. Soc. 19, 63–77. [5]

    Google Scholar 

  • Peyerimhoff, S. D., Buenker, R. J. (1974): ‘Ab Initio Calculations for Excited States of Molecules.’ In Chemical Spectroscopy and Photochemistry in the Vacuum-Ultraviolet. Eds. C. Sandorfy, P. J. Ausloos, M. B. Robin; D. Reidel Publ. Co., Dordrecht-Holland, Boston, p. 257–286. [5]

    Google Scholar 

  • Peyerimhoff, S. D., Buenker R. J. (1981): ‘Electronically excited and ionized states of the chlorine molecule.’ Chem. Phys. 57, 279–296. [5]

    Google Scholar 

  • Peytremann, E. (1974): ‘Line-blanketing and model stellar atmospheres. I. Statistical method and calculation of a grid of models.’ Astron. Astrophys. 33, 203–214. [7]

    Google Scholar 

  • Pfennig, H., Trefftz, E. (1966): ‘Die Druckverbreiterung der diffusen Heliumlinien, Vergleich Zwischen Messung und Theorie im quasistatischen Bereich.’ Z. Naturforsch. 21a, 697–718. [7]

    Google Scholar 

  • Phillips, R. A., Buenker, R. J. (1987): ‘Factors involved in the accurate calculation of oscillator strengths: The A1​B1− X​1A1 transition of H2O.’ Chem. Phys. Lett. 137, 157–161. [5]

    Google Scholar 

  • Picart, J., Edmonds, A. R., Tran Minh, N. (1978): ‘Extrapolations to high principal quantum numbers of radial integrals in the Coulomb approximation.’ J. Phys. B 11, L651–L654. [5]

    Google Scholar 

  • Pierrot, A., Soufian, A., Taine, J. (1999): ‘Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperatures.’ J. Quant. Spectr. Rad. Transfer 62, 523–548. [7]

    Google Scholar 

  • Pimpale, A., Mande, C. (1971): ‘Influence of plasmons on Compton scattering.’ J. Phys. C 4, 2593–2597. [5, 6]

    Google Scholar 

  • Pines, D. (1955): ‘Electron interaction in metals.’ Solid State Physics 1, 367–450. [5]

    Google Scholar 

  • Pines, D. (1963): Elementary Excitations in Solids. W. A. Benjamin, Inc., New York, Amsterdam. [5]

    Google Scholar 

  • Pitzer, K. S. (1981): ‘Electron structure of molecules with very heavy atoms using effective core potentials.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 403–420. [3]

    Google Scholar 

  • Placzek, G. (1934): ‘Rayleigh-Streuung und Raman-Effekt.’ In Handbuch der Radiologie, 3. Kap. (Vol. VI). Ed. E. Marx; Akademische Verlagsgesellschaft, Leipzig. [5]

    Google Scholar 

  • Planck, M. (1924): ‘Zur Quantenstatistik des Bohrschen Atommodells.’ Ann. Phys. (Vierte Folge) 75, 673–684. [4]

    Google Scholar 

  • Plass, G. N. (1958): ‘Models for spectral band absorption.’ J. Opt. Soc. Am. 48, 690–703. [7]

    Google Scholar 

  • Plass, G. N. (1960): ‘Useful representations for measurements of spectral band absorption.’ J. Opt. Soc. Am. 50, 868–875. [7]

    Google Scholar 

  • Plock, R. J. (1957): ‘I. Non-Newtonian Viscoelastic Properties of Rod-Like Macromolecules in Solution. II. The Debye–Hückel, Fermi–Thomas Theory of Plasmas and Liquid Metals.’ Ph. D. Dissertation, Yale University, New Haven, CT. [4]

    Google Scholar 

  • Poll, J. D., van Kranendonk, J. (1961): ‘Theory of translational absorption in gases.’ Can. J. Phys. 39, 189–204 [8]

    Google Scholar 

  • Pollack, J. B., Toon, O. B., Khare, B. N. (1973): ‘Optical properties of some terrestrial rocks and glasses.’ Icarus 19, 372–389. [6]

    Google Scholar 

  • Pollack, J. B., McKay, C. P., Christofferson, B. M. (1985): ‘A calculation of the Rosseland mean opacity of dust grains in primordial solar system nebulae.’ Icarus 64, 471–492. [6]

    Google Scholar 

  • Pollack, J. B., Hollenbach, D., Beckwith, S., Simonelli, D. P., Roush, T., Fong, W. (1994): ‘Composition and radiative properties of grains in molecular clouds and accretion disks.’ Astrophys. J. 421, 615–639. [6]

    Google Scholar 

  • Pomraning, G. C. (1971): ‘High temperature radiative transfer and hydrodynamics,’ In Progress in High Temperature Physics and Chemistry. Ed. C. A. Rouse; Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, Vol. 4, p. 1–84. [2]

    Google Scholar 

  • Pople, J. A. (1982): ‘Molecular orbital theories and the structural properties of molecules.’ Ber. Bunsenges. Phys. Chem. 86, 806–811. [3]

    Google Scholar 

  • Pople, J. A., Segal, G. A. (1965): ‘Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap.’ J. Chem. Phys. 43, S136–S151. [3]

    Google Scholar 

  • Pople, J. A., Segal, G. A. (1966): ‘Approximate self-consistent molecular orbital theory. III. CNDO results for AB2 and AB3 systems.’ J. Chem. Phys. 44, 3289–3296. [3]

    Google Scholar 

  • Pople, J. A., Beveridge, D. L. (1970): Approximate Molecular Orbital Theory. McGraw-Hill Book Co., Inc., New York, St. Louis, San Francisco, Düsseldorf, London, Mexico, Panama, Sydney, Toronto. [3]

    Google Scholar 

  • Pople, J. A., Santry, D. P., Segal, G. A. (1965): ‘Approximate self-consistent molecular orbital theory. I. Invariant procedures.’ J. Chem. Phys. 43, S129–135. [3]

    Google Scholar 

  • Pradhan, A. K. (1987): ‘Opacity project: Astrophysical and fusion applications.’ Phys. Scripta 35, 840–845. [5]

    Google Scholar 

  • Pratt, R. H. (1981): ‘Electron bremsstrahlung spectrum.’ Comments At. Mol. Phys. 10, 121–131. [6]

    Google Scholar 

  • Pratt, R. H., Tseng, H. K. (1975): ‘Tip region of the bremsstrahlung spectrum from incident electrons of kinetic energy 50 keV–1.84 MeV.’ Phys. Rev. A 11, 1797–1803. [5]

    Google Scholar 

  • Pratt, R. H., Ron, A., Tseng, H.K. (1973): ‘Atomic photoelectric effect above 10 keV.’ Rev. Mod. Phys. 45, 273–325; 45, 663–664. [3, 5]

    Google Scholar 

  • Przybylski, A. (1960): ‘On the mean absorption coefficient in the computation of model stellar atmospheres of solar type stars.’ Mon. Not. Roy. Astron. Soc. 120, 3–21. [2]

    Google Scholar 

  • Pugh, L. A., Rao, K. N. (1976): ‘Intensities from infrared spectra.’ In Molecular Spectroscopy: Modern Research. Ed. K. N. Rao; Academic Press, New York, San Francisco, London, Vol. 2, p. 165–227. [5]

    Google Scholar 

  • Pulay, P. (1977): ‘Direct use of the gradient for investigating molecular energy surfaces.’ In Modern Theoretical Chemistry. Ed. H. F. Schaefer, III; Plenum Press, New York, Vol. 4, p. 153–185. [5]

    Google Scholar 

  • Pulay, P. (1987): ‘Analytical derivative methods in quantum chemistry.’ Adv. Chem. Phys. 69, 241–286. [5]

    Google Scholar 

  • Purcell, E. M., Pennypacker, C. R. (1973): ‘Scattering and absorption of light by nonspherical dielectric grains.’ Astrophys. J. 186, 705–714. [5]

    Google Scholar 

  • Pyper, N. C. (1981): ‘Relativistic calculations for atoms, molecules and ionic solids: Fully ab-initio calculations and the foundations of pseudo-potential and perturbation theory methods.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 437–488. [3]

    Google Scholar 

  • Pyykkö, P. (1991): ‘Basis set expansion Dirac Fock SCF calculations and MBPT refinement – Comment.’ In The Effects of Relativity in Atoms, Molecules and the Solid State. Eds. S. Wilson, I. P. Grant, and B. L. Gyorffy; Plenum Press, New York, p. 163–164. [3]

    Google Scholar 

  • Rabalais, J. W. (1977): Principles of Ultraviolet Photoelectron Spectroscopy. Wiley, New York. [5]

    Google Scholar 

  • Racah, G. (1943): ‘Theory of complex spectra. III.’ Phys. Rev. 63, 367–382. [7]

    Google Scholar 

  • Rademacher, H., Reiche, F. (1927): ‘Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik. II. Intensitätsfragen.’ Z. Phys. 41, 453–492. [5]

    Google Scholar 

  • Raĭzer, Yu. P. (1959): ‘Simple method for computing the mean range of radiation in ionized gases at high temperatures.’ Sov. Phys. - JETP 10, 769–771. [11]

    Google Scholar 

  • Rakavy, G., Ron, A. (1967): ‘Atomic photoeffect in the range E γ = 1–2000 keV.’ Phys. Rev. 159, 50–56. [5]

    Google Scholar 

  • Rapoport, L. P., Lisitsin, V. I., Yazykova, S. M. (1977): ‘Semi-empirical calculation method for the variation of electronic transition moments in diatomic molecules.’ J. Phys. B 10, 3359–3363. [5]

    Google Scholar 

  • Raseev, G., LeRouzo, H. (1983): ‘Electronic ab initio quantum-defect theory. Low-resolution H2 photoionization spectrum.’ Phys. Rev. A 27, 268–284. [5]

    Google Scholar 

  • Rauk, A., Barriel, J. M. (1977): ‘The computation of oscillator strengths and optical rotatory strengths from molecular wavefunctions. The electronic states of H2O, CO, HCN, H2O2, CH2O and C2H4.’ Chem. Phys. 25, 409–424. [5]

    Google Scholar 

  • Reader, J., Corliss, C. H. (1999): ‘Line spectra of the elements.’ In Handbook of Chemistry and Physics, 80th ed., Ed. D. R. Lide; CRC Press, Boca Raton, p. 10-1–10-87. [5]

    Google Scholar 

  • Rees, A. L. G. (1947): ‘The calculation of potential-energy curves from band-spectroscopic data.’ Proc. Phys. Soc. (London) 59, 998–1008. [3]

    Google Scholar 

  • Reiche, F., Rademacher, H. (1926): ‘Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik.’ Z. Phys. 39, 444–464. [5]

    Google Scholar 

  • Reid, R. C., Prausnitz, J. M., Poling, B. E. (1987): The Properties of Gases and Liquids. McGraw-Hill, 4th ed. [4]

    Google Scholar 

  • Reimers, J. R. (2001): ‘A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules.’ J. Chem. Phys. 115, 9103–9109. [3, 5]

    Google Scholar 

  • Rhodes, P. (1950): ‘Fermi–Dirac functions of integral order.’ Proc. Roy. Soc. London A 204, 396–405. [9, App. C]

    Google Scholar 

  • Richard, C., Gordon, I. E., Rothman, L. S., Abel, M., Frommhold, L., Gustafsson, M., Hartmann, J.-M., Hermans, C., Lafferty, W. J., Orton, G. S., Smith, K. M., Tran, H. (2012): ‘New section of the HITRAN database: Collision-induced absorption (CIA).’ J. Quant. Spectr. Rad. Transfer 113, 1276–1285. [8]

    Google Scholar 

  • Richards, W. G., Cooper, D. L. (1983): Ab Initio Molecular Orbital Calculations for Chemists. 2nd ed. Clarenden Press, Oxford. [3]

    Google Scholar 

  • Richards, W. G., Walker, T. E. H., Hinkley, R. K. (1971): A Bibliography of Ab Initio Molecular Wave Functions. Oxford University Press, London, Glasgow, New York, Toronto, Melbourne, Wellington, Cape Town, Salisbury, Ibadan, Nairobi, Dar es Salaam, Lusaka, Addis Ababa, Bombay, Calcutta, Madras, Karachi, Lahore, Dacca, Kuala Lumpur, Singapore, Hong Kong, Tokyo. [3, 5]

    Google Scholar 

  • Richards, W. G., Walker, T. E. H., Farnell, L., Scott, P. R. (1974): Bibliography of Ab Initio Molecular Wave Functions. (Supplement for 1970–1973). Oxford University Press, London, Glasgow, New York, Toronto, Melbourne, Wellington, Cape Town, Ibadan, Nairobi, Dar es Salaam, Lusaka, Addis Ababa, Delhi, Bombay, Calcutta, Madras, Karachi, Lahore, Dacca, Kuala Lumpur, Singapore, Hong Kong, Tokyo. [3, 5]

    Google Scholar 

  • Richards, W. G., Scott, P. R., Colbourn, E. A., Marchington, A. F., (1978): Bibliography of Ab Initio Molecular Wave Functions. (Supplement for 1974–1977). Oxford University Press, Oxford, London, Glasgow, New York, Toronto, Melbourne, Wellington, Ibadan, Nairobi, Dar es Salaam, Lusaka, Cape Town, Kuala Lumpur, Singapore, Addis Ababa, Jakarta, Hong Kong, Tokyo, Delhi, Bombay, Calcutta, Madras, Karachi. [3, 5]

    Google Scholar 

  • Richards, W. G., Scott, P R., Sackwild, V., Robins, S. A. (1981): Bibliography of Ab Initio Molecular Wave Functions. (Supplement for 1978–1980). Oxford University Press, Oxford, London, Glasgow, New York, Toronto, Delhi, Bombay, Calcutta, Madras, Karachi, Kuala Lumpur, Singapore, Hong Kong, Tokyo, Nairobi, Dar es Salaam, Cape Town, Melbourne, Wellington, Beirut, Berlin, Ibadan, Mexico City. [3, 5]

    Google Scholar 

  • Rickert, A. (1993): ‘Zustand und optische Eigenschaften dichter Plasmen.’ Dissertation Technische Universität München, Max-Planck-Institut report MPQ-175. [13]

    Google Scholar 

  • Rickert, A. (1995): ‘Review of the third international opacity workshop and code comparison study.’ J. Quant. Spectr. Rad. Transfer 54, 325–332. [1, 13]

    Google Scholar 

  • Rickert, A., Meyer-ter-Vehn, J. (1993): ‘Modeling of high-Z plasmas and opacities for radiation hydrodynamics simulations.’ Nuovo Cim. 106 A, 1845–1850. [13]

    Google Scholar 

  • Robert, D., Bonamy, J. (1979): ‘Short range force effects in semiclassical molecular line broadening calculations.’ J. Physique 40, 923–943. [7]

    Google Scholar 

  • Robert, D., Giraud, M., Galatry, L. (1969): ‘Intermolecular potentials and width of pressure-broadened spectral lines. I. Theoretical formulation.’ J. Chem. Phys. 51, 2192–2205. [7]

    Google Scholar 

  • Roche, M. (1990): ‘On the polyatomic Franck–Condon factors.’ Chem. Phys. Let. 168, 556–558. [5]

    Google Scholar 

  • Rogers, F. J. (1971): ‘Phase shifts of the static screened Coulomb potential.’ Phys. Rev. A 4, 1145–1155. [4]

    Google Scholar 

  • Rogers, F. J. (1974): ‘Statistical mechanics of Coulomb gases of arbitrary charge.’ Phys. Rev. A 10, 2441–2456. [4]

    Google Scholar 

  • Rogers, F. J. (1979): ‘Formation of composites in equilibrium plasmas.’ Phys. Rev. A 19 375–388. [4]

    Google Scholar 

  • Rogers, F. J. (1981): ‘Analytic electron – ion effective potentials for Z ≤ 55.’ Phys. Rev. A 23, 1008–1014. [3, 4]

    Google Scholar 

  • Rogers, F. J., Iglesias, C. A. (1992): ‘Radiative Atomic Rosseland Mean Opacity Tables.’ Astrophys. J. Suppl. Ser. 79, 507–568. [1, 13]

    Google Scholar 

  • Rogers, F. J., Graboske Jr., H. C., Harwood, D. J. (1970): ‘Bound eigenstates of the static screened Coulomb potential.’ Phys. Rev. A 1, 1577–1586. [4]

    Google Scholar 

  • Rogers, F. J., Wilson, B. G., Iglesias, C. A. (1988): ‘Parametric potential method for generating atomic data.’ Phys. Rev. A 38, 5007–5020. [3, 5]

    Google Scholar 

  • Rogers, F. J., Iglesias, C. A., Wilson, B. G. (1992): ‘Spin-orbit interaction effects on the Rosseland mean opacity.’ Astrophys. J. 397, 717–728. [1, 13]

    Google Scholar 

  • Roney, R. L. (1994a): ‘Theory of spectral line shape. I. Formulation and line coupling.’ J. Chem. Phys. 101, 1037–1049. [7]

    Google Scholar 

  • Roney, R. L. (1994b): ‘Theory of spectral line shape. II. Collision time theory and the line wing.’ J. Chem. Phys. 101, 1050–1060. [7]

    Google Scholar 

  • Roney, R. L. (1995): ‘Theory of spectral line shapes. III. The Fano operator from near to far wing.’ J. Chem. Phys. 102, 4757–4771. [7]

    Google Scholar 

  • Roothaan, C. C. J. (1951): ‘New developments in molecular orbital theory.’ Rev. Mod. Phys. 23, 69–89. [3]

    Google Scholar 

  • Roothaan, C. C. J., Bagus, P. S. (1963): ‘Atomic self-consistent field calculations by the expansion method.’ Methods Comp. Phys. 2, 47–94. [3]

    Google Scholar 

  • Rose, M. E. (1937): ‘Relativistic wave function in the continuous spectrum for the Coulomb field.’ Phys. Rev. 51, 484–485. [5]

    Google Scholar 

  • Rose, M. E. (1955): Multipole Fields. John Wiley & Sons, Inc., New York. [5]

    Google Scholar 

  • Rose, M. E., Biedenharn, L. C. (1954): ‘Theory of the Photoelectric Effect.’ Oak Ridge National Laboratory report ORNL-1779. [5]

    Google Scholar 

  • Rose, S. J. (1992): ‘Calculations of the radiative opacity of laser-produced plasmas.’ J. Phys. B 25, 1667–1681. [13]

    Google Scholar 

  • Rose, S. J. (1994): ‘A review of opacity workshops.’ J. Quant. Spectr. Rad. Transfer 51, 317–318. [13]

    Google Scholar 

  • Rose, S. J. (1995): ‘The effect of degeneracy on the scattering contribution to the radiative opacity.’ Astrophys. J. Lett. 453, L45–L47. [6]

    Google Scholar 

  • Rose, S. J. (2001): ‘The radiative opacity at the Sun center – a code comparison study.’ J. Quant. Spectr. Rad. Transfer 71, 635–638. [13]

    Google Scholar 

  • Rosen, B. (1970): ‘Spectroscopic data relative to diatomic molecules.’ In Tables Internationales de Constantes Selectionnees, Vol. 17. Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig. [3]

    Google Scholar 

  • Rosenbluth, M. N., Kaufman, A. N. (1958): ‘Plasma diffusion in a magnetic field.’ Phys. Rev. 109, 1–5. [9]

    Google Scholar 

  • Rosenkranz, P. W. (1975): ‘Shape of the 5 mm oxygen band in the atmosphere.’ IEEE Trans. Antennas Prop. 23, 498–506. [7]

    Google Scholar 

  • Rosenkranz, P. W. (1985): ‘Pressure broadening of rotational bands. I. A statistical theory.’ J. Chem. Phys. 83, 6139–6144. [7]

    Google Scholar 

  • Rosenkranz, P. W. (1987): ‘Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm−1.’ J. Chem. Phys. 87, 163–170. [7]

    Google Scholar 

  • Rosseland, S. (1924): ‘Note on the absorption of radiation within a star.’ Mon. Not. Roy. Astron. Soc. 84, 525–528. [2]

    Google Scholar 

  • Rotenberg, M., Bivins, R., Metropolis, N., Wooten Jr., J. K., (1959): The 3–j and 6–j Symbols. Technology Press, MIT. [3]

    Google Scholar 

  • Rothman, (1981): ‘AFGL atmospheric absorption line parameters compilation: 1980 version.’ Appl. Opt. 20, 791–795. [7]

    Google Scholar 

  • Rozsnyai, B. F. (1972): ‘Relativistic Hartree–Fock–Slater calculations for arbitrary temperature and matter density.’ Phys. Rev. A 5, 1137–1149. [13]

    Google Scholar 

  • Rozsnyai, B. F. (1973): ‘Photoexcitation and photoionization of atoms at arbitrary temperature and matter density.’ J. Quant. Spectr. Rad. Transfer 13, 1285–1299. [4, 12]

    Google Scholar 

  • Rozsnyai, B. F. (1979): ‘Computation of free – free Gaunt factors and conductive opacities in hot matter.’ J. Quant. Spectr. Rad. Transfer 22, 337–343. [5, 9]

    Google Scholar 

  • Rozsnyai, B. F. (1982): ‘An overview of the problems connected with theoretical calculations for hot plasmas.’ J. Quant. Spectr. Rad. Transfer 27, 211–217. [12]

    Google Scholar 

  • Rozsnyai, B. (1997): ‘Collisional-radiative average-atom model for hot plasmas.’ Phys. Rev. E 55, 7507–7521. [14]

    Google Scholar 

  • Rozsnyai, B. F. (2001): ‘Solar opacities.’ J. Quant. Spectr. Rad. Transfer 71, 655–663. [13]

    Google Scholar 

  • Rudkjøbing, M. (1947): ‘On the Atmospheres of B-stars.’ Publ. Kopenhagen Obs. Nr. 145. [2]

    Google Scholar 

  • Ruhoff, P. T., Ratner, M. A. (2000): ‘Algorithms for computing Franck–Condon overlap integrals.’ Int. J. Quantum Chem. 77, 383–392. [5]

    Google Scholar 

  • Russell, H. N. (1936): ‘Tables for intensities of lines in multiplets.’ Astrophys. J. 83, 129–139. [5]

    Google Scholar 

  • Rydberg, R. (1932): ‘Graphische Darstellung einiger bandenspektroscopischer Ergebnisse.’ Z. Physik 73, 376–385. [3]

    Google Scholar 

  • Sakai, T. (1942): ‘Thomas–Fermi’s equation at any temperature.’ Proc. Phys. Math. Soc. Japan 24, 254–260. [4]

    Google Scholar 

  • Salem, S. I., Panossian, S. L., Krause, R. A. (1974): ‘Experimental K and L relative x-ray emission rates.’ Atomic Data Nucl. Data Tables 14, 91–109. [5]

    Google Scholar 

  • Salpeter, E. E. (1961): ‘Energy and pressure of a zero-temperature plasma.’ Astrophys. J. 134, 669–682. [9]

    Google Scholar 

  • Salpeter, E. E. (1974a): Unpublished data. [4]

    Google Scholar 

  • Salpeter, E. E. (1974b): ‘Dying stars and reborn dust.’ Rev. Mod. Phys. 46, 433–436. [4]

    Google Scholar 

  • Sampson, D. H. (1959): ‘The opacity at high temperatures due to Compton scattering.’ Astrophys. J. 129, 734–751. [6, 11]

    Google Scholar 

  • Sampson, D. H. (1961): ‘Radiation relaxation times at high temperatures.’ Astrophys. J. 134, 482–499. [6]

    Google Scholar 

  • Samson, J. A. R. S. (1966): ‘The measurement of the photoionization cross sections of the atomic gases.’ Adv. At. Mol. Phys. 2, 177–261. [5]

    Google Scholar 

  • Sapirstein, J. (1998): ‘Theoretical methods for the relativistic atomic many-body problem.’ Rev. Mod. Phys. 70, 55–76. [3, 5]

    Google Scholar 

  • Saunders, V. R. (1975): ‘An introduction to molecular integral evaluation.’ In Computational Techniques in Quantum Chemistry and Molecular Physics. Eds. G. H. F. Diercksen, B. T. Sutcliffe, and A. Veillard; Reidel Publ. Co., Dordrecht, p. 347–424. [3]

    Google Scholar 

  • Saunders, V. R. (1983): ‘Molecular integrals for Gaussian type function.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, Vol. 113, p. 1–36. [3]

    Google Scholar 

  • Saunders, V. R., Guest, M. F. (1982): ‘Applications of the Cray-1 for quantum chemical calculations.’ Comp. Phys. Comm. 26, 389–395. [3]

    Google Scholar 

  • Sauter, F. (1931a): ‘Über den atomaren Photoeffekt bei großer Härte der anregenden Strahlung.’ Ann. Physik 9, 217–248. [5]

    Google Scholar 

  • Sauter, F. (1931b): ‘Über den atomaren Photoeffekt in der K-Schale nach der relativistischen Wellenmechanik Diracs.’ Ann. Physik 11, 454–488. [5]

    Google Scholar 

  • Sauter, F. (1933): ‘Zur unrelativistischen Theorie des kontinuierlichen Röntgenspektrums.’ Ann. Physik 18, 486–496. [6]

    Google Scholar 

  • Schaefer III, H. F. (1984): Quantum Chemistry: The Development of Ab Initio Methods in Molecular Electronic Structure Theory. Clarenden Press, Oxford. [3]

    Google Scholar 

  • Scheuer, P. A. G. (1960): ‘The absorption coefficient of a plasma at radio frequencies.’ Mon. Not. Roy. Astron. Soc. 120, 231–241. [6]

    Google Scholar 

  • Schinke, R. (1993): Photodissociation Dynamics. Cambridge University Press, Cambridge. [5]

    Google Scholar 

  • Schinke, R., Huber, J. R. (1995): ‘Molecular dynamics in excited electronic states – Time-dependent wavepacket studies.’ In Femtosecond Chemistry; Vol. 1. Ed. J. Manz, VCH, Mannheim, New York, Basel, Cambridge, Tokyo, p. 299–319. [5]

    Google Scholar 

  • Schinke, R., Engel, V., Andresen, P., Häusler, D. (1985): ‘Photodissociation of single H2O quantum states in the first absorption band: Complete characterization of OH rotational and Λ-doublet state distributions.’ Phys. Rev. Lett. 55, 1180–1183. [5]

    Google Scholar 

  • Schuerman, D. W. (1980): Light Scattering by Irregular Shaped Particles. Plenum Press, New York, London. [5]

    Google Scholar 

  • Schwarzschild, M. (1946): ‘On the helium content of the Sun.’ Astrophys. J. 104, 203–207. [11]

    Google Scholar 

  • Schweber, S. S. (1961): An Introduction to Relativistic Quantum Field Theory. Row, Peterson & Co., New York. [5]

    Google Scholar 

  • Schwendeman, R. H., Laurie, V. W. (1958): Tables of Line Strengths for Rotational Transitions of Asymmetric Rotor Molecules. Pergamon Press, London, New York, Paris, Los Angeles. [5]

    Google Scholar 

  • Scofield, J. H. (1969): ‘Radiative decay rates of vacancies in the K and L shells.’ Phys. Rev. 179, 9–16. [5]

    Google Scholar 

  • Scofield, J. H. (1974a): ‘Exchange corrections of K x-ray emission rates.’ Phys. Rev. A 9, 1041–1049. [5]

    Google Scholar 

  • Scofield, J. H. (1974b): ‘Hartree–Fock values of L x-ray emission rates.’ Phys. Rev. A 10, 1507–1510. [5]

    Google Scholar 

  • Scofield, J. H. (1974c): ‘Relativistic Hartree–Slater values for K and L x-ray emission rates.’ Atomic Data Nucl. Data Tables 14, 121–137. [5]

    Google Scholar 

  • Seaton, M. J. (1955): ‘Le calcul approximatif des sections efficaces de photoionisation atomique. II. Une relation entre le défaut quantique et la phase de la fonction d’onde à la limite spectrale.’ Compt. Rend. 240, 1317–1318. [3]

    Google Scholar 

  • Seaton, M. J. (1958): ‘The quantum defect method.’ Mon. Not. Roy. Astron. Soc. 118, 504–518. [3]

    Google Scholar 

  • Seaton, M. J. (1962): ‘The impact parameter method for electron excitation of optically allowed atomic transitions.’ Proc. Phys. Soc. (London) 79, 1105–1117. [7]

    Google Scholar 

  • Seaton, M. J. (1966a): ‘Quantum defect theory. I. General formulation.’ Proc. Phys. Soc. (London) 88, 801–814. [3]

    Google Scholar 

  • Seaton, M. J. (1966b): ‘Quantum defect theory. II. Illustrative one-channel and two-channel problems.’ Proc. Phys. Soc. (London) 88, 815–832. [3]

    Google Scholar 

  • Seaton, M. J. (1974): ‘Computer programs for the calculation of electron - atom collision cross sections. II. A numerical method for solving the coupled integro-differential equations.’ J. Phys. B 7, 1817–1840. [3]

    Google Scholar 

  • Seaton, M. (1995): The Opacity Project, Volume 1. Inst. Of Physics Publishing, Bristol, Philadelphia. [1, 3, 4, 12]

    Google Scholar 

  • Seery, D. J., Britton, D. (1964): ‘Continuous absorption spectra of chlorine, bromine, BrCl, Icl, and IBr.’ J. Phys. Chem. 68 2263–2266. [6]

    Google Scholar 

  • Seitz, F. (1940): The Modern Theory of Solids McGraw-Hill Book Company, Inc., New York, London. [4]

    Google Scholar 

  • Serduke, F. J. D., Minguez, E., Davidson, S. J., Iglesias, C. A. (2000): ‘WorkOp-IV summary: lessons from iron opacities.’ J. Quant. Spectr. Rad. Transfer 65, 527–541. [1, 13]

    Google Scholar 

  • Shalitin, D., Ron, A., Reiss, Y. (1982): ‘Iron plasma: Sensitivity of photoelectric cross sections to different models and general features of the Fermi–Amaldi-modified model.’ J. Quant. Spectr. Rad. Transfer 27, 219–226. [4]

    Google Scholar 

  • Sharp, C. M. (1984): ‘The computation of Franck–Condon factors, R-centroids, and associated quantities in the electronic transitions of diatomic molecules.’ Astron. Astrophys. Suppl. Ser. 55, 33–50. [4]

    Google Scholar 

  • Sharp, C. M. (1988): ‘The computation of band strengths of diatomic molecules: Vibrational transitions.’ Astron. Astrophys. Suppl. Ser. 72, 355–365. [5]

    Google Scholar 

  • Sharp, C. M., Huebner, W. F. (1990): ‘Molecular equilibrium with condensation.’ Astrophys. J. Suppl. Ser. 72, 417–431. [4]

    Google Scholar 

  • Sharp, C. M., Wasserburg, G. J. (1995): ‘Molecular equilibria and condensation temperatures in carbon-rich gases.’ Geochim. Cosmochim. Acta 59, 1633–1652. [4]

    Google Scholar 

  • Sharp, T. E., Rosenstock, H. M. (1964): ‘Franck–Condon factors for polyatomic molecules.’ J. Chem. Phys. 41, 3453–3463. [5]

    Google Scholar 

  • Shemansky, D. E., Broadfoot, A. L. (1971): ‘Excitation of N2 and N2 + systems by electrons – I. Absolute transition probabilities.’ J. Quant. Spectr. Rad. Transfer 11, 1385–1400. [5]

    Google Scholar 

  • Shenstone, A. G., Russell, H. N. (1932): ‘Perturbed series in line spectra.’ Phys. Rev. 39, 415–434. [3]

    Google Scholar 

  • Shepard, R. (1987): ‘The multiconfiguration self-consistent field method.’ Adv. Chem. Phys. 69, 63–200. [3, 5]

    Google Scholar 

  • Shevelko, V. P. (1997): Atoms and their Spectroscopic Properties. Springer-Verlag; Berlin, Heidelberg, New York. [5]

    Google Scholar 

  • Schiff, L. I. (1955): Quantum Mechanics. 2nd ed., McGraw-Hill Book Co., Inc., New York. [5]

    Google Scholar 

  • Shifrin, K. S. (1951): ‘Scattering of Light in a Turbid Medium.’ NASA Tech. Translation, TT F-477, National Aeronautics and Space Administration, Washington, DC. [5]

    Google Scholar 

  • Shirai, T., Funatake, Y., Mori, K., Sugar, J., Wiese, W. L., Nakai, Y. (1990): ‘Spectral data and Grotrian diagrams for highly ionized iron, Fe VIII – XXVI.’ J. Phys. Chem. Ref. Data 19, 127–275. [5]

    Google Scholar 

  • Shirai, T., Sugar, J., Wiese, W. L. (1996): ‘Spectral data for selected highly ionized atoms: Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Kr, and Mo.’ J. Phys. Chem. Ref. Data Monograph 8 Am. Chem. Soc. and Am. Inst. Phys., Washington, DC. [5]

    Google Scholar 

  • Shore, B. W., Menzel, D. H. (1968): Principles of Atomic Spectra. John Wiley & Sons, Inc., New York, London, Sydney. [3, 7]

    Google Scholar 

  • Simandiras, E. D., Amos, R. D., Handy, N. C. (1987): ‘The analytic evaluation of second-order Mølter-Plesset (MP2) dipole moment derivatives.’ Chem. Phys. 114, 9–20. [5]

    Google Scholar 

  • Singer, S. J., Freed, K. F., Band, Y. (1985): ‘Photodissociation of diatomic molecules to open shell atoms.’ Adv. Chem. Phys. 61, 1–110. [5]

    Google Scholar 

  • Singh, N., Mohan, M. (2002): ‘Photoionization of excited states of neon-like Mg III.’ Pramana J. Phys. 58, 639–646. [5]

    Google Scholar 

  • Skupsky, S. (1980): ‘X-ray line shift as a high-density diagnostic for laser-imploded plasmas.’ Phys. Rev. A 21, 1316–1326. [4]

    Google Scholar 

  • Slater, J. C. (1930): ‘Atomic shielding constants.’ Phys. Rev. 36, 57–64. [3]

    Google Scholar 

  • Slater, J. C. (1951): ‘A simplification of the Hartree–Fock method.’ Phys. Rev. 81, 385–390. [3]

    Google Scholar 

  • Slater, J. C. (1955): ‘One-electron energies of atoms, molecules, and solids.’ Phys. Rev. 98, 1039–1045. [3]

    Google Scholar 

  • Slater, J. C. (1960): Quantum Theory of Atomic Structure, Vol. I and II. McGraw-Hill Book Co., Inc., New York, Toronto, London. [3, 5, 7, 12]

    Google Scholar 

  • Slater, J. C. (1963): Quantum Theory of Molecules and Solids, Vol. 1: Electronic Structure of Molecules. McGraw-Hill Book Co., Inc., New York, London. [3]

    Google Scholar 

  • Slater, J. C. (1972): ‘Statistical exchange-correlation in the self-consistent field.’ Adv. Quantum Chem. 6, 1–92. [3]

    Google Scholar 

  • Slater, J. C. (1979): The Calculation of Molecular Orbitals. Wiley, New York. [3]

    Google Scholar 

  • Slattery, W. L., Doolen, G. D., DeWitt, H. E. (1980): ‘Improved equation of state for the classical one-component plasma.’ Phys. Rev. A 21, 2087–2095. [9]

    Google Scholar 

  • Smith, C. C. (1998): ‘Configuration broadening of high-Z transition array profiles.’ J. Quant. Spectr. Rad. Transfer 59, 109–116. [13]

    Google Scholar 

  • Smith, E. W. (1981): ‘Absorption and dispersion in the O2 microwave spectrum at atmospheric pressures.’ J. Chem. Phys. 74, 6658–6673. [7]

    Google Scholar 

  • Smith, K. (1971): The Calculation of Atomic Collision Processes. John Wiley & Sons, Inc., New York, London, Sydney, Toronto. [3]

    Google Scholar 

  • Smith, M. W., Wiese, W. L. (1973): ‘Atomic transition probabilities for forbidden lines of the iron group elements. (A critical data compilation for selected lines).’ J. Phys. Chem. Ref. Data 2, 85–120. [5]

    Google Scholar 

  • Sneden, C., Johnson, H. R., Krupp, B. M. (1976): ‘A statistical method for treating molecular line opacities.’ Astrophys. J. 204, 281–289. [1, 7]

    Google Scholar 

  • Sobel’man, I. I. (1992): Atomic Spectra and Radiative Transitions. Springer-Verlag, Berlin, Heidelberg, New York. Springer Series on Atoms and Plasmas: Volume 12. [5]

    Google Scholar 

  • Sobel’man, I. I., Vainstein, L. A., Yukov, E. A. (1995): Excitation of Atoms and Broadening of Spectral Lines. Springer-Verlag; Berlin, Heidelberg. [5]

    Google Scholar 

  • Solinger, A. B. (1970): ‘Electrical and thermal conductivity in a superdense lattice. I. High-temperature conductivity.’ Astrophys. J. 161, 553–559. [9]

    Google Scholar 

  • Sommerfeld, A. (1927): ‘Zur Elektronentheorie der Metalle.’ Naturwiss. 41, 825–832. [9]

    Google Scholar 

  • Sommerfeld, A. (1928): ‘Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik.’ Z. Phys. 47, 1–32. [9]

    Google Scholar 

  • Sommerfeld, A. (1931): ‘Über die Bewegung und Bremsung der Elektronen.’ Ann. Physik 11, 257–330. [6]

    Google Scholar 

  • Sorbie, K. S., Murrell, J. N. (1976): ‘Theoretical study of the O(1D) + H2(\({}^{1}\varSigma _{g}^{+}\)) reactive quenching process.’ Mol. Phys. 31, 905–920. [5]

    Google Scholar 

  • Southworth, S., Truesdale, C. M., Kobrin, P. H., Lindle, D. W., Brewer, W. D., Shirley, D. A. (1982): ‘Photoionization cross sections and photoelectron asymmetries of the valence orbitals of NO.’ J. Chem. Phys. 76, 143–151. [5]

    Google Scholar 

  • Southworth, S. H., Parr, A. C., Hardis, J. E., Dehmer, J. L. (1986): ‘Channel coupling and shape resonance effects in the photoelectron angular distributions of the 3\(\sigma _{\mathrm{g}}^{-1}\) and 2\(\sigma _{\mathrm{u}}^{-1}\) channels of N2.’ Phys. Rev. A 33, 1020–1023. [5]

    Google Scholar 

  • Spirko, V. (1983): Vibrational anharmonicity and the inversion potential functions of NH3.’ J. Mol. Spectr. 101, 30–47. [3]

    Google Scholar 

  • Spitzer Jr., L. (1962): Physics of Fully Ionized Gases. 2nd ed., Interscience Publ., Inc., New York, London. [9]

    Google Scholar 

  • Spitzer Jr., L., Härm, R. (1953): ‘Transport phenomena in a completely ionized gas.’ Phys. Rev. 89, 977–981. [9]

    Google Scholar 

  • Springer, P. T., Fields, D. J., Wilson, B. G., Nash, J. K., Goldstein, W. H., Iglesias, C. A., Rogers, F. J., Swenson, J. K., Chen, M. H., Bar-Shalom, A., Stewart, R. E. (1992): ‘Spectroscopic absorption measurements of an iron plasma.’ Phys. Rev. Lett. 69, 3735–3738. [13]

    Google Scholar 

  • Springer, P. T., Wong, K. L., Iglesias, C. A., Hammer, J. H., Porter, J. L., Toor, A., Goldstein, W. H., Wilson, B. G., Rogers, F. J., Deeney, C., Dearborn, D. S., Bruns, C., Emig, J., Stewart, R. E. (1997): ‘Laboratory measurement of opacity for stellar envelopes.’ J. Quant. Spectr. Rad. Transfer 58, 927–935. [13]

    Google Scholar 

  • Staemmler, V., Palma, A. (1985): ‘CEPA calculations of potential energy surfaces for open-shell systems. IV. Photodissociation of H2O in the \(\tilde{{A}}^{1}\!\mathrm{B}_{1}\) state. Chem. Phys. 93, 63–69. [5]

    Google Scholar 

  • Starace, A. F. (1971): ‘Length and velocity formulas in approximate oscillator-strength calculations.’ Phys. Rev. A 3, 1242–1245. [5]

    Google Scholar 

  • Starace, A. F. (1973): ‘Comment on “Length and velocity formulas in approximate oscillator-strength calculations”.’ Phys. Rev. A 8, 1141–1142. [5]

    Google Scholar 

  • Steele, D., Lippincott, E. R., Vanderslice, J. T. (1962): ‘Comparative study of empirical internuclear potential functions.’ Rev. Mod. Phys. 34, 239–251. [3]

    Google Scholar 

  • Stein, S. (1961): ‘Addition theorems for spherical wave funtions.’ Quart. Appl. Math. 19, 15–24. [5]

    Google Scholar 

  • Stephens, J. A., Dill, D. (1985): ‘Shape-resonance effects mediated by channel interaction: Angular distributions of N2 2σ u photoelectrons.’ Phys. Rev. A 31, 1968–1970. [5]

    Google Scholar 

  • Stephens, T. L., Losse, J. D., Stull, V. R., Klein, A. L. (1978): ‘Molecular Band Models for Thermal and Optically Pumped Emissions.’ Defense Nuclear Agency report DNA-3964F-28. [7]

    Google Scholar 

  • Stewart, J. C. (1965): ‘Integrated absorptivity of Gaussian clusters of Lorentz lines.’ J. Quant. Spectr. Rad. Transfer 5, 489–493. [7]

    Google Scholar 

  • Stewart, A. L. (1967): ‘The quantal calculation of photoionization cross sections.’ In Advances in Atomic and Molecular Physics. Eds. D. R. Bates and J. Estermann; Academic Press, New York, Vol. 3, p. 1–52. [1]

    Google Scholar 

  • Stewart, J. C., Pyatt Jr., K. D. (1961): ‘Theoretical Study of Optical Properties.’ Air Force Special Weapons Center report SWC-TR-61-71, Vol. 1. [4, 6, 7]

    Google Scholar 

  • Stewart, J. C., Rotenberg, M. (1965): ‘Wave functions and transition probabilities in scaled Thomas–Fermi ion potentials.’ Phys. Rev. 140, A1508-A1519; 156, 230–230. [3, 5, 12]

    Google Scholar 

  • Stewart, J. C., Pyatt Jr., K. D. (1966): ‘Lowering of ionization potentials in plasmas.’ Astrophys. J. 144, 1203–1211. [4]

    Google Scholar 

  • Stobbe, M. (1930): ‘Zur Quantenmechanik photoelectrischer Prozesse.’ Ann. Physik 7, 661–715. [5]

    Google Scholar 

  • Stogryn, D. E., Stogryn, A. P. (1966): ‘Molecular multipole moments.’ Mol. Phys. 11, 371–393. [8]

    Google Scholar 

  • Stone, N. W. B., Read, L. A. A., Anderson, W. (1984): ‘Temperature dependent collision-induced absorption in nitrogen.’ Can. J. Phys. 62, 338–347. [13]

    Google Scholar 

  • Storm, E., Israel, H. I. (1967): ‘Photon Cross Sections from 0.001 to 100 MeV for Elements 1 through 100.’ Los Alamos Scientific Laboratory report LA-3753. [5]

    Google Scholar 

  • Stothers, R., Simon, N. R. (1970): ‘Influence of opacity on the pulsational stability of massive stars with uniform chemical composition.’ Astrophys. J. 160, 1019–1029. [11]

    Google Scholar 

  • Stratton, J. A. (1941): Electromagnetic Theory. McGraw-Hill Book Co., Inc., New York. [5]

    Google Scholar 

  • Stratton, J. A., Morse, P. M., Chu, L. J., Hutner, R. A. (1941): Elliptic Cylinder and Spheroidal Wave Functions Including Tables of Separation Constants and Coefficients. John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London. [5]

    Google Scholar 

  • Stratton, J. A., Morse, P. M., Chu, L. J., Little, J. D. C., Corbató, F. J. (1956): Spheroidal Wave Functions Including Tables of Separation Constants and Coefficients. John Wiley & Sons, Inc., New York; Chapman & Hall, Limited, London. [5]

    Google Scholar 

  • Strömgren, B. (1932): ‘Opacity of stellar matter and the hydrogen content of stars.’ Z. Astrophys. 4, 118–152. [4]

    Google Scholar 

  • Strom, S. E., Kurucz, R. L. (1966): ‘A statistical procedure for computing line-blanketed model stellar atmospheres with applications to the F5 IV star Procyon.’ J. Quant. Spectr. Rad. Transfer 6, 591–607. [1, 7]

    Google Scholar 

  • Strow, L. L., Tobin, D. C., McMillan, W. W., Hannon, S. E., Smith, W. L., Revercomb, H. E., Knuteson, R. O. (1998): ‘Impact of a new water vapor continuum and line shape model on observed high resolution infrared radiances.’ J. Quant. Spectr. Rad. Transfer 59, 303–317. [7]

    Google Scholar 

  • Stull, V. R., Plass, G. N. (1960): ‘Spectral emissivity of HCl from 1000–3400 cm−1.’ J. Opt. Soc. Am. 50, 1279–1285. [7]

    Google Scholar 

  • Stull, D. R., Prophet, H. (1971): Project Directors, JANAF Thermochemical Tables (NSRDS-NBS 37). National Bureau of Standards, Washington, DC. [4]

    Google Scholar 

  • Sugar, J., Corliss, C. (1985): Atomic Energy Levels of the Iron-Period Elements, Potassium through Nickel. National Bureau of Standards, Washington, DC. [3, 4]

    Google Scholar 

  • Sugar, J., Musgrove, A. (1988): ‘Energy levels of molybdenum, Mo I through Mo XLII.’ J. Phys. Chem. Ref. Data 17, 155–239. [5]

    Google Scholar 

  • Sulzer, P., Wieland, K. (1952): ‘Intensitätsverteilung eines kontinuierlichen Absorptionsspektrums in Abhängigkeit von Temperatur und Wellenzahl.’ Helv. Phys. Acta 25, 653–676. [6]

    Google Scholar 

  • Sutcliffe, B. T. (1992): ‘The Born – Oppenheimer approximation.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 19–46. [3]

    Google Scholar 

  • Sutcliffe, B. T. (1997a): ‘The nuclear motion problem in molecular physics.’ In Advances in Quantum Chemistry: Recent Advances in Computational Chemsitry. Eds. P.-O. Lowden, J. R. Sabin, M. C. Zerner, J. Karwowski, M. Karelson; Academic Press, New York, London, p. 66–81. [3]

    Google Scholar 

  • Sutcliffe, B. T. (1997b): ‘Molecular properties in different environments.’ In Problem Solving in Computational Molecular Science: Molecules in Different Environments. Ed. S. Wilson and G. H. F. Diercksen. Kluwer; Dordrecht, Boston, London, p. 1–36. [3]

    Google Scholar 

  • Suvernev, A. A., Goodson, D. A. (1997a): ‘Dimensional perturbation theory: an efficient method for computing vibration-rotation spectra.’ Chem. Phys. Lett. 269, 177–82. [5]

    Google Scholar 

  • Suvernev, A. A., Goodson, D. A. (1997b): ‘Dimensional perturbation theory for vibration-rotation spectra of linear triatomic molecules.’ J. Chem. Phys. 107, 4099–4111. [5]

    Google Scholar 

  • Swanton, D. J., Bacskay, G. B., Hush, N. S. (1986): ‘The infrared absorption intensities of the water molecule: A quantum chemical study.’ J. Chem. Phys. 84, 5715–5727. [5]

    Google Scholar 

  • Synge, J. L. (1957): The Relativistic Gas. North-Holland Publ. Co., Amsterdam. [6]

    Google Scholar 

  • Tatum, J. B. (1967): ‘The interpretation of intensities in diatomic molecular spectra.’ Astrophys. J. Suppl. Ser. 14, 21–55. [4]

    Google Scholar 

  • Tatum, J. B. (1971): ‘Erratum to the interpretation of intensities in diatomic molecular spectra.’ Astrophys. J. Suppl. Ser. 22, 388. [4]

    Google Scholar 

  • Taylor, P. R., Bacskay, G. B., Hush, N. S. (1976): ‘The coupled–pair approximation in a basis of independent–pair natural orbitals.’ Chem. Phys. Lett. 41, 444–449. [5]

    Google Scholar 

  • Taylor, R. L., Caledonia, G. (1969): ‘Experimental determination of the cross-sections for neutral bremsstrahlung. I. Ne, Ar and Xe.’ J. Quant. Spectr. Rad. Transfer 9, 657–679. [6]

    Google Scholar 

  • Tellinghuisen, J. (1984): ‘On the efficiency and accuracy of quantum and classical methods of calculating diatomic spectra.’ J. Chem. Phys. 80, 5472–5474. [7]

    Google Scholar 

  • Tennyson, J. (1987a): ‘Fully vibrationally resolved photoionisation of H2 and D2.’ J. Phys. B 20, L375–L378. [5]

    Google Scholar 

  • Tennyson, J. (1987b): ‘Calculated vibrationally and rotationally resolved photoelectron spectra of H2.’ In Electron–Molecule Scattering and Photoionization. Eds. P. G. Burke and J. B. West; Plenum Press, New York, London, p. 247–251. [5]

    Google Scholar 

  • Theodorakopoulos, G., Petsalakis, D., Nicolaides, A. (1985a): ‘The \(\tilde{\mathrm{{X}}}^{1}\!\) A\(_{1} \rightarrow \tilde{\mathrm{ {A}}}^{1}\!\) B1 transition moment of H2O using state-specific configuration-interaction wave functions.’ J. Chem. Phys. 82, 912–916. [5]

    Google Scholar 

  • Theodorakopoulos, G., Petsalakis, I. D., Nicolaides, C. A., Buenker, R. J. (1985b): ‘Configuration interaction study of the oscillator strengths for the \(\tilde{\mathrm{{B}}}^{1}\!\) A1-\(\tilde{\mathrm{{X}}}^{1}\!\) A1 and \(\tilde{\mathrm{{D}}}^{1}\!\) A\(_{1}\)-\(\tilde{\mathrm{{X}}}^{1}\!\) A1 transitions of the water molecule.’ Chem. Phys. 100, 331–337. [5]

    Google Scholar 

  • Thomas, L. H. (1930): ‘Slow expansion or contraction of a fluid sphere.’ Mon. Not. Roy. Astron. Soc. 91, 122–127. [2]

    Google Scholar 

  • Thompson, W. B. (1972): ‘The self-consistent test-particle approach to relativistic kinetic theory.’ In General Relativity. Ed. L. O’Raifeartaigh; Clarendon Press, Oxford, p. 243–254. [6]

    Google Scholar 

  • Thomson, D. B. (1980): ‘An opacity test using a Ne-seeded theta pinch.’ Los Alamos Scientific Laboratory report LA-7684-MS [13]

    Google Scholar 

  • Thomson, D. B., Jones, L. A., Bailey, A. G., Engleman Jr., R. (1976): ‘Characteristics of high-density theta-pinches seeded with selected high-Z elements.’ In Pulsed High Beta Plasmas. Ed. D. E. Evans. Pergamon Press; Oxford, New York, p. 209–213. [13]

    Google Scholar 

  • Thouless, D. J. (1972): The Quantum Mechanics of Many-Body Systems. 2nd ed., Academic Press, New York, London. [5]

    Google Scholar 

  • Tobin, D. C., Strow, L. L., Lafferty, W. J., Olson, W. B. (1996): ‘Experimental investigation of the self- and N2-broadened continuum within the ν 2 band of water vapor.’ Appl. Opt. 35, 4724–4734. [7]

    Google Scholar 

  • Toniolo, A., Persico, M. (2001): ‘Efficient calculation of Franck–Condon factors and vibronic couplings in polyatomics.’ J. Comp. Chem. 22, 968–975. [5]

    Google Scholar 

  • Toth, R. A., Hunt, R. H., Plyler, E. K. (1969): ‘Line intensities in the 3–0 band of CO and dipole moment matrix elements for the CO molecule.’ J. Mol. Spectr. 32, 85–96. [5]

    Google Scholar 

  • Townes, C. H., Schawlow, A. L. (1955): Microwave Spectroscopy. McGraw-Hill Book Co., Inc., New York, Toronto, London. [3, 5]

    Google Scholar 

  • Traving, G. (1960): Über die Theorie der Druckverbreiterung von Spektrallinien. Verlag G. Braun, Karlsruhe. [7]

    Google Scholar 

  • Truesdale, C. M., Southworth, S., Kobrin, P. H., Lindle, D. W., Shirley, D. A. (1983): ‘Photoelectron angular distributions of the N2O outer valence orbitals in the 19–31 eV photon energy range.’ J. Chem. Phys. 78, 7117–7123. [5]

    Google Scholar 

  • Tsao, C. J., Curnutte, B. (1962): ‘Line-width of pressure-broadened spectral lines.’ J. Quant. Spectr. Rad. Transfer 2, 41–91. [7]

    Google Scholar 

  • Tseng, H. K., Pratt, R. H. (1970): ‘Comments on the calculation of relativistic bremsstrahlung cross sections.’ Phys. Rev. A 1, 528–531. [5]

    Google Scholar 

  • Tseng, H. K., Pratt, R. H. (1971): ‘Exact screened calculations of atomic-field bremsstrahlung.’ Phys. Rev. A 3, 100–115. [5]

    Google Scholar 

  • Tsuji, T. (1966a): ‘The atmospheric structure of late-type stars. I. Physical properties of cool gaseous mixtures and the effect of molecular line absorption on stellar opacities.’ Pub. Astron. Soc. Japan 18, 127–173. [1]

    Google Scholar 

  • Tsuji, T. (1966b): ‘Some problems on the atmospheric structure of late-type stars.’ Proc. Japan Acad. Tokyo 42, 258–263. [1]

    Google Scholar 

  • Tsuji, T. (1971): ‘Effect of molecular line absorptions on stellar opacities.’ Publ. Astron. Soc. Japan 23, 553–565. [1]

    Google Scholar 

  • Tuckwell, H. C. (1970): ‘On the validity of the Franck–Condon factor approximation for photo-ionizing transitions of O\(_{2}\,{(}^{3}\!\varSigma _{\mathrm{g}}^{-})\).’ J. Quant. Spectr. Rad. Transfer 10, 653–657. [5]

    Google Scholar 

  • Tuggle, R. S., Iben Jr., I. (1972): ‘On the location of pulsational blue edges and estimates on the luminosity and helium content of RR Lyrae stars.’ Astrophys. J. 178, 455–465. [11]

    Google Scholar 

  • Tully, J. A., Seaton, M. J., Berrington, K. A. (1990): ‘Atomic data for opacity calculations: XIV. The beryllium sequence.’ J. Phys. B 23, 3811–3837. [3]

    Google Scholar 

  • Tully, J. C., Berry, R. S., Dalton, B. J. (1968): ‘Angular distribution of molecular photoelectrons.’ Phys. Rev. 176, 95–105. [5]

    Google Scholar 

  • Turner, A. G. (1974): Methods in Molecular Orbital Theory. Prentice Hall, Englewood Cliffs, NJ. [3]

    Google Scholar 

  • Underhill, A. B., Waddell, J. H. (1959): ‘Stark Broadening Function for the Hydrogen Lines.’ National Bureau of Standards, circular 603. [7]

    Google Scholar 

  • Unno, W. (1952a): ‘On the radiation pressure in a planetary nebula. II.’ Publ. Astron. Soc. Japan 3, 158–170. [7]

    Google Scholar 

  • Unno, W. (1952b): ‘Note on the Zanstra redistribution in planetary nebulae.’ Publ. Astron. Soc. Japan 4, 100–102. [7]

    Google Scholar 

  • Unsöld, A. (1968): Physik der Sternatmosphären. 2nd ed., Springer-Verlag, Berlin, Heidelberg, New York. [2, 11]

    Google Scholar 

  • Van de Hulst, H. C. (1957): Light Scattering by Small Particles. John Wiley & Sons, Inc., New York. [5]

    Google Scholar 

  • Van Dishoeck, E. F. (1988): ‘Photodissociation and photoionization processes.’ In Rate Coefficients in Astrochemistry. Eds. T. J. Millar, D. A. Williams; Kluwer, Dordrecht, p. 49–72. [5]

    Google Scholar 

  • Van Dishoeck, E. F., Dalgarno, A. (1983): ‘Photodissociation processes in the OH molecule.’ J. Chem. Phys. 79, 873–888. [5]

    Google Scholar 

  • Van Dishoeck, E. F., van der Hart, W. J., van Hemert, M. (1980): ‘Ab initio studies of the photodissociation processes in positive hydrocarbon ions. I. The methane ion.’ Chem. Phys. 50, 45–62. [5]

    Google Scholar 

  • Van Harrevelt, R., van Hemert, M. C. (2000a): ‘Photodissociation of water. I. Electronic structure calculations for the excited states.’ J. Chem. Phys. 112, 5777–5786. [5]

    Google Scholar 

  • Van Harrevelt, R., van Hemert, M. C. (2000b): ‘Photodissociation of water. II. Wave packet calculations for the photofragmentation of H2O and D2O in the B band.’ J. Chem. Phys. 112, 5787–5808. [5]

    Google Scholar 

  • Van Harrevelt, R., van Hemert, M. C. (2001a): ‘Photodissociation of water in the A band revisited with new potential energy surfaces.’ J. Chem. Phys. 114, 4953–4962. [5]

    Google Scholar 

  • Van Harrevelt, R., van Hemert, M. C. (2001b): ‘A comparative classical-quantum study of the photodissociation of water in the \(\overline{\mathrm{B}}\) band.’ J. Phys. Chem. A 105, 11480–11487. [5]

    Google Scholar 

  • Van Horn, H. M. (1969): ‘Crystallization of a classical, one-component Coulomb plasma.’ Phys. Lett. 28 A, 706–707. [9]

    Google Scholar 

  • Van Horn, H. M. (1971): ‘Cooling of White Dwarfs.’ In Proceedings International Astronomical Union Symposium No. 42 Ed. W. J. Luyten; Springer-Verlag, Dordrecht, p. 97–115. [App. C]

    Google Scholar 

  • Van Kranendonk, J. (1968): ‘Intercollisional interference effects in pressure-induced infrared spectra.’ Can. J. Phys. 46, 1173–1180. [8]

    Google Scholar 

  • Van Regemorter, J. (1962): ‘Rates of collisional excitation in stellar atmospheres.’ Astron. J. 136, 906–915. [7]

    Google Scholar 

  • Van Vleck, J. H. (1951a): ‘The coupling of angular momentum vectors in molecules.’ Rev. Mod. Phys. 23, 213–227. [3]

    Google Scholar 

  • Van Vleck, J. H. (1951b): ‘Klein’s theory and the coupling of angular momenta in molecules.’ Phys. Rev. 82, 320–320. [3]

    Google Scholar 

  • Van Vleck, J. H., Weisskopf, V. F. (1945): ‘On the shape of collision-broadened lines.’ Rev. Mod. Phys. 17, 227–236. [7, 8]

    Google Scholar 

  • Varanasi, P. (1988a): ‘Infrared absorption by water vapor in the atmospheric window.’ In Proc. Soc. Photo-opt. Instr. Eng. 928, 213–320. [7]

    Google Scholar 

  • Varanasi, P. (1988b): ‘On the nature of the infrared spectrum of water vapor between 8 and 14 μm.’ J. Quant. Spectr. Rad. Transfer 40, 169–175. [7]

    Google Scholar 

  • Varanasi, P., Penner, S. S. (1967): ‘Absolute infrared intensity measurements on the fundamental of NO.’ J. Quant. Spectr. Rad. Transfer 7, 279–282. [7]

    Google Scholar 

  • Varandas, A. J. C. (1988): ‘Intermolecular and intramolecular potentials: Topographical aspects, calculation, and functional representation via a double many-body expansion method.’ Adv. Chem. Phys. 74, 255–338. [3]

    Google Scholar 

  • Vasileff, H. D. (1954): ‘Thermal ionization of impurities in polar crystals. I. Formal theory.’ Phys. Rev. 96, 603–609. [7]

    Google Scholar 

  • Vedenov, A. A., Larkin, A. I. (1959): ‘Equation of state of a plasma.’ Zh. Eksper. Teor. Fiz. 36, 1133–1142 (Sov. Phys. - JETP 9, 806–811). [4]

    Google Scholar 

  • Verner, D. A., Yakovlev, D. G. (1995): ‘Analytic fits for partial photoionization cross sections.’ Astron. Astrophys. Suppl. 109, 125–133. [5]

    Google Scholar 

  • Verner, D. A., Yakovlev, D. G., Band, I. M., Trzhaskovskaya, M. B. (1993): ‘Subshell photoionization cross sections and ionization energies of atoms and ions from He to Zn.’ atomic data Nucl. Data tables 55, 233–280. [5]

    Google Scholar 

  • Vitense, E. (1951): ‘Der Aufbau der Sternatmosphären. IV. Teil. Kontinuierliche Absorption und Streuung als Funktion von Druck und Temperatur.’ Z. Astrophys. 28, 81–112. [1, 4]

    Google Scholar 

  • Von Niessen, W., Diercksen, G. H. F., Cederbaum, L. S. (1977): ‘On the accuracy of ionization potentials calculated by Green’s functions.’ J. Chem. Phys. 67, 4124–4131. [5]

    Google Scholar 

  • Von Ragué Schleyer, P. (1998): Encyclopedia of Computational Chemistry. Wiley, Chichester, New York. [5]

    Google Scholar 

  • Voshchinnikov, N. V., Videen, G. (Eds.) (2007): ‘IX Conference on Electromagnetic and Light Scattering by Non-sperical Particles.’ J. Quant. Spectr. Rad. Transfer 106, 1–622. [6]

    Google Scholar 

  • Vosko, S. H., Wilk, L., Nusair, M. (1980): ‘Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis.’ Can. J. Phys. 58, 1200–1211. [4]

    Google Scholar 

  • Wacker, P. F., Pratto, M. R. (1964): Microwave Spectral Tables, Line Strength of Asymmetric Rotors. NBS Monograph 70, Vol. II, U. S. Government Printing Office, Washington, DC. [5]

    Google Scholar 

  • Wahl, A. C., Bertoncini, P. J., Das, G., Gilbert, T. L. (1967): ‘Recent progress beyond the Hartree–Fock method for diatomic molecules: The method of optimized valence configurations.’ Int. J. Quantum Chem. Symp. 1, 123–152. [3]

    Google Scholar 

  • Wait, J. R. (1955): ‘Scattering of a plane wave from a circular dielectric cylinder at oblique incidence.’ Can. J. Phys. bf 33, 189–195. [5]

    Google Scholar 

  • Wallace, S., Dill, D., Dehmer, J. L. (1979): ‘Spectral variation of molecular photoelectron angular distributions: Valence shells of N2 and CO.’ J. Phys. B 12, L417–L420. [5]

    Google Scholar 

  • Wallace, S., Dill, D., Dehmer, J. L., (1982): ‘Shape resonant features in the photoionization spectra of NO.’ J. Chem. Phys. 76, 1217–1222. [5]

    Google Scholar 

  • Waller, I., Hartree, D. R. (1929): ‘On the intensity of total scattering of x-rays.’ Proc. Roy. Soc. (London), Ser. A 124, 119–142. [5]

    Google Scholar 

  • Wang, H.-T., Felps, W. S., McGlynn, S. P. (1977): ‘Molecular Rydberg states. VII. Water.’ J. Chem. Phys. 67, 2614–2628. [5]

    Google Scholar 

  • Warshel, A., Karplus, M. (1972): ‘Vibrational structure of electronic transitions in conjugated molecules.’ Chem. Phys. Lett. 17, 7–14. [5]

    Google Scholar 

  • Watanabe, K., Zelikoff, M. (1953): ‘Absorption coefficients of water vapor in the vacuum ultraviolet.’ J. Opt. Soc. Am. 43, 753–755. [5]

    Google Scholar 

  • Watson, J. K. G. (1968): ‘Simplification of the molecular vibration-rotation Hamiltonian.’ Mol. Phys. 15, 479–490. [3]

    Google Scholar 

  • Watson, J. K. G. (1970a): ‘The vibration-rotation Hamiltonian of linear molecules.’ Mol. Phys. 19, 465–487. [5]

    Google Scholar 

  • Watson, W. D. (1969a): ‘The effect of auto-ionization lines on the opacity of stellar interiors.’ Astrophys. J. 157, 375–387. [5, 12]

    Google Scholar 

  • Watson, W. D. (1969b): ‘The effect of collective interactions on the electron-scattering opacity of stellar interiors.’ Astrophys. J. 158, 303–313. [6]

    Google Scholar 

  • Watson, W. D. (1970b): ‘The influence of ion correlations on the free-free opacity of stellar interiors.’ Astrophys. J. 159, 653–658. [6]

    Google Scholar 

  • Weber, J., Hohlneicher, G. (2003): ‘Franck–Condon factors for polyatomic molecules.’ Mol. Phys. 101, 2125–2144. [5]

    Google Scholar 

  • Weber, D., Penner, S. S. (1953): ‘Rotational line-width measurements on NO, HCl, and HBr.’ J. Chem. Phys. 21, 1503–1506. [7]

    Google Scholar 

  • Weisbach, M. F., Chakerian Jr., C. (1973): ‘Line-widths and transition probabilities for the carbon monoxide laser lines.’ J. Chem. Phys. 59, 4272–4276. [5]

    Google Scholar 

  • Weisskopf, V. (1932): ‘Zur Theorie der Kopplungbreite und der Stoßdämpfung.’ Z. Physik 75, 287–301. [7]

    Google Scholar 

  • Weisstein, E. W. (1999): CRC Concise Encyclopedia of Mathematics. CRC Press, Boca Raton. [7]

    Google Scholar 

  • Wentzel, G. (1928): ‘Die unperiodischen Vorgänge in der Wellenmechanik.’ Physik. Z. 29, 321–337. [5]

    Google Scholar 

  • Werner, H.-J. (1981): ‘MCSCF calculation of the dipole moment function of CO.’ Mol. Phys. 44, 111–123. [5]

    Google Scholar 

  • Werner, H.-J. (1987): ‘Matrix-formulated direct multiconfiguration self-consistent field and multiconfiguration reference configuration-interaction methods.’ Adv. Chem. Phys. 69, 1–62. [3, 5]

    Google Scholar 

  • Werner, H.-J., Reinsch, E. A. (1981): ‘An iterative configuration interaction method with configurations generated from several contracted reference determinants.’ In Proc. 5 th Semin. on Computational Methods in Quantum Chemistry. Eds. T. H. van Duinen and W. C. Niewpoort; MPI Garching,. p. 206–233. [5]

    Google Scholar 

  • Werner, H.-J., Rosmus, P. (1985): ‘Ab initio calculations of radiative transition probabilities in diatomic molecules.’ In Comparison of Ab Initio Calculations with Experiment: State of the Art. Ed. R. Bartlett; D. Reidel, Dordrecht, p. 267–324. [3, 5]

    Google Scholar 

  • Werner, H.-J., Rosmus, P., Reinsch, E.-A. (1983): ‘Molecular properties from MCSCF – SCEP wave functions. I. Accurate dipole moment functions of OH, OH, and OH+.’ J. Chem. Phys. 79, 905–916. [5]

    Google Scholar 

  • Werner, H.-J., Kalcher, J., Reinsch, E.-A. (1984): ‘Accurate ab initio calculations of radiative transition probabilities between the A\({}^{3}\!\varSigma _{\mathrm{u}}^{+}\), B\({}^{3}\!\varPi _{\mathrm{g}}\), W\({}^{3}\!\varDelta _{\mathrm{u}}\), B\({}^{{\prime}3}\!\varSigma _{\mathrm{u}}^{-}\), and C\({}^{3}\!\varPi _{\mathrm{u}}\) states of N2.’ J. Chem. Phys. 81, 2420–2431. [5]

    Google Scholar 

  • White, H. E., Eliason, A. Y. (1933): ‘Relative intensity tables for spectrum lines.’ Phys. Rev. 44, 753–756. [5]

    Google Scholar 

  • White, M. (1982): ‘Photoelectron angular distributions from electron–atom collisions.’ Phys. Rev. A 26, 1907–1914. [5]

    Google Scholar 

  • Whitehead, R. J., Handy, N. C. (1975): ‘Variational claculation of vibration–rotation energy levels for triatomic molecules.’ J. Mol. Spectr. 55, 356–373. [3]

    Google Scholar 

  • Wickramasinghe, N. C. (1973): Light Scattering Functions for Small Particles. Wiley, New York. [5]

    Google Scholar 

  • Wiese, W. L. (1992): ‘Spectroscopic data for fusion edge plasmas.’ In Atomic Plasma - Matter Interaction. Fusion Data Supplement (APID Series) 2, 7–13. [5]

    Google Scholar 

  • Wiese, W. L., Fuhr, J. R. (1975): ‘Atomic transition probabilities for scandium and titanium. (A critical data compilation of allowed lines).’ J. Phys. Chem. Ref. Data 4, 263–352. [5]

    Google Scholar 

  • Wiese, W. L., Martin, G. A. (1976): ‘Oscillator strength distribution in the lithium isoelectronic sequence.’ In 7 th Yugoslav Symposium and Summer School on Physics of Ionized Gases. Inst. of Physics, U. Zagreb, p. 675–700. [5]

    Google Scholar 

  • Wiese, W. L., Martin, G. A. (1986): ‘Atomic transition probabilities.’ In CRC Handbook of Chemistry and Physics. Ed. R. C. Weart, CRC Press, Boca Raton, p. E328–E363. [5]

    Google Scholar 

  • Wiese, W. L., Smith, M. W., Glennon, B. M. (1966): Atomic Transition Probabilities, Volume I, Hydrogen through Neon. National Standard Reference Data Series, NBS 4 (Category 3), U. S. Government Printing Office, Washington, DC. [5]

    Google Scholar 

  • Wiese, W. L., Kelleher, D. E., Paquette, D. R. (1972): ‘Detailed study of the Stark broadening of Balmer lines in a high-density plasma.’ Phys. Rev. A 6, 1132–1153. [4, 13]

    Google Scholar 

  • Wiese, W. L., Fuhr, J. R., Deters, T. M. (1996): ‘Atomic transition probabilities of carbon, nitrogen, and oxygen: A critical data compilation.’ J. Phys. Chem. Ref. Data Monograph 7 Am. Chem. Soc. and Am. Inst. Phys., Woodbury, NY. [5]

    Google Scholar 

  • Wigner, E. (1938): ‘Effects of the electron interaction on the energy levels of electrons in metals.’ Trans. Faraday Soc. 34, 678–685. [4]

    Google Scholar 

  • Wilkinson, P. G. (1961): ‘Molecular spectra in the vacuum UV.’ J. Mol. Spectr. 6, 1–57. [12]

    Google Scholar 

  • Wilkinson, P. G, Mulliken, R. S. (1955): ‘Far UV absorption spectra of ethylene and ethylene-D4.’ J. Chem. Phys 23, 1895–1907. [12]

    Google Scholar 

  • Williams, A. R. (1974): ‘Multiple scattering theory beyond the muffin-tin approximation.’ Int. J. Quantum Chem. Symp. 8, 89–108. [3]

    Google Scholar 

  • Williams, G. R. J., Langhoff, P. W. (1979): ‘Photoabsorption in H2O: Stieltjes-Tchebycheff calculations in the time-dependent Hartree–Fock approximation.’ Chem. Phys. Lett. 60, 201–207. [5]

    Google Scholar 

  • Williams, G. R. J., Langhoff, P. W. (1981): ‘Extended-basis-set RPAE calculations of molecular photoionization cross sections: Theoretical studies of V π –V σ interaction in molecular nitrogen.’ Chem. Phys. Lett. 78, 21–27. [5]

    Google Scholar 

  • Williamson, A. J. (1996): ‘Quantum Monte-Carlo calculations of electronic excitations.’ Thesis, Robinson College, Cambridge. http://www.tcm.phy.cam.ac.uk/~ajw29/thesis/thesis.html

  • Wilson, S. (1983): ‘Basis sets.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, Vol. 113, p. 71–93. [3]

    Google Scholar 

  • Wilson, S. (1984): Electron Correlation in Molecules. Clarendon Press, Oxford. [3]

    Google Scholar 

  • Wilson, S. (1986): Chemistry by Computer: An Overview. Plenum, New York. [3]

    Google Scholar 

  • Wilson, S. (1987): ‘Basis sets.’ Adv. Chem. Phys. 67, 439–500. [3]

    Google Scholar 

  • Wilson, S. (1992a): ‘The perturbation theory of electron correlation: I. Basic Rayleigh–Schrodinger perturbation theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 195–224. [3]

    Google Scholar 

  • Wilson, S. (1992b): ‘The perturbation theory of electron correlation: II. Many-body perturbation theory and the algebraic approximation.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 225–252. [3]

    Google Scholar 

  • Wilson, S. (1992c): ‘The perturbation theory of electron correlation: III. Relativistic many-body perturbation theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 253–272. [3]

    Google Scholar 

  • Wilson, S. (1992d): ‘Perturbation theory of electron correlation: IV. Concurrent computation many-body perturbation theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 273–302. [3]

    Google Scholar 

  • Wilson, S. (1997a): ‘Practical ab initio methods for molecular electronic structure studies. I. An overview.’ In Problem Solving in Computational Molecular Science: Molecules in Different Environments. Ed. S. Wilson and G. H. F. Diercksen. Kluwer; Dordrecht, Boston, London, p. 85–108. [3]

    Google Scholar 

  • Wilson, S. (1997b): ‘Practical ab initio methods for molecular electronic structure studies. II. Finite basis sets and the algebraic approximation.’ In Problem Solving in Computational Molecular Science: Molecules in Different Environments. Ed. S. Wilson and G. H. F. Diercksen. Kluwer; Dordrecht, Boston, London, p. 109–158. [3]

    Google Scholar 

  • Wilson, S. (1997c): ‘Practical ab initio methods for molecular electronic structure studies. III. Molecular integrals over Gaussian-type functions.’ In Problem Solving in Computational Molecular Science: Molecules in Different Environments. Ed. S. Wilson and G. H. F. Diercksen. Kluwer; Dordrecht, Boston, London, p. 159–184. [3]

    Google Scholar 

  • Wilson, S. (1997d): ‘Practical ab initio methods for molecular electronic structure studies. IV. Relativistic many-body perturbation theory.’ In Problem Solving in Computational Molecular Science: Molecules in Different Environments. Ed. S. Wilson and G. H. F. Diercksen. Kluwer; Dordrecht, Boston, London, p. 185–214. [3]

    Google Scholar 

  • Wilson, S., Silver, D. M. (1976): ‘Algebraic approximation in many-body perturbation theory.’ Phys. Rev. A 14, 1949–1960. [3]

    Google Scholar 

  • Wilson, S., Moncrieff, D. (1997): ‘Distributed Gaussian basis sets: Some recent results and prospects.’ In Advances in Quantum Chemistry: Recent Advances in Computational Chemistry. Eds. P.-O. Lowden, J. R. Sabin, M. C. Zerner, J. Karwowski, M. Karelson; Academic Press, New York, London, p. 48–65. [3]

    Google Scholar 

  • Wilson, S., Diercksen, G. H. F. (Eds.) (1992): Methods in Computational Molecular Physics. Plenum Press, New York, London. [3]

    Google Scholar 

  • Winans, J. G., Stuckelberg, E. C. G. (1928): ‘Origin of the continuum spectrum of the hydrogen molecule.’ Proc. Nat. Acad. Sci. USA 14, 867–871. [6]

    Google Scholar 

  • Winhart, G., Eidmann, K., Iglesias, C. A., Bar-Shalom, A., Mínguez, E., Rickert, A., Rose, S. J. (1995): ‘XUV opacity measurements and comparison with models.’ J. Quant. Spectr. Rad. Transfer 54, 437–446. [13]

    Google Scholar 

  • Winhart, G., Eidmann, K., Iglesias, C. A., Bar-Shalom, A. (1996): ‘Measurements of extreme uv opacities in hot dense Al, Fe, and Ho.’ Phys. Rev. E 53, R1332–R1335. [13]

    Google Scholar 

  • Winstead, C. L. (1987): ‘Projection operator formalisms for molecular photoionization resonances using square-integrable basis sets.’ Ph. D. Dissertation, Indiana University, Bloomington. [5]

    Google Scholar 

  • Winstead, C. L., Langhoff, P. W. (1991): ‘Feshbach–Fano formalism in Hilbert space: Application to shape resonances in molecular photoionization.’ J. Chem. Phys. 95, 3107–3118. [5]

    Google Scholar 

  • Wiscombe, W., and Mugnai, A. (1980): ‘Exact calculations of scattering from moderately-nonspherical T n -particles.’ In Light Scattering by Irregularly Shaped Particles. Ed. D. W. Schuerman, Plenum Press, New York, London, p. 141–152. [5]

    Google Scholar 

  • Wood, M. H. (1974): ‘On the calculation of the excited states of small molecules.’ Chem. Phys. Lett. 28, 477–481. [5]

    Google Scholar 

  • Woodall, J., Agúndez, M., Markwick-Kemper, A. J., Millar, T. J. (2007): ‘The UMIST database for astrochemistry 2006.’ Astron. Astrophys. 466, 1197–1207. [4]

    Google Scholar 

  • Wyller, A. A. (1962): ‘True, ordinary and effective thermal conductivity tensors for a Lorentz-type hydrogen gas.’ Astrophys. Norvegica 8, 53–77. [9]

    Google Scholar 

  • Wyller, A. A. (1973): ‘Thermal conductivity of partially degenerate magnetoplasmas in stellar cores.’ Astrophys. J. 184, 517–538. [9]

    Google Scholar 

  • Xu, Y. (1995): ‘Electromagnetic scattering by an aggregate of spheres.’ Appl. Optics 34, 4573–4588. [5]

    Google Scholar 

  • Xu, Y. (1996a) ‘Fast evaluation of the Gaunt coefficients.’ Math. Comp. 65, 1601–1612. [5]

    Google Scholar 

  • Xu, Y. (1996b) ‘Calculation of the addition coefficients in electromagnetic multisphere scattering theory.’ J. Comp. Phys. 127, 285–298. [5]

    Google Scholar 

  • Xu, Y., Gustafson, B. Å. S. (1996): ‘A complete and efficient multisphere scattering theory for modeling the optical properties of interplanetary dust.’ In Physics, Chemistry, and Dynamics of Interplanetary Dust, Eds. B. Å. S. Gustafson, and M. S. Hanner; Astron. Soc. Pacific, Conf. Ser. 104, p. 419–422. [5]

    Google Scholar 

  • Yakovlev, D. G. (1984): ‘Transport properties of the degenerate electron gas of neutron stars along the quantizing magnetic field.’ Astrophys. Space Sci. 98, 37–59. [9]

    Google Scholar 

  • Yakovlev, D. G. (1987): ‘Thermal and electrical conductivities of a degenerate electron gas with electron scattering on heavy ions in the liquid or gaseous phases.’ Astron. Zh. 64, 661–664 (Russian). Sov. Astron. 31, 347–348 (English). [9]

    Google Scholar 

  • Yakovlev, D. G., Urpin, V. A. (1980): ‘Thermal and electrical conductivity in white dwarfs and neutron stars.’ Astron. Zh. 57, 526–536 (Russian). Sov. Astron. 24, 303–310 (English). [9]

    Google Scholar 

  • Yamaguchi, Y., Frisch, M., Gaw, J., Schaefer III, H. F. (1986): ‘Analytical evaluation and basis set dependence of intensities of infrared spectra.’ J. Chem. Phys. 84, 2262–2278. [5]

    Google Scholar 

  • Yang, C. Y. (1981): ‘Relativistic scattered-wave calculations for molecules and clusters in solids.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 335–362. [3]

    Google Scholar 

  • Yarkony, D. R. (1996): ‘Molecular structure.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 357–377. [3]

    Google Scholar 

  • Yeager, D. L. McKoy, V. (1977): ‘Transition moments between excited electronic states of N2 .’ J. Chem. Phys. 67, 2473–2477. [5]

    Google Scholar 

  • Yeager, D., McKoy, V., Segal, G. A. (1974): ‘Assignments in the electronic spectrum of water.’ J. Chem. Phys. 61, 755–758. [5]

    Google Scholar 

  • Yeh, C., Mei, K. K. (1980): ‘On the scattering from arbitrarily shaped inhomogeneous particles – Exact solution.’ In Light Scattering by Irregularly Shaped Particles. Ed. D. W. Schuerman, Plenum Press, New York, London, p. 201–206. [5]

    Google Scholar 

  • Young, C. (1965): ‘Calculation of the absorption coefficient for lines with combined Doppler and Lorentz broadening.’ J. Quant. Spectr. Rad. Transfer 5, 549–552. [7]

    Google Scholar 

  • Young, L. A., Eachus, W. J. (1966): ‘Dipole moment function and vibration–rotation matrix elements for CO.’ J. Chem. Phys. 44, 4195–4206. [5]

    Google Scholar 

  • Young, S. J. (1977): ‘Nonisothermal band model theory.’ J. Quant. Spectr. Rad. Transfer 18, 1–28. [7]

    Google Scholar 

  • Younger, S. M., Fuhr, J. R., Martin, G. A., Wiese, W. L. (1978): ‘Atomic transition probabilities for vanadium, chromium, and manganese. (A critical data compilation of allowed lines).’ J. Phys. Chem. Ref. Data 7, 495–629. [5]

    Google Scholar 

  • Zakrzewski, G., Dolgounitcheva, O., Ortiz, J. V. (1996): ‘Direct algorithm for the random-phase approximation.’ Int. J. Quantum Chem. 60, 1241–1247. [5]

    Google Scholar 

  • Zare, R. N. (1964): ‘Calculation of intensity distribution in the vibrational structure of electronic transitions: The B\({}^{3}\!\varPi _{{0}^{+}\mathrm{u}}-\) X\({}^{1}\!\varSigma _{{0}^{+}\mathrm{g}}\) resonance series of molecular iodine.’ J. Chem. Phys. 40, 1934–1945. [3]

    Google Scholar 

  • Zare, R. N. (1988): Angular Momentum Wiley, New York. [5]

    Google Scholar 

  • Zehe, M. J., Gordon, S., McBride, B. J. (2002): ‘CAP: A computer code for generating tabular thermodynamic functions from NASA Lewis coefficients.’ Glenn Res. Center, NASA/TP-2001-210959, Rev. 1, Cleveland, Ohio. [4]

    Google Scholar 

  • Zel’dovich, Ya. B., Raĭzer, Yu. P. (1966): Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 1, Eds. W. D. Hayes and R. F. Probstein; Academic Press, New York, San Francisco, London. [4, 11]

    Google Scholar 

  • Zel’dovich, Ya. B., Raĭzer, Yu. P. (1967): Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena. Vol. 2, Eds. W. D. Hayes and R. F. Probstein; Academic Press, New York, London. [4]

    Google Scholar 

  • Zerner, M. C. (1991): ‘Semi-empirical molecular orbital methods.’ In Reviews of Computational Chemistry. Vol. 2. Eds. K. B. Lipkowitz and D. B. Boyd; VCH Publishing, New York, p. 313–366. [3]

    Google Scholar 

  • Zerner, M. C. (1997): ‘On calculating the electronic spectroscopy of very large molecules.’ In Problem Solving in Computational Molecular Science: Molecules in Different Environments. Ed. S. Wilson and G. H. F. Diercksen. Kluwer; Dordrecht, Boston, London, p. 249–290. [3]

    Google Scholar 

  • Zhevakin, S. A., Naumov, A. P. (1963): ‘Absorption of cm and mm radio waves by the atmospheric water vapor.’ Izvest. Vysshik Uchebn. Zavedenii Radiofiz. 6, 674–694 (Russian); (Radio Eng. Electr. Phys. 9, 1097–1105) (English). [7]

    Google Scholar 

  • Ziegler, T. (1981): ‘Calculation of bonding energies by the Hartree – Fock Slater transition state method, including relativistic effects.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 421–436. [3]

    Google Scholar 

  • Ziman, J. M. (1961): ‘A theory of the electrical properties of liquid metals. I: The monovalent metals.’ Phil. Mag. 6, 1013–1034. [9]

    Google Scholar 

  • Zink, J. W. (1968): ‘Shell structure and the Thomas–Fermi equation of state.’ Phys. Rev. 176, 279–284. [4]

    Google Scholar 

  • Zink, J. W. (1970): ‘Energy of partially ionized matter.’ Astrophys. J. 162, 145–151. [4]

    Google Scholar 

  • Zubarev, D. N. (1974): Nonequilibrium Statistical Thermodynamics. Consultants Bureau, Plenum Publishing Co., New York. [5]

    Google Scholar 

  • Zvereva, N. A. (2001): ‘Theoretical description of the photodissociation spectrum of monomer and dimer forms of water.’ Optika Spectrosk. 91, 640–644 (Russian); Optics Spectrosc. 91 604–608 (English). [5]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter F. Huebner .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huebner, W.F., Barfield, W.D. (2014). Limits, Approximations, Scaling, and Interpolations. In: Opacity. Astrophysics and Space Science Library, vol 402. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8797-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8797-5_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8796-8

  • Online ISBN: 978-1-4614-8797-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics