Advertisement

Opacity pp 411-419 | Cite as

Limits, Approximations, Scaling, and Interpolations

  • Walter F. Huebner
  • W. David Barfield
Chapter
Part of the Astrophysics and Space Science Library book series (ASSL, volume 402)

Abstract

Limits and approximations can serve as useful checks on calculated opacities. Scaling is important to estimate opacities for elements for which tables have not been calculated. Interpolation is indispensable to obtain opacities at density and temperature values for which they have not been tabulated. In the following, opacities, κ, are in units of m2∕kg.

Keywords

Rotation Band Average Absorption Coefficient Free Process Effective Wave Number Average Integrate Absorption Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References9

  1. Abdallah Jr., J., Clark, R. E. H. (1991): ‘X-ray transmission calculations for an aluminum plasma.’ J. Appl. Phys. 69, 23–26. [13]Google Scholar
  2. Abdallah Jr., J., Clark, R. E. H., Cowan, R. D. (1988): ‘Theoretical Atomic Physics Code Development. I. CATS: Cowan Atomic Structure Code.’ Los Alamos National Laboratory report LA-11436-M. [3]Google Scholar
  3. Abraham, Z., Iben, I. (1971): ‘More solar models and neutrino fluxes.’ Astrophys. J. 170, 157–163. [11]Google Scholar
  4. Abramowitz, M., Stegun, I. A. (1964/1972): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. NBS Applied Mathematics Series 55, U.S. Dept. Commerce, Washington, DC. Tenth printing, December 1972, with corrections. [5, 8]Google Scholar
  5. Acton, A. P., Aickin, R. G., Bayliss, N. S. (1936): ‘The continuous absorption spectrum of bromine: A new interpretation.’ J. Chem. Phys. 4, 474–479. [6]Google Scholar
  6. Adam, J. C., Serveniere, A. G., Laval, G. (1983): ‘Instabilities induced by resonant absorption of an electromagnetic wave in an inhomogeneous plasma.’ J. Phys., Colloque C2 Suppl. 44, 171–179. [5]Google Scholar
  7. Adelman, S. J., Wiese, W. L.(1995): Astrophysical applications of powerful new databases: Joint discussion no. 16 of the 22nd General Assembly of the IAU. Astronomical Society of the Pacific, San Francisco. [1, 13]Google Scholar
  8. Aden, A. L. (1951): ‘Electromagnetic scattering from spheres with sizes comparable to the wavelength.’ J. Appl. Phys. 22, 601–605. [5]Google Scholar
  9. Aden, A. L., Kerker, M. (1951): ‘Scattering of electromagnetic waves from two concentric spheres.’ J. Appl. Phys. 22, 1242–1246. [5]Google Scholar
  10. Adey, A. W. (1956): ‘Scattering of electromagnetic waves by coaxial cylinders.’ Can. J. Phys. 34, 510–520. [5]Google Scholar
  11. Adler-Golden, S. M., Langhoff, S. R., Bauschlicher Jr., C. W., Carney, G. D. (1985): ‘Theoretical calculation of ozone vibrational infrared intensities.’ J. Chem. Phys. 83, 255–264. [5]Google Scholar
  12. Ågren, H., Arneberg, R., Müller, J., Manne, R. (1984): ‘X-ray emission of the nitrogen molecule following photon or electron impact. A theoretical study using configuration-interaction wavefunctions.’ Chem. Phys. 83, 53–67. [5]Google Scholar
  13. Ahlrichs, R. (1979): ‘Many body perturbation calculations and coupled electron pair models.’ Comp. Phys. Comm. 17, 31–45. [5]Google Scholar
  14. Ahlrichs, R., Scharf, P. (1987): ‘The coupled pair approximation.’ Adv. Chem. Phys. 67, 501–537. [3, 5]Google Scholar
  15. Akhiezer, A. I., Berestetskii, V. B. (1965): Quantum Electrodynamics. 2nd ed., (Engl. trans.), Interscience, New York. [3, 5]Google Scholar
  16. Albrecht, A. C. (1961): ‘On the theory of Raman intensities.’ J. Chem. Phys. 34, 1476–1484. [5]Google Scholar
  17. Alder, K., Bohr, A., Huus, T., Mottelson, B., Winther, A. (1956): ‘Study of nuclear structure by electromagnetic excitation with accelerated ions.’ Rev. Mod. Phys. 28, 432–542. [7]Google Scholar
  18. Alexander, D. R. (1975): ‘Low-temperature Rosseland opacity tables.’ Astrphys. J. Suppl. Ser. 29, 363–374. [6]Google Scholar
  19. Alexander, D. R., Ferguson, J. W. (1994a): ‘Improvements in the computation of grain opacities.’ In Molecules in the Stellar Environment. Ed. U. G. Jørgensen, Springer-Verlag, Berlin, p. 149–162. [6]Google Scholar
  20. Alexander, D. R., Ferguson, J. W. (1994b): ‘Low-temperature Rosseland opacities.’ Astrphys. J. 437, 879–891. [6, 7]Google Scholar
  21. Alexander, D. R., Johnson, H. R., Rypma, R. L. (1983): ‘Effect of molecules and grains on Rosseland mean opacities.’ Astrophys. J. 272, 773–780. [6, 7]Google Scholar
  22. Alhassid, Y., Gürsey, F., Iachello, F. (1983): ‘Group theory approach to scattering.’ Ann. Phys. (NY) 148, 346–380. [5]Google Scholar
  23. Allard, F., Hauschildt, P. H. (1995): ‘Model atmospheres for M (sub)dwarf stars. I. The base model grid.’ Astrophys. J 445, 433–450. [14]Google Scholar
  24. Allard, F., Hauschildt, P. H., Alexander, T. R., Tamanai, A., Schweitzer, A. (2001): ‘The limiting affects of dust in brown dwarf atmospheres.’ Astrophys. J. 556, 357–372. [14]Google Scholar
  25. Allen, C. W. (1963): Astrophysical Quantities. 2nd ed., The Athlone Press, University of London, and Humanities Press, Inc., New York. [5]Google Scholar
  26. Allen, S. J. M. (1935): ‘Mean values of the mass absorption coefficient of the elements.’ In X-Rays in Theory and Experiment, Appendix IX. Eds. A. H. Compton and S. K. Allison; D. van Nostrand Co., Inc., Princeton, NJ, Toronto, New York, London, p. 799. Also in Handbook of Chemistry and Physics. 53rd ed., p. E-123. [5]Google Scholar
  27. Allison, A. C., Dalgarno, A. (1971); ‘Continuity at the dissociation threshold in molecular absorption.’ J. Chem. Phys. 55, 4342–4344. [5]Google Scholar
  28. Ambarzumian, V. A. (1936): ‘The effect of absorption lines on the radiative equilibrium of the outer layers of stars.’ Publ. Obs. Astronom. Univ. Leningrad 6, 7–18. [7]Google Scholar
  29. Amos, R. D. (1987a): ‘Molecular property derivatives.’ Adv. Chem. Phys. 67, 99–153. [3, 5]Google Scholar
  30. Amos, R. D. (1987b): ‘Geometries, harmonic frequencies and infrared and Raman intensities for H2O, NH3, and CH4.’ J. Chem. Soc. Faraday Trans. 2, 83, 1595–1607. [5]Google Scholar
  31. Amusia, M. Y.(1996a): ‘Many-body theory of atomic structure and processes.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 287–300. [3, 5]Google Scholar
  32. Amusia, M. Y.(1996b): ‘Atoms as many-body systems.’ Phys. Rep. 264, 7–26. [5]Google Scholar
  33. Amus’ya, M. Ya., Cherepkov, N. A., Chernysheva, L. V. (1971): ‘Cross section for the photoionization of noble-gas atoms with allowance for multielectron correlations.’ Zh. Eksper. Teor. Fiz. 60, 160–174 (Sov. Phys. - JETP 33, 90–96). [5]Google Scholar
  34. Anderson, P. W. (1949): ‘Pressure broadening in the microwave and infra-red regions.’ Phys. Rev. 76, 647–661. [7]Google Scholar
  35. Andresen, P. (1986a): ‘Classification of pump mechanism for astronomical OH masers and a maser model for the H2O photodissociation pump mechanism.’ Astron. Astrophys. 154, 42–54. [5]Google Scholar
  36. Andresen, P. (1986b): ‘Possible pump mechanisms for astronomical OH masers.’ Comments At. Mol. Phys. 18, 1–9. [5]Google Scholar
  37. Andresen, P., Schinke, R. (1987): ‘Dissociation of water in the first absorption band: A model system for direct photodissociation.’ In Molecular Photodissociation Dynamics. Eds. M. N. R. Ashfold and J. E. Baggott; Royal Society of Chemistry, Burlington House, Piccadilly, London, p. 61–113. [5]Google Scholar
  38. Anicich, V. G. (1993): ‘A survey of bimolecular ion – molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds.’ Astrophys. J. Suppl. Ser. 84, 215–315. [4]Google Scholar
  39. Ansbacher, A. (1959): ‘A note on the overlap integral of two harmonic oscillator wave functions.’ Z. Naturforsch. A 14, 889–892. [5]Google Scholar
  40. Appell, P., Kampe de Feriet, J. (1926): Fonctions Hypergeometrique et Hyperspherique Polynomes d’Hermite. Gauthier-Villars, Paris. [5]Google Scholar
  41. Arking, A., Grossman, K. (1972): ‘Influence of line shape and band structure on temperatures in planetary atmospheres.’ J. Atmos. Sci. 29 937–949. [7]Google Scholar
  42. Armstrong, B. H. (1964a): ‘Apparent positions of photoelectric edges and the merging of spectral lines.’ J. Quant. Spectr. Rad. Transfer 4, 207–214. [5, 7]Google Scholar
  43. Armstrong, B. H. (1964b): ‘Research on opacity of high-temperature air.’ J. Quant. Spectr. Rad. Transfer 4, 731–736. [1]Google Scholar
  44. Armstrong, B. H. (1967): ‘Spectrum line profiles: The Voigt function.’ J. Quant. Spectr. Rad. Transfer 7, 61–88. [5, 7]Google Scholar
  45. Armstrong, B. H., Purdum, K. L. (1966): ‘Extended use of the Coulomb approximation: Mean powers of r, a sum rule, and improved transition integrals.’ Phys. Rev. 150, 51–59. [7]Google Scholar
  46. Armstrong, B. H., Sokoloff, J., Nicholls, R. W., Holland, D. H., Meyerott, R. E. (1961): ‘Radiative properties of high temperature air.’ J. Quant. Spectr. Rad. Transfer 1, 143–162. [1]Google Scholar
  47. Armstrong, B. H., Johnston, R. R., Kelly, P. S. (1965): ‘The atomic line contribution to the radiation absorption coefficient of air.’ J. Quant. Spectr. Rad. Transfer 5, 55–65. [11]Google Scholar
  48. Armstrong, B. H., Johnston, R. R., Kelly, P. S., DeWitt, H. E., Brush, S. G. (1967): ‘Opacity of high-temperature air.’ Prog. High Temp. Phys. Chem. 1, 139–242. [1, 4, 5, 7]Google Scholar
  49. Asano, S. (1979): ‘Light scattering properties of spheroidal particles.’ Appl. Optics 18, 712–723. [5]Google Scholar
  50. Asano, S., Yamamoto, G. (1975): ‘Light scattering by a spheroidal particle.’ Appl. Optics 14, 29–49. [5]Google Scholar
  51. Asinovsky, Z. J., Kirillin, Z. V., Kobsev, G. A. (1970): ‘Study of the continuum radiation of nitrogen plasmas.’ J. Quant. Spectr. Rad. Transfer 10, 143–164. [13]Google Scholar
  52. Auman Jr., J. (1966): ‘The infrared opacity of hot water vapor.’ Astrophys. J. Suppl. Ser. 14, 171–206. [7]Google Scholar
  53. Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969a): ‘Optical properties of heated air – I. Basic procedures of spectral characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 89–111. [1]Google Scholar
  54. Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969b): ‘Optical properties of heated air – II. Integrated characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 113–122. [1]Google Scholar
  55. Bacher, R. F., Goudsmit, S. (1934): ‘Atomic energy relations. I.’ Phys. Rev. 46, 948–969. [3]Google Scholar
  56. Back, C. A., Perry, T. S., Bach, D. R., Wilson, B. G., Iglesias, C. A., Landen, O. L., Davidson, S. J., Crowley, B. J. B. (1997): ‘Opacity measurements: Extending the range and filling in the gaps.’ J. Quant. Spectr. Rad. Transfer 58, 415–425. [13]Google Scholar
  57. Bahcall, J. N., Huebner, W. F., Lubow, S. H., Parker, P. D., Ulrich, R. K. (1982): ‘Standard solar models and the uncertainties in predicted capture rates of solar neutrinos.’ Rev. Mod. Phys. 54, 767–799. [13]Google Scholar
  58. Balasubramanian, K., Pitzer, K. S. (1987): ‘Relativistic quantum chemistry.’ Adv. Chem. Phys. 67, 287–320. [3]Google Scholar
  59. Balescu, R. (1960): ‘Irreversible processes in ionized gases.’ Phys. Fluids 3, 52–63. [9]Google Scholar
  60. Balescu, R. (1961): ‘Approach to equilibrium of a quantum plasma.’ Phys. Fluids 4, 94–99. [9]Google Scholar
  61. Baranger, M. (1958): ‘Problem of overlapping lines in the theory of pressure broadening.’ Phys. Rev. 111, 494–504. [7]Google Scholar
  62. Baranger, M. (1962): ‘Spectral line broadening in plasmas.’ In Atomic and Molecular Processes. Ed. D. R. Bates; Academic Press, New York, London, p. 493–548. [7]Google Scholar
  63. Baranov, V. I. (2000): ‘Parametric method in the theory of vibronic spectra of polyatomic molecules: Absorption and fluorescence spectra and structure of styrene in the excited state.’ Optika Spectrosk. 88, 216–223 (Russian); Opics Spectrosc. 88 182–189 (English). [5]Google Scholar
  64. Baranov, v. I., Gribov, L. A., Zelent’sov, D. Yu (1996): ‘Refined approach for matrix element calculations in the theory of electronic-vibration spectra of polyatomic molecules.’ J. Mol. Struct. 376, 475–493. [5]Google Scholar
  65. Bardsley, J. N. (1968): ‘Configuration interaction in the continuum states of molecules.’ J. Phys. B 1, 349–364. [5]Google Scholar
  66. Barfield, W. D. (1977): ‘Theoretical study of equilibrium nitrogen plasma radiation.’ J. Quant. Spectr. Rad. Transfer 17, 471–482. [10]Google Scholar
  67. Barfield, W. D., Huebner, W. F. (1976): ‘On the calculation of scattering cross sections from absorption cross sections.’ J. Quant. Spectr. Rad. Transfer 16, 27–34. [5]Google Scholar
  68. Barfield, W. D., Koontz, G. D., Huebner, W. F. (1972): ‘Fits to new calculations of photoionization cross sections for low-Z elements.’ J. Quant. Spectr. Rad. Transfer 12, 1409–1433; 13, 87. [5, 6, 12]Google Scholar
  69. Barin, I. (1995): Thermochemical Data of Pure Substances. VCH Publishers, New York, N.Y. [4]Google Scholar
  70. Baron, E., Hauschildt, P. H. (1998): ‘Parallel implementation of the PHOENIX generalized stellar atmosphere program. II. Wavelength parallelization.’ Astrophys. J. 495, 370–376. [14]Google Scholar
  71. Baron, E., Hauschildt, P. H., Nugent, P., Branch, D. (1996): ‘Non-local thermodynamic equilibrium effects in modeling supernovae near maximum light.’ Mon. Not. Roy. Astron. Soc. 283, 297–315. [14]Google Scholar
  72. Bar-Shalom, A., Oreg, J., Glodstein, W. H., Shvarts, D., Zigler, A. (1989): ‘Super-transition arrays: A model for the spectral analysis of hot, dense plasma.’ Phys. Rev. A 40, 3183–3193. [7, 13]Google Scholar
  73. Bar-Shalom, A., Oreg, J., Glodstein, W. H., (1994): ‘Configuration interaction in LTE spectra of heavy elements.’ J. Quant. Spectr. Rad. Transfer 51, 27–39. [7, 13]Google Scholar
  74. Bar-Shalom, A., Oreg, J., Goldstein, W. H., (1995a): ‘Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas.’ Phys. Rev. E 51, 4882–4890. [7]Google Scholar
  75. Bar-Shalom, A., Oreg, J., Seely, J. F., Feldman, U., Brown, C. M., Hammel, B. A., Lee, R. W., Back, C. A. (1995b): ‘Interpretation of hot and dense absorption spectra of a near-local-thermodynamic-equilibrium plasma by the super-transition-array method.’ Phys. Rev. E 52, 6686–6691. [7, 13]Google Scholar
  76. Bartlett, R. J., Musial, M. (2007): ‘Coupled-cluster theory in quantum chemistry.’ Rev. Mod. Phys. 79, 291–352. [3]Google Scholar
  77. Bates, D. R. (1946): ‘An approximate formula for the continuous radiative absorption cross-section of the lighter neutral atoms and positive and negative ions.’ Mon. Not. Roy. Astron. Soc. 106, 423–431. [5]Google Scholar
  78. Bates, D. R., Damgaard, A. (1949): ‘The calculation of the absolute strengths of spectral lines.’ Phil. Trans. Roy. Soc. London, Ser. A 242, 101–122. [3, 5, 7]Google Scholar
  79. Bauche, J., Bauche-Arnoult, C. (1990): ‘Statistical properties of atomic spectra.’ Comp. Phys. Rep. 12, 1–28. [7]Google Scholar
  80. Bauche, J., Bauche-Arnoult, C., Klapisch, M., Mandelbaum, P., Schwob, J.-L. (1987): ‘Quenching of transition arrays through configuration mixing.’ J. Phys. B 20 1443–1450. [7]Google Scholar
  81. Bauche-Arnoult, C., Bauche, J. (1992): ‘Statistical approach to the spectra of plasmas.’ Phys. Scripta T40, 58–64. [7]Google Scholar
  82. Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1978): ‘Mean wavelength and spectral width of transition arrays in x-uv atomic spectra.’ J. Opt. Soc. Am. 68 1136–1139. [7]Google Scholar
  83. Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1979): ‘Variance of the distributions of energy levels and of the transition arrays in atomic spectra.’ Phys. Rev. A 20 2424–2439. [7]Google Scholar
  84. Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1982): ‘Variance of the distributions of energy levels and of the transition arrays in atomic spectra. II. Configurations with more than two open shells.’ Phys. Rev. A 25 2641–2646. [7]Google Scholar
  85. Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1984): ‘Asymmetry of \({l}^{N+1} - {l}^{N}{l}^{{\prime}}\) transition array patterns in ionic spectra.’ Phys. Rev. A 30 3026–3032. [7]Google Scholar
  86. Bauche-Arnoult, C., Bauche, J., Klapisch, M. (1985): ‘Variance of the distribution of energy levels and of the transition arrays in atomic spectra. III. Case of spin-orbit-split arrays.’ Phys. Rev. A 31 2248–2259. [7]Google Scholar
  87. Bauer, A., Godon, M., Carlier, J., Ma, Q. (1995): ‘Water vapor absorption in the atmospheric window at 239 GHz.’ J. Quant. Spectr. Rad. Transfer 53, 411–423. [7]Google Scholar
  88. Bauer, A., Godon, M., Carlier, J., Gamache, R. R. (1996): ‘Absorption of a H2O–CO2 mixture in the atmospheric window at 239 GHz.’ J. Mol. Spectr. 176, 45–57. [7]Google Scholar
  89. Bauer, A., Godon, M., Carlier, J., Gamache, R. R. (1998): ‘Continuum in the windows of the water vapor spectrum. Absorption of H2O–Ar at 239 Ghz and linewidth calculations.’ J. Quant. Spectr. Rad. Transfer 59, 273–285. [7]Google Scholar
  90. Bauschlicher Jr., C. W., Langhoff, S. R., Taylor, P. R. (1990): ‘Accurate quantum chemical calculations.’ Adv. Chem. Phys. 77, 103–162. [3]Google Scholar
  91. Beck, D. R., Nicolaides, C. A. (1978): ‘Theory of electronic structure of excited states in small systems with numerical applications to atomic states.’ In Excited States in Quantum Chemistry: Theoretical and Experimental Aspects of the Electronic Structure and Properties of the Excited States in Atoms, Molecules and Solids. Eds. C. A. Nicolaides and D. R. Beck; D. Reidel Publ. Co., Dordrecht, Boston, London, p. 105–142. [5]Google Scholar
  92. Beck, D. R., Nicolaides, C. A. (1982): ‘Specific correlation effects in inner-electron photoelectron spectroscopy.’ Phys. Rev. A 26, 857–862. [5]Google Scholar
  93. Becke, A. D. (1992): ‘Density-functional thermochemistry. I. The effect of the exchange-only gradient correction.’ J. Chem. Phys. 96, 2155–2160. [3]Google Scholar
  94. Becke, A. D. (1993): ‘Density-functional thermochemistry. III. The role of exact exchange.’ J. Chem. Phys. 98, 5648–5652. [3]Google Scholar
  95. Behrens, H., Ebel, G., Lück, W., Luksch, P., Müller, H.-W. (1985): ‘Data compilations in physics.’ Physics Data 3–5. [6]Google Scholar
  96. Behringer, J. (1958): ‘Zur Theorie des Resonanz-Raman-Effektes.’ Z. Elektrochem. 62, 906–914. [5]Google Scholar
  97. Bely, O. (1966): ‘Quantum defect theory. III. Electron scattering by He+.’ Proc. Phys. Soc. (London) 88, 833–842. [3]Google Scholar
  98. Bely, O., Griem, H. R. (1970): ‘Quantum-mechanical calculation for the electron-impact broadening of the resonance lines of singly ionized magnesium.’ Phys. Rev. A 1, 97–105. [7]Google Scholar
  99. Benedict, W. S., Kaplan, L. D. (1959): ‘Calculation of line widths in H2O - N2 collisions.’ J. Chem. Phys. 30, 388–399. [7]Google Scholar
  100. Benedict, W. S., Kaplan, L. D. (1964): ‘Calculation of the line widths in H2O – H2O and H2O – O2 collisions.’ J. Quant. Spectr. Rad. Transfer 4, 453–469. [7]Google Scholar
  101. Benedict, W. S., Gailar, N., Plyler, E. K. (1956): ‘Rotation–vibration spectra of deuterated water vapor.’ J. Chem. Phys. 24, 1139–1165. [5]Google Scholar
  102. Benedict, W. S., Herman, R., Moore, G. E., Silverman, S. (1957): ‘Infrared line and band strengths and dipole moment functions in HCl and DCl.’ J. Chem. Phys. 26, 1671–1677. [7]Google Scholar
  103. Ben-Reuven, A. (1966): ‘Impact broadening of microwave spectra.’ Phys. Rev. 145, 7–22. [7]Google Scholar
  104. Berestetskii, V. B., Lifshitz, E. M., Pitaevskii, L. P. (1971): Relativistic Quantum Theory. Pergamon Press, Oxford, New York. [5]Google Scholar
  105. Berger, R., Klessinger, M. (1997): ‘Algorithm for exact counting of energy levels of spectroscopic transitions at different temperatures.’ J. Comp. Chem. 18, 1312–1319. [7]Google Scholar
  106. Berger, R., Fischer, C., Klessinger, M. (1998): ‘Calculation of the vibronic fine structure in electronic spectra at high temperatures. I. Benzene and pyrazine.’ J. Phys. Chem. A 102, 7157–7167. [5, 7, 13]Google Scholar
  107. Bernstein, J., Dyson, F. J. (1959): ‘The continuous opacity and equations of state of light elements at low densities.’ General Atomic report GA-848. [11]Google Scholar
  108. Berrington, K. (1997a): The Opacity Project, Volume 2. Inst. of Physics Publishing, Bristol, Philadelphia. [1, 3, 4]Google Scholar
  109. Berrington, K. A. (1997b): ‘The opacity and iron projects - an overview.’ In Photon and Electron Collisions with Atoms and Molecules. Eds. P. G. Burke and C. J. Joachain. Plenum Press; New York, London, p. 297–312. [1, 7]Google Scholar
  110. Berrington, K. A., Eissner, W., Saraph, H. E., Seaton, M. J., Storey, P. J. (1987a): ‘A comparison of close-coupling calculations using UCL and QUB codes.’ Comp. Phys. Comm. 44, 105–119. [3]Google Scholar
  111. Berrington, K. A., Burke, P. G., Butler, K., Seaton, M. J., Storey, P. J., Taylor, K. T., Yan, Y. (1987b): ‘Atomic data for opacity calculations: II. Computational methods.’ J. Phys. B 20, 6379–6397. [3]Google Scholar
  112. Bethe, H. A. (1964): Intermediate Quantum Mechanics. W. A. Benjamin, Inc., New York, Amsterdam. [3]Google Scholar
  113. Bethe, H. A., Salpeter, E. E. (1957): Quantum Mechanics of One- and Two-Electron Atoms. Springer-Verlag, Berlin, Göttingen, Heidelberg. [3, 5, 7, 12]Google Scholar
  114. Biberman, L. M., Norman, G. E. (1967): ‘Continuous spectra of atomic gases and plasma.’ Soviet Phys. Usp. (Engl. trans.) 10, 52–90. [1, 5]Google Scholar
  115. Biedenharn, L. C., Blatt, J. M., Rose, M. E. (1952): ‘Some properties of the Racah and associated coefficients.’ Rev. Mod. Phys. 24, 249–257. [6]Google Scholar
  116. Biedenharn, L. C., Louck, J. D., Carruthers, P. A. (1981): Angular Momentum in Quantum Physics. Theory and Application. Encyclopedia of Mathematics and its Applications. 8, Addison-Wesley Publishing Co., Reading, MA, London, Amsterdam, Don Mills, Ontario, Sydney, Tokyo. [6]Google Scholar
  117. Bielińska-Waż, D., Karwowski, J. (1998): ‘Statistical theory of vibronic spectra: The intensity distributions.’ J. Quant. Spectr. Rad. Transfer 59, 39–51. [7]Google Scholar
  118. Biermann, L. (1933): ‘Stellar Atmospheres.’ Göttinger Nachrichten, Math. Phys. Klasse 3, 297–315 and 350–358. [2]Google Scholar
  119. Biggs, F., Lighthill, R. (1972): ‘Analytical Approximations for Photon-Atom Differential Scattering Cross Sections Including Electron Binding Effects.’ Sandia Laboratory report SC-RR-72 0659. [5]Google Scholar
  120. Billingsley II, F. P., Krauss, M. (1974): ‘MCSCF calculation of the dipole moment function of CO X\({{}^{1}\varSigma }^{+}\).’ J. Chem. Phys. 60, 4309–4316. [5]Google Scholar
  121. Birnbaum, G. (1994): ‘A memory function approach to the shape of pressure broadened molecular bands.’ Mol. Phys. 81, 519–532. [7]Google Scholar
  122. Birnbaum, G., Cohen, E. R. (1976a): ‘Theory of line shape in pressure-induced absorption.’ Can. J. Phys. 54, 593–602. [8, 13]Google Scholar
  123. Birnbaum, G., Cohen, E. R. (1976b): ‘Determination of molecular multipole moments and potential function parameters of non-polar molecules from far infra-red spectra.’ Mol. Phys. 32, 161–167. [8]Google Scholar
  124. Birnbaum, G., Cohen, E. R. (1976c): ‘Theory of line shape in pressure-induced absorption.’ Icarus 54, 593–602. [8]Google Scholar
  125. Birnbaum, G., Borysow, A. (1991): ‘On the problem of detailed balance and model line shapes in collision-induced rotovibrational bands: H2-H2 and H2-He.’ Mol. Phys. 73, 57–68. [8]Google Scholar
  126. Birnbaum, G., Guillot, B., Bratos, S. (1982): ‘Theory of collision-induced line shapes – absorption and light scattering at low density.’ Adv. Chem. Phys. 51, 49–112. [8]Google Scholar
  127. Birnbaum, G., Chu, S.-I., Dalgarno, A., Frommhold, L., Wright, E. L. (1984): ‘Theory of collision-induced translation-rotation spectra: H2 – He.’ Phys. Rev. A 29, 595–604. [8]Google Scholar
  128. Bishop, D. M. (1973): Group Theory and Chemistry. Clarendon Press, Oxford. [3, 5]Google Scholar
  129. Bjorken, J. D., Drell, S. D. (1965): Relativistic Quantum Fields. McGraw-Hill Book Co., Inc., New York. [5]Google Scholar
  130. Blanco, M. A., Flórez, M., Bermejos, M. (1997): ‘Evaluation of the rotation matrices in the basis of real spherical harmonics.’ J. Mol. Struct. (Theochem) 419, 19–27. [5]Google Scholar
  131. Blenski, T., Grimaldi, A., Perrot, F. (1997): ‘Hartree–Fock statistical approach to atoms and photoabsorption in plasmas.’ Phys. Rev. E 55, R4889-R4892. [13]Google Scholar
  132. Blenski, T., Grimaldi, A., Perrot, F. (2000): ‘A superconfiguration code based on the local density approximation.’ J. Quant. Spectr. Rad. Transfer 65, 91–100. [13]Google Scholar
  133. Bode, G. (1965): ‘Die kontinuierliche Absorption von Sternatmosphären in Abhängigkeit von Druck, Temperatur und Elementhäufigkeiten.’ Institut für Theoretische Physik und Sternwarte der Universität Kiel report. [1]Google Scholar
  134. Boercker, D. B. (1987): ‘Collective effects on Thomson scattering in the solar interior.’ Astrophys. J. Lett. 316, L95–L98. [6]Google Scholar
  135. Bogatyrev, K. N. Makarov, V. P. (1994): ‘On the vibrational spectrum of a linear molecule.’ Bull. Lebedev Phys. Inst. Nr. 10, p. 18–22. [5]Google Scholar
  136. Bogatyrev, K. N. Makarov, V. P. (1996): ‘Vibration–rotation Hamiltonian of a linear molecule.’ Kratkie Soobshcheniya po Fizike, No. 9–10, p. 31–36. Bull. Lebedev Phys. Inst. Nr. 9, p. 26–31. [5]Google Scholar
  137. Bogatyrev, K. N. Makarov, V. P. (1997a): ‘On the theory of the vibration–rotation spectra of linear molecules. I. The molecular Hamiltonian and the “Dirac Rules”.’ Optika Spectrosk. 83, 733–735. [5]Google Scholar
  138. Bogatyrev, K. N. Makarov, V. P. (1997b): ‘On the theory of the vibration–rotation spectra of linear molecules. II. The molecular Hamiltonian.’ Optika Spectrosk. 83, 916–920. [5]Google Scholar
  139. Bohm, D. (1951): Quantum Theory. Prentice-Hall, Inc., New York. [7]Google Scholar
  140. Bohren, C. F., Huffman, D. R. (1983): Absorption and Scattering of Light by Small Particles. John Wiley & Sons, New York, Chichester, Brisbane, Toronto, Singapore. [5]Google Scholar
  141. Boissoles, J., Menous, V., Le Doucen, R., Boulet, C., Robert, D. (1989): ‘Collisionally induced population transfer effect infrared absorption spectra. II. Theory of the Ar-broadened ν 3 band of CO2.’ J. Chem. Phys. 91, 2163–2171. [7]Google Scholar
  142. Boissoles, J., Boulet, C., Hartmann, J. M., Perrin, M. Y., Robert, D. (1990): ‘Collision-induced population transfer in infrared absorption spectra. III. Temperature dependence of absorption in the Ar-broadened wing of CO2 ν 3 band. J. Chem. Phys. 93, 2217–2221. [7]Google Scholar
  143. Bollé, D. (1981): ‘Application of few-body methods to statistical mechanics.’ Nucl. Phys. A 353, 377c–389c. [4]Google Scholar
  144. Bond Jr., J. W., Watson, K. M., Welch Jr., J. A. (1965): Atomic Theory of Gas Dynamics. Addison-Wesley, Reading, MA. [7]Google Scholar
  145. Bonham, R. A., Lively, M. L. (1984): ‘Photon- and electron-impact ionization and ejected-electron angular distributions from molecules including retardation effects: Nonrelativistic theory.’ Phys. Rev. A 29, 1224–1235. [5]Google Scholar
  146. Boon, M. H., Seligman, T. H. (1973): ‘Canonical transformations applied to the free Landau electron.’ J. Math. Phys. 14, 1224–1227. [5]Google Scholar
  147. Borrelli, R., Peluso, A. (2006): ‘The vibrational progressions of the N–¿V electronic transition of ethylene: A test case for the computation of Franck-Condon factors of highly flexible photoexcited molecules.’ J. Chem. Phys. 125, 194308–194308-8. [5]Google Scholar
  148. Borghese, F., Denti, P., Toscano, G., Sindoni, O. I. (1979): ‘Electromagnetic scattering by a cluster of spheres.’ Appl. Optics 18, 116–120. [5]Google Scholar
  149. Borysow, A. (1991): ‘Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K.’ Icarus 92, 273–279. [8]Google Scholar
  150. Borysow, J., Frommhold, L. (1985): ‘The infrared and Raman line shapes of pairs of interacting molecules.’ In Phenomena Induced by Intermolecular Interactions. Ed. G. Birnbaum; Plenum Press, New York, London, p. 67–94. [8]Google Scholar
  151. Borysow, A., Frommhold, L. (1990): ‘A new computation of the infrared absorption by H2 pairs in the fundamental band at temperatures from 600 to 5000 K.’ Astrophys. J. 348, L41–L43. [8]Google Scholar
  152. Borysow, A., Frommhold, L., Moraldi, M. (1989): ‘Collision-induced infrared spectra of H2-He pairs involving 0 ¡–¿ 1 vibrational transitions and temperatures from 18 to 7000 K.’ Astrophys. J. 336, 495–503. [8]Google Scholar
  153. Bosomworth, D. R., Gush, H. P. (1965): ‘Collision-induced absorption of compressed gases in the far infrared. II.’ Can. J. Phys. 43, 751–769. [13]Google Scholar
  154. Botschwina, P. (1984): ‘An ab initio calculation of the frequencies and IR intensities of the stretching vibrations of HN\(_{2}^{+}\).’ Chem. Phys. Lett. 107, 535–541. [5]Google Scholar
  155. Botschwina, P., Rosmus, P., Reinsch, E.-A. (1983): ‘Spectroscopic properties of the hydroxonium ion.’ Chem. Phys. Lett. 102, 299–306. [3]Google Scholar
  156. Botschwina, P., Schutz, B., Horn, M., Matuschewski, M. (1995): ‘Ab initio calculations of stretching vibrational transitions for the linear molecules HCN, HNC, HCCF, and HC3N up to high overtones.’ Chem. Phys. 190, 345–362. [5]Google Scholar
  157. Boulet, C., Boissoles, J., Robert, D. (1988): ‘Collisionally induced population transfer effect in infrared absorption spectra. I. A line-by-line coupling theory from resonances to the far wings.’ J. Chem. Phys. 89, 625–634. [7]Google Scholar
  158. Boyle, J. J., Kutzner, M. D. (1998): ‘Many-body effects in single photoionization processes.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 93–124. [5]Google Scholar
  159. Boynton, F. P., Ludwig, C. B. (1971): ‘Total emissivity of hot water vapor: II – Semi-empirical charts deduced from long-path spectral data.’ Int. J. Heat Mass Transfer 14, 963–973. [13]Google Scholar
  160. Brandt, W., Lundqvist, S. (1963a): ‘Possible new atomic resonances.’ Phys. Lett. 4, 47–48. [5]Google Scholar
  161. Brandt, W., Lundqvist, S. (1963b): ‘Atomic response function.’ Phys. Rev. 132, 2135–2143. [5]Google Scholar
  162. Brandt, W., Lundqvist, S. (1965a): ‘Many-electron effects in the dipolar spectra of closed shell atoms.’ Arkiv Fysik 28, 399–414. [5]Google Scholar
  163. Brandt, W., Lundqvist, S. (1965b): ‘Atomic oscillations in the statistical approximation.’ Phys. Rev. 139, A612–A617. [5]Google Scholar
  164. Brandt, W., Lundqvist, S. (1967): ‘Collective effects in the photoabsorption cross sections of atoms and molecules.’ J. Quant. Spectr. Rad. Transfer 7, 411–421. [5]Google Scholar
  165. Braunstein, M., McKoy, V. (1989): ‘Vibrational branching ratios and shape resonant photoionization dynamics in N2O.’ J. Chem. Phys. 90, 1535–1543. [5]Google Scholar
  166. Breene, R. G. (1958): ‘Infrared emissivity of NO in high-temperature air.’ J. Chem. Phys. 29, 512–516. [7]Google Scholar
  167. Breene Jr., R. G. (1961): The Shift and Shape of Spectral Lines. Pergamon Press, New York, Oxford, London, Paris. [7]Google Scholar
  168. Breene Jr., R. G. (1981): Theories of Spectral Line Shapes. Wiley, New York. [7]Google Scholar
  169. Breene Jr., R. G., Todd Jr., M. N. (1958): ‘Vibrational matrix elements of NO.’ J. Chem. Phys. 28, 11–15. [7]Google Scholar
  170. Breit, G. (1926): ‘An application of Pauli’s method of coordination to atoms having four magnetic parts.’ Phys. Rev. 28, 334–340. [7]Google Scholar
  171. Breit, G. (1933): ‘Quantum theory of dispersion (continued). Parts VI and VII.’ Rev. Mod. Phys. 5, 91–140. [7]Google Scholar
  172. Brink, D. M., Satchler, G. R. (1962): Angular Momentum. Clarendon Press, Oxford. [5]Google Scholar
  173. Brion, C. E., Tan, K. H. (1978): ‘Partial oscillator strengths for the photoionization of N2O and CO2 (20–60 eV).’ Chem. Phys.1978 34, 141–151. [5]Google Scholar
  174. Brion, C. E., Tan, K. H. (1981): ‘Photoelectron branching ratios and partial oscillator strengths for the photoionization of NO (20–60 eV).’ J. Electron Spectr. Related Phenom. 23, 1–11. [5]Google Scholar
  175. Brion, C. E., Thomson, J. P. (1984): ‘Compilation of dipole oscillator strengths (cross sections) for the photoabsorption, photoionization and ionic fragmentation of molecules.’ J. Electron Spectr. Related Phenom. 33, 301–331. [5]Google Scholar
  176. Brown, R. T. (1972): ‘Incoherent-scattering function for atomic carbon.’ Phys. Rev. A 5, 2141–2144. [5]Google Scholar
  177. Bruna, P. J., Peyerimhoff, S. D. (1987): ‘Excited state potentials.’ Adv. Chem. Phys. 67, 1–97. [3]Google Scholar
  178. Bruneau, J., Decoster, A., Desenne, D., Dumont, H., LeBreton, J.-P., Boivineau, M., Perrine, J.-P., Bayle, S., Louis-Jaquet, M., Geindre, J.-P., Chenais-Popovics, C., Gauthier, J.-C. (1991): ‘Time-resolved study of hot dense germanium by L-shell absorption spectroscopy.’ Phys. Rev. A 44, R832–R835. [13]Google Scholar
  179. Bruning, J. H., Lo, Y. T. (1971a): ‘Multiple scattering of EM waves by spheres. Part I. Multipole expansion and ray-optical solutions’ IEEE Trans. Antennas Prop. AP-19, 378–390. [5]Google Scholar
  180. Bruning, J. H., Lo, Y. T. (1971b): ‘Multiple scattering of EM waves by spheres. Part II. Umerical and experimental results.’ IEEE Trans. Antennas Prop. AP-19, 391–400. [5]Google Scholar
  181. Brush, S. G., Sahlin, H. L., Teller, E. (1966): ‘Monte Carlo study of a one-component plasma. I.’ J. Chem. Phys. 45, 2102–2118. [6, 9]Google Scholar
  182. Brussaard, P. J., van de Hulst, H. C. (1962): ‘Approximation formulas for nonrelativistic bremsstrahlung and average Gaunt factors for a Maxwellian electron gas.’ Rev. Mod. Phys. 34, 507–520. [6]Google Scholar
  183. Brysk, H., Zerby, C. D. (1967): ‘Low energy photoelectric cross section calculations.’ Union Carbide Corp. Defense and Space Systems Dept. report UCC/DSSD-299, DASA-2023. [3, 5]Google Scholar
  184. Brysk, H., Zerby, C. D. (1968): ‘Photoelectric cross sections in the keV range.’ Phys. Rev. 171, 292–298. [5]Google Scholar
  185. Brysk, H., Zerby, C. D., Penny, S. K. (1969): ‘Bremsstrahlung cross sections at moderate energies.’ Phys. Rev. 180, 104–111. [5]Google Scholar
  186. Brysk, H., Campbell, P. M., Hammerling, P. (1975): ‘Thermal conduction in laser fusion.’ Plasma Phys. 17, 473–484. [9]Google Scholar
  187. Buchler, J. R., Yueh, W. R. (1975): ‘Compton scattering opacity.’ Phys. Lett. B 58, 463–466. [6]Google Scholar
  188. Buchler, J. R., Yueh, W. R. (1976): ‘Compton scattering opacities in a partially degenerate electron plasma at high temperatures.’ Astrophys. J. 210, 440–446. [6]Google Scholar
  189. Buckingham, A. D., Orr, B. J., Sichel, J. M. (1970): ‘Angular distribution and intensity in molecular photoelectron spectroscopy. I. General theory for diatomic molecules.’ Phil. Trans. Roy. Soc. London, Ser. A 268, 147–157. [5]Google Scholar
  190. Buenker, R. J. (1982): ‘Implementation of the table CI method: Configurations differing by two in the number of open shells.’ Stud. Phys. Theor. Chem. 21, 17–34. [5]Google Scholar
  191. Buenker, R. J., Peyerimhoff, S. D. (1974a): ‘Calculations on the electronic spectrum of water.’ Chem. Phys. Lett. 29, 253–259. [5]Google Scholar
  192. Buenker, R. J., Peyerimhoff, S. D. (1974b): ‘Individualized configuration selection in CI calculations with subsequent energy extrapolation.’ Theor. Chim. Acta 35, 33–58. [5]Google Scholar
  193. Buenker, R. J., Peyerimhoff, S. D. (1975): ‘Energy extrapolation in CI calculations.’ Theor. Chim. Acta 39, 217–228. [5]Google Scholar
  194. Buenker, R. J., Peyerimhoff, S. D. (1983): ‘Ab initio calculations close to the full CI level of accuracy and their use for the interpretation of molecular spectra.’ In New Horizons of Quantum Chemistry. Eds. P.-O. Löwdin and B. Pullman; D. Reidel Publ. Co., Boston, London, p. 183–219. [5]Google Scholar
  195. Buenker, R. J., Peyerimhoff, S. D., Butscher, W. (1978): ‘Applicability of the multi-reference double-excitation CI (MRD-CI) method to the calculation of electronic wave functions and comparison with related techniques.’ Mol. Phys. 35, 771–791. [5]Google Scholar
  196. Buenker, R. J., Peyerimhoff, S. D., Perić, M. (1979): ‘Calculation of vibrational wavefunctions and energies using MRD-CI techniques.’ In Excited States in Quantum Chemistry: Theoretical and Experimental Aspects of the Electronic Structure and Properties of the Excited States in Atoms, Molecules and Solids. Eds. C. A. Nicolaides and D. R. Beck; D. Reidel Publ. Co., Dordrecht, Boston, London, p. 63–77. [5]Google Scholar
  197. Bunker, P. R. (1979): ‘Symmetry in (H2)2, (D2)2,.(HD)2 and H2-D2 van der Waals complexes.’ Can. J. Phys. 57, 2099–2105. [7]Google Scholar
  198. Bunker, P. R. (1985): ‘Theoretical predictions of the infrared and microwave spectra of small molecules.’ In Molecular Astrophysics: State of the Art and Future Directions. Eds. G. H. F. Diercksen, W. F. Huebner, and P. W. Langhoff; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, p. 491–496. [3]Google Scholar
  199. Bunker, P. R., Jensen, P. (1983): ‘A refined potential surface for the \(\tilde{\mathrm{{X}}}^{3}\mathrm{B}_{1}\) state of methylene CH2.’ J. Chem. Phys. 79, 1224–1228. [3]Google Scholar
  200. Bunker, P. R., Langhoff, S. R. (1983): ‘Ab initio rotation–vibration transition moments for CH2 in the X3​B1 and \(\tilde{\mathrm{{a}}}^{1}\!\) A1 electronic states.’ J. Mol. Spectr. 102, 204–211. [3]Google Scholar
  201. Bunker, P. R., Kraemer, W. P., Spirko, V. (1983a): ‘Ab initio rotation-vibration energies of H3O+.’ J. Mol. Spectr. 101, 180–185. [3]Google Scholar
  202. Bunker, P. R., Sears, T. J., McKellar, A. R. W. (1983b): ‘The rotational spectrum of the CD2 radical.’ J. Chem. Phys. 79, 1211–1219. [3]Google Scholar
  203. Burch, D. E. (1981): ‘Continuum absorption by H2O.’ Air Force Geophysical Laboratory report AFGL-TR-81-0300. [7]Google Scholar
  204. Burch, D. E. (1985): ‘Absorption by H2O in narrow windows between 3000 and 4200 cm−1.’ Air Force Geophys. Lab. report AFGL-TR-850036. [7]Google Scholar
  205. Burch, D. E., Alt, R. L. (1984): ‘Continuum absorption by H2O in 700–1200 cm−1 and 2400–2800 cm−1 Windows.’ Air Force Geophys. Lab. report AFGL-TR-840128 (ADA 1473917 XSP). [7]Google Scholar
  206. Burch, D. E., Singleton, E. B., Williams, D. (1962): ‘Absorption line broadening in the infrared.’ Appl. Optics 1, 359–363. [7]Google Scholar
  207. Burden, F. R., Wilson R. M. (1972): ‘Optimum atomic orbitals for molecular calculations. A review.’ Adv. Phys. 21, 825–915. [3]Google Scholar
  208. Burger, H. C., Dorgelo, H. B. (1924): ‘Beziehung zwischen inneren Quantenzahlen und Intensitäten von Mehrfachlinien’. Z. Phys. 23, 258–266. [5]Google Scholar
  209. Burgess, A., Seaton, M. J. (1960): ‘A general formula for the calculation of atomic photoionization cross sections.’ Mon. Not. Roy. Astron. Soc. 120, 121–151. [5]Google Scholar
  210. Burke, P. G. (1965): ‘Resonances in electron scattering and photon absorption.’ Adv. Phys. 14, 521–567. [5]Google Scholar
  211. Burke, P. G., Seaton, M. J. (1971): ‘Numerical solutions of the integro-differential equations of electron – collision theory’. Meth. Comp. Phys. 10, 1–80. [3]Google Scholar
  212. Burke, P. G., Eissner, W. (1983): ‘Low-energy electron collisions with complex atoms and ions.’ In Atoms in Astrophysics. Eds. P. G. Burke, W. Eissner, D. G. Hummer, I. C. Percival; Plenum Press, New York, London, p. 1–54. [3]Google Scholar
  213. Burke, P. G., Hibbert, A., Robb, W. D. (1971): ‘Electron scattering by complex atoms.’ J. Phys. B 4, 153–161. [3]Google Scholar
  214. Cade, P. E., Huo, W. (1973): ‘Hartree–Fock–Roothaan wavefunctions for diatomic molecules: I. First- and second-row hydrides AH, AH±, AH.’ Atomic Data Nucl. Data Tables 12, 415–466. [3]Google Scholar
  215. Cade, P. E., Huo, W. M. (1975): ‘Hartree–Fock–Roothaan wavefunctions for diatomic molecules: III. First-row heteronuclear systems, AB, AB±, AB.’ Atomic Data Nucl. Data Tables 15, 1–39. [3]Google Scholar
  216. Cade, P. E., Wahl, A. C. (1974): ‘Hartree–Fock–Roothaan wavefunctions for diatomic molecules: II. First-row homonuclear systems A2, A\(_{2}^{\pm }\), A\(_{2}^{{\ast}}\).’ Atomic Data Nucl. Data Tables 13, 339–389. [3]Google Scholar
  217. Cade, P. E., Sales, K. D., Wahl, A. C. (1966): ‘Electronic structure of diatomic molecules. III. A. Hartree–Fock wavefunctions and energy quantities for N2 (X\({}^{1}\!\varSigma _{\mathrm{g}}^{+}\)) and N\(_{2}^{+}\)(X\({}^{2}\!\varSigma _{\mathrm{g}}^{+}\), A\({}^{2}\!\varPi _{\mathrm{u}}\), B\({}^{2}\!\varSigma _{\mathrm{u}}^{+}\)) molecular ions.’ J. Chem. Phys. 44, 1973–2003. [3]Google Scholar
  218. Caldwell, C. D., Krause, M. O. (1996): ‘Photon-atom interactions: Low energy.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 690–700. [5]Google Scholar
  219. Callomon, J. H., Dunn, T. M., Mills, I. M. (1966): ‘Rotational analysis of the 2600 angstrom absorption system of benzene.’ Phil. Trans. Roy. Soc. London, Ser. A 259, 499–532. [13]Google Scholar
  220. Cambi, R., von Niessen, W. (1983): ‘On the photoelectron spectra of HCP and FCP: A Green’s function study.’ Chem. Phys. Lett. 101, 412–418. [5]Google Scholar
  221. Cameron, A. G. W., Pine, M. R. (1973): ‘Numerical models of the primitive solar nebula.’ Icarus 18, 377–406. [6]Google Scholar
  222. Camy-Peyret, C., Flaud, J.-M. (1985): ‘Vibration-rotation dipole moment operator for asymmetric rotors.’ In Molecular Spectroscopy: Modern Research. Ed. K. N. Rao; Academic Press, London, Vol. 3, p. 70–110. [5]Google Scholar
  223. Canuto, V. (1970): ‘Electrical conductivity and conductive opacity of a relativistic electron gas.’ Astrophys. J. 159, 641–652. [9]Google Scholar
  224. Capitelli, M., Colonna, G., Gorse, C., Giordano, D. (1994): ‘Survey of methods of calculating high-temperature thermodynamic properties of air species.’ European Space Agency report ESA STR-236. [4]Google Scholar
  225. Carbon, D. F. (1974): ‘A comparison of the straight-mean, harmonic-mean, and multiple-picket approximations of the line opacities in cool model atmospheres.’ Astrophys. J. 187, 135–145. [2]Google Scholar
  226. Carbon, D. F. (1984): ‘Line blanketing.’ In Methods of Radiative Transfer. Ed. W. K. Kalkofen; Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney, p. 395–426. [7]Google Scholar
  227. Carbon, D. F., Gingerich, O. (1969): ‘The grid of model stellar atmospheres from 4000o to 10,000o.’ In Theory and Observation of Normal Stellar Atmospheres. Ed. O. Gingerich; The MIT Press, Cambridge, p. 377–400. [7]Google Scholar
  228. Carlon, H. (1979): ‘Do clusters contribute to the IR absorption spectrum of water vapor?’ Infrared Phys. 19, 549–558. [7]Google Scholar
  229. Carlson, T. A., Durić, N., Erman, P., Larsson, M. (1979): ‘Collisional transfer to the B state in N2.’ Phys. Scripta 19, 25–28. [5]Google Scholar
  230. Carlson, T. A., Keller, P. R., Taylor, J. W., Whitley, T., Grimm, F. A. (1983): ‘Angle-resolved photoelectron spectroscopy of N2O measured as a function of photon energy from 14 to 70 eV.’ J. Chem. Phys. 79, 97–106. [5]Google Scholar
  231. Carney, G. D., Porter, R. N. (1976): ‘H3 +: Ab initio calculation of the vibration spectrum.’ J. Chem. Phys. 65, 3547–3565. [3]Google Scholar
  232. Carson, T. R. (1971): ‘Stellar opacities.’ In Progress in High Temperature Physics and Chemistry, Vol. 4. Ed. C. A. Rouse; Pergamon Press, Oxford, New York. [1, 9]Google Scholar
  233. Carson, T. R. (1972): ‘Stellar opacity.’ In Stellar Evolution. Eds. H.-Y. Chiu, A. Muriel; MIT Press, Cambridge, MA, London, England. [1]Google Scholar
  234. Carson, T. R. (1976): ‘Stellar opacities.’ Ann. Rev. Astron. Astrophys. 14, 95–117. [1]Google Scholar
  235. Carson, T. R., Hollingsworth, H. M. (1968): ‘A critique of the hydrogenic approximation in the calculation of stellar opacity.’ Mon. Not. Roy. Astron. Soc. 141, 77–108. [1, 4]Google Scholar
  236. Carson, T. R., Mayers, D. F., Stibbs, D. W. N. (1968): ‘The calculation of stellar radiative opacity.’ Mon. Not. Roy. Astron. Soc. 140, 483–536. [1, 4, 5, 12, 13]Google Scholar
  237. Cartwright, D. C., Dunning, T. H. (1975): ‘New electronic states of molecular nitrogen (+).’ J. Phys. B 8, L100–L104. [3]Google Scholar
  238. Carvajal, M., Arias, J. M., Gómez-Camacho, J. (1999): ‘Analytic evaluation of Franck–Condon integrals for anharmonic vibrational wave functions.’ Phys. Rev. A 59, 3462–3470. [5, 13]Google Scholar
  239. Case, D. A. (1982): ‘Electronic structure calculations using the Xα method.’ Ann. Rev. Phys. Chem. 33, 151–171. [3]Google Scholar
  240. Cassisi, S., Potekhin, A. Y., Pietriferni, A., Catelan, M., Salaris, M. (2007): ‘Updated electron-conduction opacities: The impact on low-mass stellar models.’ Astrophys. J. 661, 1094–1104. [9]Google Scholar
  241. Castor, J. I. (1972): ‘Radiative transfer in spherically symmetric flows.’ Astrophys. J. 178, 779–792. [2]Google Scholar
  242. Challacombe, M., Schwegler, E., Almlöf, J. (1996): ‘Developments in Hartee-fock Theory: Fast methods for computing the Coulomb matrix.’ In Computational Chemistry: Reviews of Current Trends. Ed., J. Leszczynski, World Scientific, Singapore, New Jersey, London, Hong Kong, Bangalore, Taipei., p. 53–108. [3]Google Scholar
  243. Chandrasekhar, S. (1943): ‘Stochastic problems in physics and astronomy.’ Rev. Mod. Phys. 15, 1–89. [7]Google Scholar
  244. Chandrasekhar, S. (1960): Radiative Transfer. Dover Publications, New York. [2, 5]Google Scholar
  245. Chang, E. S. (1985): ‘Radiative lifetime of hydrogenic and quasihydrogenic atoms.’ Phys. Rev. A 31, 495–498. [5]Google Scholar
  246. Chang, T.-N. (1998): ‘Photoionization dominated by double excitation in two-electron and divalent atoms.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 125–149. [5]Google Scholar
  247. Chase Jr., M. W., Davies, C. A., Downey Jr., J. R., Frurip, D. J., McDonald, R. A., Syverud, A. N. (1985): ‘JANAF thermodynamical tables,’ 3rd ed. J. Phys. Chem. Ref. Data 14, Suppl. 1. [4]Google Scholar
  248. Chase Jr., M. W. (Ed.) (1998): ‘NIST-JANAF Thermodynamic Tables, Fourth Edition. J. Phys. Chem. Ref. Data Monograph No. 9, Am. Chem. Soc., Washington, DC. [4]Google Scholar
  249. Chau, F.-T., Dyke, J. M., Lee, E. P. F., Wang, D. (1998): ‘Franck–Condon analysis of photoelectron and electronic spectra of small molecules.’ J. Electron. Spectr. Rel. Phen. 97, 33–47. [5, 7, 13]Google Scholar
  250. Chau, F.-T., Dyke, J. M., Lee, E. P. F., Mok, D. K.-W. (2003): ‘Potential energy functions of the \({\tilde{X}}^{2}B_{1}\), \({\tilde{A}}^{2}B_{2}\), \({\tilde{B}}^{2}A_{1}\), and \({\tilde{C}}^{2}A_{2}\) states of Cl2O+ and the \({\tilde{X}}^{1}A_{1}\) state of Cl2O: Franck–Condon simulations of photoelectron bands of Cl2O which include anharmonicity.’ J. Chem. Phys. 118, 4025–4036. [5]Google Scholar
  251. Chen, P. (1994): ‘Photoelectron spectroscopy of reactive intermediates.’ In Unimolecular and Biomolecular Ion-Molecule Reaction Dynamics. Eds. C. Y. Ng, T. Baer, I. Powis, Wiley, New York, p. 371–425. [5]Google Scholar
  252. Chenais-Popovics, C., Merdji, H., Missalla, T., Gilleron, F., Gauthier, J.-C., Blenski, T., Perrot, F., Klapisch, M., Bauche-Arnoult, C., Bauche, J., Bachelier, A., Eidmann, K. (2000): ‘Opacity studies of iron in the 15–30 eV temperature range.’ Astrophys. J. Suppl. Ser. 127, 275–281. [13]Google Scholar
  253. Child, M. S., Lawton, R. T. (1982): ‘Local mode degeneracies in the vibrational spectrum of H2O.’ Chem. Phys. Lett. 87, 217–220. [5]Google Scholar
  254. Chin, C.-W. (1965): ‘The opacity due to Compton scattering at relativistic temperatures in a semidegenerate electron gas.’ Astrophys. J. 142, 1481–1487. [6]Google Scholar
  255. Christy, R. F. (1966): ‘A study of pulsation in RR Lyrae models.’ Astrophys. J. 144, 108–179. [11]Google Scholar
  256. Chrysons, M., Kouzov, A. P., Egorova, N. I., Rachet, F. (2008): ‘Exact low-order classical moments in collision-induced bands by linear rotors: CO2–CO2.’ Phys. Rev. Lett. 100, 133007–133010. [8]Google Scholar
  257. Chueh, P. L., Prausnitz, J. M. (1967): ‘Vapor-liquid equilibria at high pressures: Calculation of critical temperatures, volumes, and pressures of nonpolar mixtures.’ Am. Inst. Chem. Eng. J. 13, 1107–1113. [4]Google Scholar
  258. Čížek, J. (1966): ‘On the correlation problem in atomic and molecular systems. Calculation of wavefunction components in Ursell-type expansion using quantum-field theoretical methods.’ J. Chem. Phys. 45, 4256–4266. [3]Google Scholar
  259. Clark, T. (1985): A Handbook of Computational Chemistry: A Practical Guide to Chemical Structure and Energy Calculations. Wiley, New York. [3]Google Scholar
  260. Clark, R. E. H., Merts, A. L. (1987): ‘Quantum defect method applied to oscillator strengths.’ J. Quant. Spectr. Rad. Transfer 38, 287–293. [3, 5]Google Scholar
  261. Clementi, E., Raimondi, D. L. (1963): ‘Atomic screening constants from SCF functions.’ J. Chem. Phys. 38, 2686–2689. [3]Google Scholar
  262. Clementi, E., Raimondi, D. L., Reinhardt, W. P. (1967): ‘Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons.’ J. Chem. Phys. 47, 1300–1307. [3]Google Scholar
  263. Clough, S. A. (1995): ‘The water vapor continuum and its role in remote sensing.’ Opt. Remote Sensing Atmosph. (Opt. Soc. Am. Dig. Ser.) 2, 76–78. [7]Google Scholar
  264. Clough, S. A., Kneizys, F. X., Davies, R. W. (1989): ‘Line shape and the water vapor continuum.’ Atmos. Res. 23, 229–241. [7]Google Scholar
  265. Cloutman, L. D. (1973): ‘On the accuracy of the Thomas–Fermi atom for opacities.’ Astrophys. J. 184, 675–686. [12]Google Scholar
  266. Coester, F., Kümmel, H. (1960): ‘Short-range correlations in nuclear wave functions.’ Nucl. Phys. 17, 477–485. [3]Google Scholar
  267. Cohen, H. D., Vik, R. C. (1972): ‘A Study of Equations of State/Opacity of Ionized Gases.’ Systems, Science and Software report 3SR-859-1, DNA 2794F-1. [4]Google Scholar
  268. Cohen, H. D., Parks, D. E., Petschek, A. G. (1971): ‘A Study of Equations of State/Opacity of Ionized Gases.’ Systems, Science, and Software report 3SR-465, DASA 2597-1. [7]Google Scholar
  269. Cohen, R. S., Spitzer Jr., L., Routly, P. McR. (1950): ‘The electrical conductivity of an ionized gas.’ Phys. Rev. 80, 230–238. [9]Google Scholar
  270. Coker, D. F., Miller, R. E., Watts, R. O. (1985): ‘The infrared predissociation spectra of water clusters.’ J. Chem. Phys. 82, 3554–3562. [5]Google Scholar
  271. Colgan, J., Fontes, C. J., Abdallah, Jr., J. (2006): ‘Collisional radiative studies of carbon plasmas.’ High Energy Dens. Phys. 2, 90–96. [14]Google Scholar
  272. Collins, L. A., Schneider, B. (1984): ‘Molecular photoionization in the linear algebraic approach: H2, N2, NO, and CO2.’ Phys. Rev. A 29, 1695–1708. [5]Google Scholar
  273. Colvin, M. E., Raine, G. P., Schaefer III, H. F. (1983): ‘Infrared intensities of H3O+, H2DO+, HD2O+, and D3O+.’ J. Chem. Phys. 79, 1551–1552. [3]Google Scholar
  274. Condon, E. U. (1928): ‘Nuclear motions associated with electron transitions in diatomic molecules.’ Phys. Rev. 32, 858–872. [6]Google Scholar
  275. Condon, E. U., Shortley, G. H. (1953): The Theory of Atomic Spectra. University Press, Cambridge, 1935 (reprinted with corrections 1953). [3, 5, 7]Google Scholar
  276. Condon, E. U., Odabaşı, H. (1980): Atomic Structure. Cambridge University Press, Cambridge, London, New York, New Rochelle, Melbourne, Sydney. [3]Google Scholar
  277. Cooley, J. W. (1961): ‘An improved eigenvalue corrector formula for solving the Schrödinger equation for central fields.’ Math. Comp. 15, 363–374. [3]Google Scholar
  278. Coolidge, A. S., James, H. M., Present, R. D. (1936): ‘A study of the Franck–Condon principle.’ J. Chem. Phys. 4, 193–211. [6]Google Scholar
  279. Coon, J. B., DeWames, R. E., Loyd, C. M. (1962): ‘The Franck–Condon principle and the structures of excited electronic states of molecules.’ J. Mol. Spectr. 8, 285–299. [5]Google Scholar
  280. Cooper, D. M., Langhoff, S. R. (1981): ‘Theoretical study of selected singlet and triplet states of the CO molecule.’ J. Chem. Phys. 74, 1200–1210. [10]Google Scholar
  281. Cooper, J. W. (1964): ‘Interaction of maxima in the absorption of soft x rays.’ Phys. Rev. Lett. 13, 762–764. [5]Google Scholar
  282. Cooper, J., Zare, R. N. (1968): ‘Angular distribution of photoelectrons.’ J. Chem. Phys. 48, 942–943. [5]Google Scholar
  283. Corben, H. C., Schwinger, J. (1940): ‘The electromagnetic properties of mesotrons.’ Phys. Rev. 58, 953–968. [5]Google Scholar
  284. Corliss, C. H., Bozman, W. R. (1962): Experimental Transition Probabilities for Spectral Lines of Seventy Elements. National Bureau of Standards Monograph 53. [5]Google Scholar
  285. Costescu, A., Vrejoiu, C., Bogatu, N. (1981): ‘On the average bremsstrahlung spectral distribution and energy loss in fully ionized plasmas.’ Rev. Roum. Phys. 26, 281–301. [5]Google Scholar
  286. Courtin, R. (1988): ‘Pressure-induced absorption coefficients for radiative transfer calculations in Titan’s atmosphere.’ Icarus 75, 245–254. [8, 13]Google Scholar
  287. Cousin, C., Le Doucen, R., Boulet, C. (1986): ‘Line coupling in the temperature and frequency dependencies of absorption in the microwindows of the 4.3 μm CO2 band.’ J. Quant. Spectr. Rad. Transfer 36, 521–538. [7]Google Scholar
  288. Cowan, R. D. (1967): ‘Atomic self-consistent-field calculations using statistical approximations for exchange and correlation.’ Phys. Rev. 163, 54–61. [3]Google Scholar
  289. Cowan, R. D. (1968): ‘Theoretical calculation of atomic spectra using digital computers.’ J. Opt. Soc. Am. 58, 808–818. [3]Google Scholar
  290. Cowan, R. D. (1981): The Theory of Atomic Structure and Spectra. University of California Press, Berkeley, Los Angeles, London. [3, 4, 5, 7]Google Scholar
  291. Cowan, R. D., Andrew, K. L. (1965): ‘Coupling considerations in two-electron spectra.’ J. Opt. Soc. Am. 55, 502–516. [3]Google Scholar
  292. Cowan, R. D., Ashkin, J. (1957): ‘Extension of the Thomas–Fermi–Dirac statistical theory of the atom to finite temperatures.’ Phys. Rev. 105, 144–157. [4]Google Scholar
  293. Cowan, R. D., Kirkwood, J. G. (1958a): ‘Quantum statistical theory of plasmas and liquid metals.’ J. Chem. Phys. 29, 264–271. [4]Google Scholar
  294. Cowan, R. D., Kirkwood, J. G. (1958b): ‘Quantum statistical theory of electron correlation.’ Phys. Rev. 111, 1460–1466. [4]Google Scholar
  295. Cowley, C. R. (1970): Theory of Stellar Spectra. Gordon & Breach Science Publishers, New York, London, Paris. [1]Google Scholar
  296. Cox, A. N. (1965): ‘Stellar absorption coefficients and opacities.’ In Stars and Stellar Systems, Vol. 8: Stellar Structure, p. 195–268. Eds. L. H. Aller, D. B. McLaughlin; The University of Chicago Press, Chicago. [1, 4, 9, 11]Google Scholar
  297. Cox, A. N. (2000): Allen’s Astrophysical Quantities. 4th edition, Springer, AIP Press, New York, NY. [7]Google Scholar
  298. Cox, A. N., Stewart, J. N. (1965): ‘Radiative and conductive opacities for eleven astrophysical mixtures.’ Astrophys. J. Suppl. Ser. 11, 22–46. [1, 9, 12]Google Scholar
  299. Cox, A. N., Stewart, J. N., Eilers, D. D. (1965): ‘Effects of bound-bound absorption on stellar opacities.’ Atrophys. J. Suppl. Ser. 11, 1–21. [1]Google Scholar
  300. Cox, J. P., Giuli, R. T. (1968): Principles of Stellar Structure. Gordon Beach, New York. [6]Google Scholar
  301. Craig, D. P., Thirunamachandran, T. (1984): Molecular Quantum Electrodynamics: An Introduction to Radiation-Molecule Interactions. Academic Press, New York, Orlando, San Diego. [3, 5]Google Scholar
  302. Crawford Jr., B. L., Dinsmore, H. L. (1950): ‘Vibrational intensities. I. Theory of diatomic infra-red bands.’ J. Chem. Phys. 18, 983–987; 18, 1682–1683. [5, 7]Google Scholar
  303. Crecely, R. W., Wilson, D. J. (1964): ‘Thermodynamic functions of Morse oscillators.’ J. Chem. Phys. 41, 1564–1567. [4]Google Scholar
  304. Crees, M. A., Seaton, M. J., Wilson, P. M. H. (1978): ‘Impact, a program for the solution of the coupled integro-differential equations of electron – atom collision theory.’ Comp. Phys. Comm. 15, 23–83. [3]Google Scholar
  305. Cromer, D. T. (1969): ‘Compton scattering factors for aspherical free atoms.’ J. Chem. Phys. 50, 4857–4859. [5]Google Scholar
  306. Cromer, D. T., Mann, J. B. (1967): ‘Compton scattering factors for spherically symmetric free atoms.’ J. Chem. Phys. 47, 1892–1893. [5]Google Scholar
  307. Cromer, D. T., Waber, J. T. (1964): ‘Scattering Factors Computed from Relativistic Dirac–Slater Wave Functions.’ Los Alamos Scientific Laboratory report LA-3056. [5]Google Scholar
  308. Cross, P. C., Hainer, R. M., King, G. W. (1944): ‘The asymmetric rotor. II. Calculation of dipole intensities and line classification.’ J. Chem. Phys. 12, 210–243. [5]Google Scholar
  309. Crowley, B. J. B., Harris, J. W. (2001): ‘Modelling of plasmas in an average-atom local density approximation: The CASSANDRA code.’ J. Quant. Spectr. Rad. Transfer 71, 257–272. [13]Google Scholar
  310. Cruzan, O. R. (1962): ‘Translational addition theorems for spherical vector wave functions.’ Quart. Appl. Math. 20, 33–40. [5]Google Scholar
  311. Csanak, G., Kilcrease D. (1993): ‘Photo absorption in hot dense plasmas - the average atom (AA), the spherical cell (SC), and the random phase approximation.’ J. Quant. Spectr. Rad. Transfer 58, 537–551. [4]Google Scholar
  312. Cunio, B. E., Jansson, R. E. W. (1968): ‘The electronic transition moment of the N2 first positive system (N2 1PG).’ J. Quant. Spectr. Rad. Transfer 8, 1763–1771. [5]Google Scholar
  313. Curtis, A. R. (1952): ‘A statistical model fro water-vapour absorption.’ Quart. J. Roy. Met. Soc. 78, 638–640. [7]Google Scholar
  314. Curtis, L. J. (1996): ‘Precision oscillator strength and lifetime measurements.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 206–212. [5]Google Scholar
  315. Däppen, W., Anderson, L., Mihalas, D. (1987): ‘Statistical mechanics of partially ionized stellar plasmas: The Planck–Larkin partition function, polarization shifts, and simulations of optical spectra.’ Astrophys. J. 319, 195–206. [4]Google Scholar
  316. Däppen, W., Mihalas, D., Hummer, D. G., Weibel Mihalas, B. (1988): ‘The equation of state for stellar enveloopes. III. Thermodynamic quantities.’ Astrophys. J. 332, 261–270. [4]Google Scholar
  317. Dagdeviren, N. R., Koonin, S. E. (1987): ‘Effect of ion correlations on free–free opacities.’ Astrophys. J. 319, 192–194. [6]Google Scholar
  318. Dagg, I. R., Anderson, A., Yan, S., Smith, W., Read, L. A. A. (1986a): ‘Collision-induced absorption in nitrogen at low temperatures.’ Can. J. Phys. 63, 625–631. [13]Google Scholar
  319. Dagg, I. R., Anderson, A., Yan, S., Smith, W., Joslin, G. G., Read, L. A. A. (1986b): ‘Collision-induced absorption in gaseous mixtures of nitrogen and methane.’ Can. J. Phys. 64, 1467–1474. [13]Google Scholar
  320. Danese, J. B., Connolly, J. W. D. (1974): ‘Calculation of the total energy in the multiple scattering- method. I. General theory.’ J. Chem. Phys. 61, 3063–3080. [3]Google Scholar
  321. Da Silva, L. B., MacGowen, B. J., Kania, D. R., Hammel, B. A., Back, C. A., Hsieh, E., Doyas, R., Iglesias, C. A., Rogers, F. J., Lee, R. W. (1992): ‘Absorption measurements demonstrating the importance of Δ n = 0 transitions in the opacity of iron.’ Phys. Rev. Lett. 69, 438–441. [13]Google Scholar
  322. Davenport, J. W. (1977): ‘Multiple scattering theory of photoemission.’ Int. J. Quantum Chem. Symp. 11, 89–96. [5]Google Scholar
  323. Davidson, E. R., Feller, D. (1986): ‘Basis set selection for molecular calculations.’ Chem. Rev. 86, 681–696. [3]Google Scholar
  324. Davidson, S. J., Foster, J. M., Smith, C. C., Warburton, K. A., Ross, S. J. (1989): ‘Investigation of the opacity of hot, dense Al in the region of its K-edge.’ Appl. Phys. Lett. 52, 847–849. [13]Google Scholar
  325. Davies, R. W., Tipping, R. H., Clough, S. A. (1982): ‘Dipole auto-correlation function for molecular pressure broadening: A quantum theory which satisfies the fluctuation-dissipation theorem.’ Phys. Rev. A 26, 3378–3394. [7]Google Scholar
  326. Davis, J. (1974): ‘Effective Gaunt factors for electron impact excitation of multiply charged nitrogen and oxygen ions.’ J. Quant. Spectr. Rad. Transfer 14, 549–554. [7]Google Scholar
  327. Davis, J., Kepple, P. C., Blaha, M. (1975): ‘Distorted wave calculations for multiply charged nitrogen and oxygen.’ J. Quant. Spectr. Rad. Transfer 15, 1145–1148. [7]Google Scholar
  328. Davydkin, V. A., Zon, B. A. (1981): ‘Radiation and polarization characteristics of Rydberg atomic states.’ Optics Spectrosc. 51 13–15. [5]Google Scholar
  329. Dawson, J. M. (1964): ‘On the production of plasma by giant pulse lasers.’ Phys. Fluids 7, 981–987. [6]Google Scholar
  330. Dawson, J., Oberman, C. (1962): ‘High-frequency conductivity and the emission and absorption coefficients of a fully ionized plasma.’ Phys. Fluids 5, 517–524. [6, 9]Google Scholar
  331. Dawson, J., Oberman, C. (1963): ‘Effect of ion correlations on high-frequency plasma conductivity.’ Phys. Fluids 6, 394–397. [6, 9]Google Scholar
  332. Day, K. L. (1979): ‘Mid-infrared optical properties of vapor-condensed magnesium silicates.’ Astrophys. J. 234, 158–161. [6]Google Scholar
  333. Dehmer, J. L., Dill, D. (1979): ‘The continuum multiple-scattering approach to electron–molecule scattering and molecular photoionization.’ In Electron–Molecule and Photon–Molecule Collisions. Eds. T. Rescigno, V. McKoy, and B. Schneider; Plenum Press, New York, London, p. 225–263. [5]Google Scholar
  334. Dehmer, J. L., Parr, A. C., Southworth, S. H., Holland, D. M. P. (1983a): ‘Triply differential photoelectron studies of molecular photoionization.’ In 13 th Int. Conf. on the Physics of Electronic and Atomic Collisions, Berlin. North-Holland, Amsterdam, p. 341–408. [5]Google Scholar
  335. Dehmer, J. L., Dill, D., Parr, A. C. (1983b): ‘Photoionization dynamics of small molecules.’ In Photophysics and Photochemistry in the Vacuum Ultraviolet. Eds. S. McGlynn, G. Finley, and R. Huebner; D. Reidel Publishing Co., Dordrecht, p. 341–408. [5]Google Scholar
  336. Dehmer, J. L., Parr, A. C., Southworth, S. H. (1987): ‘Resonances in molecular photoionization.’ In Handbook on Synchrotron Radiation. Vol. 2, Ed. G. V. Marr; North-Holland, Amsterdam, Oxford, New York, Tokyo, p. 241–353. [5]Google Scholar
  337. Deirmendjian, D. (1969): Electromagnetic Scattering on Spherical Polydispersions. American Elsevier Publishing Co., Inc., New York. [5]Google Scholar
  338. Dennison, D. M. (1926): ‘The rotation of molecules.’ Phys. Rev. 28, 318–333. [5]Google Scholar
  339. Dennison, D. M. (1940): ‘Infra-red spectra of polyatomic molecules. Part II.’ Rev. Mod. Phys. 12, 175–214. [5]Google Scholar
  340. Desclaux, J. P. (1983a): ‘Numerical Dirac–Fock calculations for atoms.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 115–144. [3]Google Scholar
  341. Desclaux, J. P. (1983b): ‘Dirac–Fock one-centre expansion method.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 213–226. [3]Google Scholar
  342. Detrich, J. H., Roothaan, C. C. J. (1981): ‘Calculation of relativistic effects in atoms and molecules from the Schrödinger wave function.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 169–182. [3]Google Scholar
  343. DeWitt, H. E., Rogers, F. J. (1972): ‘Quantum statistical mechanics of dense partially ionized hydrogen.’ Phys. Earth Planet. Interiors 6, 51–59. [4]Google Scholar
  344. De Zotti, G. (1975): ‘Free-free opacity of dense stellar matter.’ Astrophys. Space Sci. 33, 359–367. [6]Google Scholar
  345. Diercksen, G. H. F., Sadlej, A. J. (1985): ‘Finite-field many-body perturbation theory. VII. A complete fourth-order MBPT study of multipole moments of the CO molecule.’ Chem. Phys. 96, 17–41. [5]Google Scholar
  346. Diercksen, G. H. F., Kraemer, W. P., Rescigno, T. N., Bender, C. F., McKoy, B. V., Langhoff, S. R., Langhoff, W. P. (1982): ‘Theoretical studies of photoexcitation and ionization in H2O.’ J. Chem. Phys. 76, 1043–1057. [5]Google Scholar
  347. Diercksen, G. H. F., Grüner, N. E., Steuerwald, J. (1983a): ‘Computers and computations.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, Vol. 113, p. 335–350. [3]Google Scholar
  348. Diercksen, G. H. F., Roos, B. O., Sadlej, A. (1983b): ‘Electron correlation and properties of many-electron systems.’ Int. J. Quantum Chem. Symp. 17, 265–288. [3]Google Scholar
  349. Diesendorf, M., Ninham, B. W. (1968): ‘Quantum corrections to the pair distribution function of a classical plasma.’ J. Math. Phys. 9, 745–752. [6]Google Scholar
  350. Diesendorf, M., Ninham, B. W. (1969): ‘The effect of quantum correlations on electron-scattering opacities.’ Astrophys. J. 156, 1069–1073. [6]Google Scholar
  351. Dill, D., Dehmer, J. L. (1974): ‘Electron–molecule scattering and molecular photoionization using the multiple-scattering method.’ J. Chem. Phys. 61, 692–699. [5]Google Scholar
  352. Dill, D., Starace, A. F., Manson, S. T. (1975): ‘Effects of anisotropic electron–ion interactions in atomic photoelectron angular distribution.’ Phys. Rev. A 11, 1596–1606. [5]Google Scholar
  353. Dingle, R. B. (1957): ‘The Fermi–Dirac integrals: \(\mathcal{F}_{\wp }(\eta ) = {(\wp !)}^{-1}\!\int _{0}^{\infty }{\varepsilon }^{\wp }{({e}^{\varepsilon -\eta } + 1)}^{-1}d\varepsilon.^\prime \) Appl. Sci. Res. 6B, 225–239. [9, App. C]Google Scholar
  354. Dirac, P. A. M. (1927a): ‘The quantum theory of emission and absorption of radiation.’ Proc. Roy. Soc. (London), Ser. A 114, 243–265. [5]Google Scholar
  355. Dirac, P. A. M. (1927b): ‘The quantum theory of dispersion.’ Proc. Roy. Soc. (London), Ser. A 114, 710–728. [7]Google Scholar
  356. Dirac, P. A. M. (1930): ‘Note on exchange phenomena in the Thomas atom.’ Proc. Cambridge Phil. Soc. 26, 376–385. [3]Google Scholar
  357. Doggett, J. A., Spencer, L. V. (1956): ‘Elastic scattering of electrons and positrons by point nuclei.’ Phys. Rev. 103, 1597–1601. [9]Google Scholar
  358. Dogliani, H. O., Bailey, W. F. (1969): ‘A relativistic correction to the Thomas–Kuhn sum rule.’ J. Quant. Spectr. Rad. Transfer 9, 1643–1645. [6]Google Scholar
  359. Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1975): ‘Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck–Condon principle.’ J. Mol. Spectr. 56, 1–20. [5, 7]Google Scholar
  360. Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1976): ‘Dynamical symmetry of vibronic transitions with degenerate vibrations and the Franck–Condon factors.’ J. Phys. B 9, 507–514. [5]Google Scholar
  361. Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1977a): ‘The Franck–Condon principle and sum rules for vibronic transitions in polyatomic molecules.’ Chem. Phys. Lett. 46, 183–187. [7]Google Scholar
  362. Doktorov, E. V., Malkin, I. A., Man’ko, V. I. (1977b): ‘Dynamical symmetry of vibronic transitions in polyatomic molecules and the Franck-Condon principle.’ J. Mol. Spectr. 64, 302–326. [5, 7]Google Scholar
  363. Domcke, W., Cederbaum, L. S., Köppel, H., von Niessen, W. (1977): ‘A comparison of different approaches to the calculation of F–C factors for polyatomic molecules.’ Molec. Phys. 34, 1759–1770. [5]Google Scholar
  364. Domoto, G. A. (1974): ‘Frequency integration for radiative transfer problems involving homogeneous non-gray gases: The inverse transmission function.’ J. Quant. Spectr. Rad. Transfer 14, 935–42. [7]Google Scholar
  365. Dorschner, J. (1970): ‘Theoretische Untersuchung über den interstellaren Staub. II. Optische Eigenschaften kugelförmiger Staubteilchen aus meteoritischen Silikaten und aus schmutzigem Eis.’ Astron. Nachrichten 292, 71–78. [5]Google Scholar
  366. Dragalov, V. V., Novikov, V. G. (1988): ‘Distribution of spectral lines in plasma with respect to the fluctuations of the filling number.’ Teplofizika Vysokikh Temperatur 25, 1057–1061 (High Temp. 25, 762–766). [7]Google Scholar
  367. Dragalov, V. V., Novikov, V. G. (1989a): ‘Average-atom calculation of the energy of dipole transitions in highly ionized plasmas of heavy elements.’ Fiz. Plazmy 15, 493–495 (Sov. J. Plasma Phys. 15, 288–289). [7]Google Scholar
  368. Dragalov, V. V., Novikov, V. G. (1989b): ‘Approximate ion-configuration correction in calculating photoionization cross sections for a dense hot plasma.’ Teplofizika Vysokikh Temperatur 27, 214–219 (High Temp. 27, 161–165). [6]Google Scholar
  369. Dragalov, V. V., Nikiforov, A. F., Novikov, V. G., Uvarov, V. B. (1990): ‘Statistical method for calculating the absorption of photons in dense high-temperature plasmas.’ Fiz. Plazmy 16, 77–85 (Sov. J. Plasma Phys. 16, 44–49). [7]Google Scholar
  370. Dufresne, J. I., Fournier, R., Grandpeix, J. Y. (1999): ‘Inverse Gaussian k-distributions.’ J. Quant. Spectr. Rad. Transfer 61, 433–441. [7]Google Scholar
  371. Dufty, J. W., Boerker, D. B., Iglesias, C. A. (1985): ‘Electric field distributions in strongly coupled plasmas.’ Phys. Rev. A 31, 1681–1686. [7]Google Scholar
  372. Dunham, J. L. (1930): ‘Intensities of vibration-rotation bands with special reference to those of HCl.’ Phys. Rev. 85, 1347–1354. [7]Google Scholar
  373. Dunham, J. L. (1932): ‘The Wentzel-Brillouin-Kramers method of solving the wave equation.’ Phys. Rev. 41, 713–720. [3]Google Scholar
  374. Dunning Jr., T. H., McKoy, V. (1968): ‘Nonempirical calculations on excited states: The formaldehyde molecule.’ J. Chem. Phys. 48, 5263–5270. [3]Google Scholar
  375. Dunning Jr., T. H., Hunt, W. J., Goddard III, W. A. (1969): ‘The theoretical description of the (π π ) excited states of ethylene.’ Chem. Phys. Lett. 4, 147–150. [3]Google Scholar
  376. Dunning Jr., T. H., Cartwright, D. C., Hunt, W. J., Hay, P. J., Bobrowicz, F. W. (1976): ‘Generalized valence bond calculations in the ground state (X\({}^{1}\!\varSigma _{\mathrm{g}}^{+}\)) of nitrogen.’ J. Chem. Phys. 64, 4755–4766. [3]Google Scholar
  377. Dupuis, M., Wendoloski, J. J. (1984): ‘Systematic GVB study of harmonic vibrational frequencies and dipole moment derivatives; the vinyl radical C2H3 and other simple molecules.’ J. Chem. Phys. 80, 5696–5702. [5]Google Scholar
  378. Duschinsky, F. (1937): ‘Zur Deutung der Elektronenspektren mehratomiger Moleküle. I. Über das Franck–Condon Prinzip.’ Acta Physicochim. URSS 7, 551–566. [5]Google Scholar
  379. Dykstra, G. E. (1984): Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. D. Reidel Publ. Co., Dordrecht, Boston, Lancaster. [3]Google Scholar
  380. Dykstra, C. E., Schaefer III, H. F. (1976a): ‘A theory of self-consistent electron pairs. Computational methods and preliminary applications.’ J. Chem. Phys. 65, 2740–2750. [5]Google Scholar
  381. Dykstra, C. E., Schaefer III, H. F. (1976b): ‘Electron correlation in small metal clusters. Application of a theory of self-consistent electron pairs to the Be4 system.’ J. Chem. Phys. 65, 5141–5146. [5]Google Scholar
  382. Dykstra, C. E., Schaefer III, H. F. (1984): ‘Computer technology in quantum chemistry.’ In Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. Ed. C. E. Dykstra; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster. p. 197–202. [3]Google Scholar
  383. Dyson, F. J. (1958): ‘Note on maximum opacity.’ General Atomic report GAMD-469. [11]Google Scholar
  384. Ebeling, W., Kraeft, W. D., Kremp, D. (1977): Theory of Bound States and Ionization Equilibrium in Plasmas and Solids. Akademie Verlag, Berlin. [4]Google Scholar
  385. Eby, P. B., Sung, C. C. (1986): ‘Comparison of exact and approximate formulas for the Mott correction to energy loss of relativistic heavy ions.’ Phys. Rev. A 33, 3767–3773. [9]Google Scholar
  386. Eckart, C. (1935): ‘Some studies concerning rotating axes and polyatomic molecules.’ Phys. Rev. 47, 552–558. [3, 5]Google Scholar
  387. Ecker, G., Müller, K. G. (1958): ‘Plasmapolarisation und Trägerwechselwirkung.’ Z. Phys. 153, 317–330. [7]Google Scholar
  388. Ederer, D. L. (1964): ‘Photoionization of the 4d electrons in xenon.’ Phys. Rev. Lett. 13, 760–762. [5]Google Scholar
  389. Edmonds, A. R. (1957): Angular Momentum in Quantum Mechanics. Princeton U. Press, Princeton, N.J. [5]Google Scholar
  390. Edmonds, A. R., Picart, J., Tran Minh, N., Pullen, R. (1979): ‘Tables for the computation of radial integrals in the Coulomb approximation.’ J. Phys. B 12, 2781–2787. [5]Google Scholar
  391. Edwards, D. K., Flornes, B. J., Glassen, L. K., Sun, W. (1965): ‘Correlation of absorption by water vapor at temperatures from 300 to 1100 K.’ Appl. Optics 4, 715–721. [13]Google Scholar
  392. Eissner, W. (1972): ‘Computer methods and packages in electron – atom collisions (II). In The Physics of Electronic and Atomic Collisions. Eds. T. R. Grovers and F. J. de Heer. North-Holland Publ. Co., Amsterdam, London, p. 460–478. [3]Google Scholar
  393. Eissner, W., Seaton, M. J. (1972): ‘Computer programs for the calculation of electron – atom collision cross sections. I. General formulation.’ J. Phys. B 5, 2187–2198. [3]Google Scholar
  394. Eissner, W., Jones, M., Nussbaumer, H. (1974): ‘Techniques for the calculation of atomic structures and radiative data including relativistic corrections.’ Comp. Phys. Comm. 8 270–306. [3]Google Scholar
  395. Elliott, P., Furche, F., Burke, K. (2009): ‘Excited states from time-dependent density functional theory.’ In Rev. Comp. Chem. 26, 91–165. Eds. K. B. Lipkowitz, T. R. Cundari; John Wiley Sons. [3]Google Scholar
  396. Elsasser, W. M. (1938): ‘Mean absorption and equivalent absorption coefficient of a band spectrum.’ Phys. Rev. 54, 126–129. [7, 11]Google Scholar
  397. Elsasser, W. M. (1942): ‘Heat transfer by IR radiation in the atmosphere.’ Harvard Meteorological Studies No. 6, Milton, MA, and Oxford U. Press, London. [7]Google Scholar
  398. Elwert, G. (1939): ‘Intensity and polarization in the continuous x-ray spectrum.’ Ann. Phys. 34, 178–208. [6]Google Scholar
  399. Elwert, G. (1954): ‘Die weiche Röntgenstrahlung der ungestörten Sonnenkorona.’ Z. Naturforsch. 9a, 637–653. [6]Google Scholar
  400. Elwert, G., Haug, E. (1969): ‘Calculation of bremsstrahlung cross sections with Sommerfeld-Maue eigenfunctions.’ Phys. Rev. 183, 90–105. [5]Google Scholar
  401. Engel, E., Vosco, S. H. (1990): ‘Wave-vector dependence of the exchange contribution to the electron-gas response functions: An analytic derivation.’ Phys. Rev. B 42, 4940–4953. [3]Google Scholar
  402. Engel, E., Vosko, S. H. (1993): ‘Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations.’ Phys. Rev. B 47, 13164–13174. [3]Google Scholar
  403. Engel, V., Schinke, R., Staemmler, V. (1986): ‘An ab initio calculation of the absorption cross section of water in the first absorption continuum.’ Chem. Phys. Lett. 130, 413–418. [5]Google Scholar
  404. Engel, V., Staemmler, V., Vander Wal, R. L., Crim, F. F., Sension, R. J., Hudson, B., Andresen, P., Hennig, S., Weide, K., Schinke, R. (1992): ‘Photodissociation of water in the first absorption band: A prototype for dissociation on a repulsive potential energy surface.’ J. Phys. Chem. 96, 3201–3213. [5]Google Scholar
  405. Engelhardt, A. G., Phelps, A. V., Risk, C. G. (1964): ‘Determination of momentum transfer and inelastic collision cross sections for electrons in nitrogen using transport coefficients.’ Phys. Rev. 135, A1566–A1574. [6]Google Scholar
  406. Engler, E. M., Andose, J. D., Schleyer, P. V. R. (1973): ‘Critical evaluation of molecular mechanics.’ J. Am. Chem. Soc. 95, 8005–8025. [3]Google Scholar
  407. Enskog, D. (1922): ‘Kinetic theory of heat conductivity, viscosity and diffusion in certain condensed gases and liquids.’ Kungl. Svenska Vetenskap. Handl. 63, 1–44. [9]Google Scholar
  408. Erdelyi, A. (1953): Higher Transcendental Functions, Vol. 2. McGraw-Hill, New York, Toronto, London. [5]Google Scholar
  409. Eriksson, G. (1971): ‘Thermodynamic studies of high temperature equilibria. III. SOLGAS, a computer program for calculating the composition and heat condition of an equilibrium mixture.’ Acta Chem. Scandinavica 25, 2651–2658. [4]Google Scholar
  410. Eriksson, G. (1975): ‘Thermodynamic studies of high temperature equilibria. XII. SOLGASMIX, a computer program for calculation of equilibrium compositions in multiphase systems.’ Chem. Scripta 8, 100–103. [4]Google Scholar
  411. Eriksson, G., Rosén, E. (1973): ‘Thermodynamic studies of high temperature equilibria. VIII. General equations for the calculation of equilibria in multiphase systems.’ Chem. Scripta 4, 193–194. [4]Google Scholar
  412. Ermler, W. C., Rosenberg, B. J., Shavitt, I. (1985): ‘Ab-initio SCF and CI studies on the ground state of the water molecule. III. Vibrational analysis of potential energy and property surfaces.’ In Comparison of Ab Initio Calculations with Experiment: State of the Art. Ed. R. Bartlett; D. Reidel Publ. Co., Dordrecht, p. 171–216. [5]Google Scholar
  413. Eschrig, H. (1989): Optimized LCAO method and the electronic structure of extended systems. Springer-Verlag, Berlin. [3]Google Scholar
  414. Evans, J. S., Schexnayder Jr., C. J. (1961): ‘An investigation of the effect of high temperature on the Schumann-Runge ultraviolet absorption continuum of oxygen.’ National Aeronautic and Space Administration report NASA TR R-92. [6]Google Scholar
  415. Ewart, G. M., Guyer, R. A., Greenstein, G. (1975): ‘Electrical conductivity and magnetic field decay in neutron stars.’ Astrophys. J. 202, 238–247. [9]Google Scholar
  416. Eyler, E. E., Pipkin, F. M. (1983): ‘Lifetime measurements of the B\({}^{3}\!\varPi _{\mathrm{g}}\) state of N2 using laser excitation.’ J. Chem. Phys. 79, 3654–3659. [5]Google Scholar
  417. Faddeyeva, V. N., Terentev, V. M. (1961): Tables of the Probability Integral for Complex Argument. Pergamon Press, New York. [7]Google Scholar
  418. Fano, U. (1961): ‘Effects of configuration interaction on intensities and phase shifts.’ Phys. Rev. 124, 1866–1878. [5]Google Scholar
  419. Fano, U., Cooper, J. W. (1965): ‘Line profiles in the far-UV absorption spectra of the rare gases.’ Phys. Rev. 137, A1364–A1379. [5]Google Scholar
  420. Fano, U., Cooper, J. W. (1968): ‘Spectral distribution of atomic oscillator strengths.’ Rev. Mod. Phys. 40, 441–507. [1, 5]Google Scholar
  421. Fermi, E. (1949): Nuclear Physics. The University of Chicago Press. [5, 7]Google Scholar
  422. Fermi, E., Amaldi, E. (1934): ‘Le orbite s degli elementi.’ Mem. Reale Accad. Italia 6, 119–149. [3]Google Scholar
  423. Ferriso, C. C., Ludwig, C. B. (1964): ‘Spectral emissivities and integrated intensities of the 2.7 micron H2O band between 530 and 2200 K.’ J. Quant. Spectr. Rad. Transfer 4, 215–227. [13]Google Scholar
  424. Ferriso, C. C., Ludwig, C. B., Thomson, A. L. (1966): ‘Empirically determined infrared absorption coefficients of H2O from 300 to 3000 K.’ J. Quant. Spectr. Rad. Transfer 6, 241–275. [13]Google Scholar
  425. Feynman, R. P., Metropolis, N., Teller, E. (1949): ‘Equations of state of elements based on the generalized Fermi–Thomas theory.’ Phys. Rev. 75, 1561–1573. [4]Google Scholar
  426. Finn, G. D., Mugglestone, D. (1965): ‘Tables of the line broadening function H(a, v).’ Mon. Not. Roy. Astron. Soc. 129, 221–235. [7]Google Scholar
  427. Fiolhais, C., Nogueira, F., Marques, M. (Eds.) (2003): A Primer in Density Functional Theory. Lecture Notes in Physics, 620, Springer-Verlag, New York, NY. [3]Google Scholar
  428. Fischer, C. F. (1996): ‘Atomic structure: Multiconfiguration Hartree–Fock theories.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 243–257. [3]Google Scholar
  429. Fischer, J. (1931a): ‘Beiträge zur Theorie der Absorption von Röntgenstrahlen.’ Ann. Physik 8, 821–850. [5]Google Scholar
  430. Fischer, J. (1931b): ‘Über die retardierten Matrixelemente in der Theorie der Streuung und Absorption von Röntgenstrahlen.’ Ann. Physik 11, 489–520. [5]Google Scholar
  431. Flaud, J.-M., Camy-Peyret, C., Toth, R. A. (1981): Parametres des raies de la vapeur d’eau des micro-ondes a l’infrarouge moyen (Atlas des positions et intensites des raies de H \(_{2}^{16}\) O, H \(_{2}^{17}\) O et H \(_{2}^{18}\) O entre 0 et 4350 cm −1). Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt. [7]Google Scholar
  432. Flowers, E., Itoh, N. (1976): ‘Transport properties of dense matter.’ Astrophys. J. 206, 218–242. [9]Google Scholar
  433. Flowers, E., Itoh, N. (1981): ‘Transport properties of dense matter. III Analytic formulae for thermal conductivity.’ Astrophys. J. 250, 750–752. [9]Google Scholar
  434. Ford, A. L., Docken, K. K., Dalgarno, A. (1975): ‘The photoionization and dissociative ionization of H2, HD, and D2.’ Astrophys. J. 195, 819–824. [5]Google Scholar
  435. Foster, J. M., Hoarty, D. J., Smith, C. C., Rosen, P. A., Davidson, S. J., Rose, S. J., Perry, T. S., Serduke, F. J. D. (1991): ‘L-shell absorption spectrum of an open-M-shell germanium plasma: Comparison of experimental data with a detailed configuration-accounting calculation.’ Phys. Rev. Lett. 67, 3255–3258. [13]Google Scholar
  436. Fox, J. L. (1991): ‘Cross sections and reaction rates of relevance to aeronomy.’ Revs. Geophys. 29, Suppl. 2, 1110–1131. [5]Google Scholar
  437. Fox, K., Ozier, I. (1971): ‘The importance of methane to pressure-induced absorption in the atmospheres of the outer planets.’ Astrophys. J. Lett. 166, L95–L100. [8, 13]Google Scholar
  438. Fraga, S., Saxena, K. M. S., Karwowski, J. (1979): Atomic Energy Levels: Data for Parametric Calculations. Elsevier Scientific Publ. Co.; Amsterdam, New York. [3, 4]Google Scholar
  439. Frank-Kamenetski, D. A. (1962): ‘Macroscopic theory of radiant energy transport processes.’ Translated by M. J. Nowak. In Physical Processes in Stellar Interiors, Chap. 5. (1959): Jerusalem, Israel Program for Scientific Translations (Office of Tech. Services, US Dept. Commerce, Washington, DC); General Atomic report GA-TR-3004. [2]Google Scholar
  440. Fraser, A. P. (1954): ‘A method of determining the electronic transition moments for diatomic molecules.’ Can. J. Phys. 32, 515–21 [5]Google Scholar
  441. Fraser, A. R. (1966): ‘The fundamental equations of radiation hydrodynamics.’ UK Atomic Energy Authority report AWRE O-82/65. [2]Google Scholar
  442. Freemann, B. E. (1965): ‘Polarization effects on radiation diffusion in a Compton scattering medium.’ General Atomic report GAMD-6157. [2]Google Scholar
  443. Fried, B. D., Conte, S. D. (1961): The Plasma Dispersion Function. Academic Press, New York. [7]Google Scholar
  444. Friedman, B., Russek, J. (1954): ‘Addition theorems for sphericalwaves.’ Quart. Appl. Math. 12, 13–23. [5]Google Scholar
  445. Frisch, M. J., Nielsen, A. B., Frisch, A. E. (1998): Gaussian 98 Programmer’s Reference. 2nd ed., Gaussian, Inc., Pittsburgh, PA. See also: www.gaussian.com. [3]
  446. Frommhold, L., Meyer, W. (1987): ‘Collision-induced rotovibrational spectra of H2−He pairs from first principles.’ Phys. Rev. A 35, 632–638. [8]Google Scholar
  447. Frost, B. S. (1973): ‘Theory of pressure-induced absorption by symmetric top molecules.’ J. Chem. Soc. Faraday Trans. 2, 8, 1142–1154. [8]Google Scholar
  448. Fuhr, J. R., Martin, G. A., Wiese, W. L., Younger, S. M., (1981): ‘Atomic transition probabilities for iron, cobalt, and nickel. (A critical data compilation of allowed lines).’ J. Phys. Chem. Ref. Data 10, 305–565. [5]Google Scholar
  449. Fuhr, J. R., Martin, G. A., Wiese, W. L. (1988): ‘Atomic transition probabilities iron through nickel.’ J. Phys. Chem. Ref. Data (Suppl. 4) 17, 1–504. [5]Google Scholar
  450. Fuller, K. A. (1995): ‘Scattering and absorption cross sections of compounded spheres. I. Theory for external aggregation.’ J. Opt. Soc. Am. A 11, 3251–3260. [5]Google Scholar
  451. Fuller, K. A., Kattawar, G. W. (1988a): ‘Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. I.’ Opt. Lett. 13, 90–92. [5]Google Scholar
  452. Fuller, K. A., Kattawar, G. W. (1988b): ‘Consummate solution to the problem of classical electromagnetic scattering by ensembles of spheres. II.’ Opt. Lett. 13, 1063–1065. [5]Google Scholar
  453. Furry, W. H. (1951): ‘Approximate wave functions for high energy electrons in Coulomb fields.’ Phys. Rev. 46, 391–396. [5]Google Scholar
  454. Furssow, W., Wlassow, A. (1936): ‘Zur Theorie der Verbreiterung von Spektrallinien in homogenem Gas.’ Physik Z. Sowjet Union 10, 378–412. [7]Google Scholar
  455. Furssow, V., Wlassow, A. (1939): ‘The breadth of spectral lines at large densities of a homogeneous gas.’ J. Phys. (USSR) 1, 335–340. [7]Google Scholar
  456. Gallagher, J. W., Rumble, J. R., Beaty, E. C. (1979): ‘Bibliography of Low Energy Electron and Photon Cross Section Data (January 75 through December 77).’ NBS Special Publication 426, Suppl. 1. [6]Google Scholar
  457. Gallagher, J. W., Brion, C. E., Samson, J. A. R., Langhoff, P. W. (1988): ‘Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes.’ J. Phys. Chem. Ref. Data 17, 9–153. [5]Google Scholar
  458. Gamache, R. R., Lynch, R., Neshyba, S. P. (1998): ‘New developments in the theory of pressure-broadening and pressure-shifting of spectral lines of H2O: The complex Robert–Bonamy formalism.’ J. Quant. Spectr. Rad. Transfer 59, 319–335. [7]Google Scholar
  459. Garibyan, G. M. (1953): ‘Bremsstrahlung and the creation of pairs in the field of the electron.’ Zh. Eksper. Teor. Fiz. 24, 617–621. [5]Google Scholar
  460. Gáspár, R. (1954): ‘Über eine Approximation des Hartree–Fockschen Potentials durch eine universelle Potentialfunktion.’ Acta Phys. Acad. Sci. Hung. 3, 263–286. [3]Google Scholar
  461. Gaunt, J. A. (1929): ‘On the triplets of helium.’ Phil. Trans. Roy. Soc. London, Ser. A 228, 151–196. [5]Google Scholar
  462. Gaunt, J. A. (1930): ‘V. Continuous absorption.’ Phil. Trans. Roy. Soc. London, Ser. A 229, 163–204. [5, 6]Google Scholar
  463. Gaustad, J. E. (1963): ‘The opacity of diffuse cosmic matter and the early stages of star formation.’ Astrophys. J. 138, 1050–1073. [6]Google Scholar
  464. Gear, C. W. (1971): Numerical Initial Value Problems in Ordinary Differential Equations. Prentice–Hall, Englewood Cliffs, NJ. [14]Google Scholar
  465. Gelinas, R. J. (1971): ‘Statistical aspects of the average atom model.’ Lawrence Radiation Laboratory (Livermore) report UCID-15844. [4]Google Scholar
  466. Gell-Mann, M., Low, F. (1951): ‘Bound states in quantum field theory.’ Phys. Rev. 84, 350–354. [5]Google Scholar
  467. Geltman, S. (1973): ‘Free-free radiation in electron-neutral atomic collisions.’ J. Quant. Spectr. Rad. Transfer 13, 601–613. [6]Google Scholar
  468. Generosa, J. J., Harris, R. A. (1970): ‘Effects of high rotational quantum numbers on R–K–R F–C factors.’ J. Chem. Phys. 53, 3147–3152. [3]Google Scholar
  469. Generosa, J. I., Harris, R. A., Sullo, L. R. (1971): ‘Franck–Condon factors for various air species.’ Air Force Weapons Laboratory report AFWL-TR-70-108. [5, 10]Google Scholar
  470. Gérardy, G. M., Ausloos, M. (1982): ‘Absorption spectrum of clusters of spheres from the general solution of Maxwell’s equations. II. Optical properties of aggregated metal spheres.’ Phys. Rev. B 25, 4204–4229. [5]Google Scholar
  471. Gerratt, J. (1971): ‘General theory of spin-coupled wave functions for atoms and molecules.’ Adv. Atom. Mol. Phys. 7, 141–219. [3]Google Scholar
  472. Gibson, G. E., Bayliss, N. S. (1933): ‘Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part I. Experimental, the absorption spectrum of chlorine.’ Phys. Rev. 44, 188–192. [6]Google Scholar
  473. Gilmore, F. R. (1965): ‘The contribution of generally-neglected band systems and continua to the absorption coefficient of high-temperature air.’ J. Quant. Spectr. Rad. Transfer 5, 125–135. [4, 7]Google Scholar
  474. Gilra, D. P.(1972): ‘Scientific Results from OAO.’ NASA report SP-31, Washington, DC, Government Printing Office. [6]Google Scholar
  475. Gingerich, O. (1970): ‘The ultraviolet solar opacity.’ In International Astronomical Union Symposium No. 36, Ultraviolet Stellar Spectra and Related Ground Based Observations. Eds. L. Houziaux, H. E. Butler; D. Reidel Publ. Co., Dordrecht-Holland, p. 140–142. [7]Google Scholar
  476. Gingerich, O., Latham, D. (1970): ‘The effect of silicon and carbon opacity on ultraviolet stellar spectra.’ In International Astronomical Union Symposium No. 36, Ultraviolet Stellar Spectra and Related Ground-Based Observations. Eds. L. Houziaux, H. E. Butler; D. Reidel Publ. Co., Dordrecht-Holland, p. 64–72. [7]Google Scholar
  477. Giordano, D., Capitelli, M., Colonna, G., Gorse, C. (1994): ‘Tables of internal partition functions and thermodynamic properties of high-temperature air species from 50 K to 100 000 K.’ European space Agency report ESA STR-237. [4]Google Scholar
  478. Givens, W. (1954): ‘Numerical computation of the characteristic values of a real symmetric matrix.’ Oak Ridge National Laboratory report ORNL 1574. [3]Google Scholar
  479. Glauber, R. J. (1963a): ‘Coherent and incoherent states of the radiation field.’ Phys. Rev. 131, 2766–2788. [5]Google Scholar
  480. Glauber, R. J. (1963b): ‘Photon correlations.’ Phys. Rev. Lett. 10, 84–86. [5]Google Scholar
  481. Godfredsen, E. (1966): ‘Atomic term energies for atoms and ions with 11 to 28 electrons.’ Astrophys. J. 145, 308–332. [3]Google Scholar
  482. Godson, W. L. (1953): ‘The evaluation of infra-red radiative fluxes due to atmospheric water vapour.’ Quart. J. Roy. Met. Soc. 79, 367–379. [7]Google Scholar
  483. Godson, W. L. (1955): ‘The computation of infrared transmission by atmospheric water vapor.’ J. Meteorol. 12, 272–284. [7]Google Scholar
  484. Goldberg, L. (1935): ‘Relative multiplet strengths in LS coupling.’ Astrophys. J. 82, 1–25. [5]Google Scholar
  485. Goldberg, L. (1936): ‘Note on absolute multiplet strengths.’ Astrophys. J. 84, 11–13. [5]Google Scholar
  486. Golden, S. A. (1962): ‘Approximate spectral absorption coefficients for pure rotational transitions in diatomic molecules.’ J. Quant. Spectr. Rad. Transfer 2, 201–211. [7]Google Scholar
  487. Golden, S. A. (1967a): ‘Approximate spectral absorption coefficients of electronic transitions in diatomic molecules.’ J. Quant. Spectr. Rad. Transfer 7, 225–250. [7]Google Scholar
  488. Golden, S. A. (1967b): ‘The Doppler analog of the Elsasser band model.’ J. Quant. Spectr. Rad. Transfer 7, 483–494. [7]Google Scholar
  489. Golden, S. A. (1968): ‘The Doppler analog of the Elsasser band model – II. Integrated emissivity.’ J. Quant. Spectr. Rad. Transfer 8, 877–897. [7]Google Scholar
  490. Golden S. A. (1969): ‘The Voigt analog of an Elsasser band.’ J. Quant. Spectr. Rad. Transfer 9, 1067–1081. [7]Google Scholar
  491. Goldman, A., Kyle, T. G. (1968): ‘A comparison between statistical model and line-by-line calculations with applications to the 9.6 μm ozone and the 2.7 μm water vapor bands.’ Appl. Optics 7, 1167–1176. [7]Google Scholar
  492. Goldstein, H. (1950): Classical Mechanics. Addison-Wesley Publ. Co., Inc., Reading, MA, Palo Alto, London, Dallas, Atlanta. [3]Google Scholar
  493. Goldstein, R. (1964): ‘Measurements of infrared absorption by water vapor at temperatures to 1000 K.’ J. Quant. Spectr. Rad. Transfer 4, 343–352. [11, 13]Google Scholar
  494. Gombás, P. (1949): Die Statistische Theorie des Atoms und ihre Awendungen. Springer-Verlag, Wien. [3]Google Scholar
  495. Gombás, P. (1956): ‘Statistische Behandlung des Atoms.’ In Handbuch der Physik, Atome II, XXXVI. Ed. S. Flügge; Springer-Verlag, Berlin, Göttingen, Heidelberg, p. 109–231. [3]Google Scholar
  496. Goody, R. M. (1952): ‘A statistical model for water vapour absorption.’ Quart. J. Roy. Met. Soc. 78, 165–169. [7]Google Scholar
  497. Goody, R. M. (1964): Atmospheric Radiation, I. Theoretical Basis. Clarendon Press, Oxford. [2]Google Scholar
  498. Goody, R. M., Yung, Y L. (1989): Atmospheric Radiation: Theoretical Basis. 2nd ed., Oxford University Press, New York, Oxford. [7]Google Scholar
  499. Goody, R., West, R., Chen, L., Crisp, D. (1989): ‘The correlated-k method for radiation calculations in nonhomogeneous atmospheres.’ J. Quant. Spectr. Rad. Transfer 42, 539–550. [7]Google Scholar
  500. Gordon, R. G. (1965): ‘Molecular motion in infrared and Raman spectra.’ J. Chem. Phys. 43, 1307–1312. [5, 7]Google Scholar
  501. Gordon, R. G. (1968): ‘Correlation functions for molecular motion.’ Adv. Mag. Resonance 3, 1–42. [7]Google Scholar
  502. Gordy, W., Smith, W. V., Trambarulo, R. F. (1953): Microwave Spectroscopy. John Wiley & Sons, Inc., New York, and Chapman & Hall, Ltd., London. [4]Google Scholar
  503. Graboske Jr., H. C., Harwood, D. J., DeWitt, H. E. (1971): ‘Thermodynamic properties of nonideal gases. II. The strongly ionized gas.’ Phys. Rev. A 3, 1419–1431. [4]Google Scholar
  504. Grant, I. P. (1958): ‘Calculation of Gaunt factors for free – free transitions near positive ions.’ Mon. Not. Roy. Astron. Soc. 118, 241–257. [7]Google Scholar
  505. Grant, I. P. (1961): ‘Relativistic self-consistent fields.’ Proc. Roy. Soc. (London), Ser. A 262, 555–576. [3]Google Scholar
  506. Grant, I. P. (1992): ‘Relativistic electron structure theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 513–518. [3, 5]Google Scholar
  507. Grant, I. P. (1994): ‘Relativistic electronic structure of atoms and molecules.’ Adv. Atom. Mol. Phys. 32, 169–186. [3]Google Scholar
  508. Grant, I. P. (1996): ‘Relativistic atomic structure.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 258–286. [3, 5]Google Scholar
  509. Grant, W. B. (1990): ‘Water vapor absorption coefficients in the 8–13 μm spectral region: A critical review.’ Appl. Optics 29, 451–462. [7]Google Scholar
  510. Gray, C. G. (1971): ‘Theory of collision-induced absorption for spherical top molecules.’ J. Phys. B 4, 1661–1669. [8]Google Scholar
  511. Gray, L. D. (1963): ‘Theoretical calculations of equilibrium infrared gas emissivities from spectroscopic data. Representative radiative energy calculations for transparent and optically dense media.’ Ph. D. Thesis, California Institute of Technology. Pasadena, CA. [13]Google Scholar
  512. Gray, L. D., Penner, S. S. (1965): ‘Approximate band absorption calculations for methane.’ J. Quant. Spectr. Rad. Transfer 5, 611–620. [5, 7]Google Scholar
  513. Green, J. M. (1960): ‘Fermi–Dirac averages of the free-free hydrogenic Gaunt factor.’ RAND Corp. report RM-2580-AEC. [6]Google Scholar
  514. Green, J. M. (1964): ‘The statistical mechanics of the interdependent electrons in the screening constant model of the many-electron-atom.’ J. Quant. Spectr. Rad. Transfer 4, 639–662. [3, 4]Google Scholar
  515. Green, S. (1990): ‘Raman Q-branch line shapes as a test of the H2-Ar intermolecular potential.’ J. Chem. Phys. 93, 1496–1501. [7]Google Scholar
  516. Green, S., Boissoles, J., Boulet, C. (1988): ‘Accurate collision-induced line coupling parameters for the fundamental band of CO in He.’ J. Quant. Spectr. Rad. Transfer 39, 33–42. [7]Google Scholar
  517. Greenberg, J. M., Libelo, L., Lind, A., Wang, R. T. (1962): ‘Scattering by nonspherical particles whose size is of the order of the wave length.’ Electromagnetic Theory and Antennas Symposium. Ed. E. C. Jordan; Pergamon Press Ltd., Oxford, England, p. 81–92. [5]Google Scholar
  518. Greene, J. (1959): ‘Bremsstrahlung for a Maxwellian gas.’ Astrophys. J. 130, 693–701. [6]Google Scholar
  519. Grevesse, N. (1984): ‘Accurate atomic data and solar photospheric spectroscopy.’ Phys. Scripta T8, 49–58. [13]Google Scholar
  520. Grevesse, N., Sauval, A. J., van Dishoeck, E. F. (1984): ‘An analysis of vibration–rotation lines of OH in the solar infrared spectrum.’ Astron. Astrophys. 141, 10–16. [5, 13]Google Scholar
  521. Griem, H. R. (1962): ‘Wing formulae for Stark broadened hydrogen and hydrogenic lines.’ Astrophys. J. 136, 422–430. [7]Google Scholar
  522. Griem, H. (1964): Plasma Spectroscopy. McGraw-Hill Book Co., Inc., New York, San Francisco, Toronto, London. [4, 5, 7, 12, 13]Google Scholar
  523. Griem, H. R. (1974): Spectral line broadening by plasmas. Academic Press, New York, London. [7]Google Scholar
  524. Griem, H. R., Shen, K. Y. (1961): ‘Stark broadening of hydrogenic ion lines in a plasma.’ Phys. Rev. 122, 1490–1496. [7]Google Scholar
  525. Griem, H. R., Baranger, M., Kolb, A. C., Oertel, G. (1962): ‘Stark broadening of neutral helium lines in a plasma.’ Phys. Rev. 125, 177–195. [7]Google Scholar
  526. Grimaldi, F., Grimaldi-Lecourt, A. (1982): ‘Quasi-static electron density fluctuations of atoms in hot compressed matter.’ J. Quant. Spectr. Rad. Transfer 27, 373–385. [3, 4]Google Scholar
  527. Gross, E. P. (1955): ‘Shape of collision-broadened spectral lines.’ Phys. Rev. 97, 395–403. [7]Google Scholar
  528. Gross, E. K. U., Dreizler, R. M. (Eds.) (1995): Density Functional Theory. Proc. NATO Advanced Study Institute. Plenum ASI series B 337, Spinger-Verlag New York. [3]Google Scholar
  529. Gross, E. K. U., Toepfer, A., Jacob, B., Horbatsch, M., Luedde, H. J., Dreizler, R. M. (1983): ‘Density functional approach to molecular structure and atomic scattering.’ In Molecular Ions, Geometric and Electronic Structures, Eds. J. Berkowitz and K. O. Groeneveld, Plenum Press, New York, p. 419–422. [3]Google Scholar
  530. Gruner, D., Brumer, P. (1987): ‘Efficient evaluation of harmonic polyatomic Franck–Condon factors.’ Chem. Phys. Lett. 138, 310–314. [5]Google Scholar
  531. Guest, M. F., Wilson, S. (1981): ‘The use of vector processors in quantum chemistry: Experience in the U. K.’ In Supercomputers in Chemistry. Eds. P. Lykos and I. Shavitt; ACS Symposium Ser. 173, Am. Chem. Soc. Washington. [3]Google Scholar
  532. Gustafson, B. Å. S. (1996): ‘Microwave analog to light scattering measurements: A modern implementation of a proven method to achieve precise control.’ J. Quant. Spectr. Rad. Transfer 55, 663–672. [5]Google Scholar
  533. Gustafsson, B., Bell, R. A., Eriksson, K., Nordlund, Å. (1975): ‘A grid of madel atmospheres for metal-deficient giant stars I.’ Astron. Astrophys. 42, 407–432. [7]Google Scholar
  534. Gustafsson, T., Levinson, H. J. (1981): ‘Shape resonances in diatomic molecules: NO.’ Chem. Phys. Lett. 78, 28–31. [5]Google Scholar
  535. Gyldén, N., Einarsson, B. (1969): ‘Classical calculation of inverse bremsstrahlung cross sections in screened potentials.’ J. Quant. Spectr. Rad. Transfer 9, 1117–1132. [6]Google Scholar
  536. Hakel, P., Sherrill, M. E., Mazevet, S., Abdallah Jr., J., Colgan, J., Kilcrease, D. P., Magee, N. H., Fontes, C. J., Zhang, H. L. (2006): ‘The new Los Alamos opacity code ATOMIC.’ J. Quant. Spectr. Rad. Transfer 99 265–271. [14]Google Scholar
  537. Hakim, R., Mangeney, A. (1971): ‘Collective oscillations of a relativistic radiating electron plasma.’ Phys. Fluids 14, 2751–2761. [6]Google Scholar
  538. Hamermesh, M. (1962): Group Theory and Its Application to Physical Problems. Addison-Wesley Publ. Co., Reading, MA, London. [7]Google Scholar
  539. Hamilton, D. R. (1947): ‘The resonance radiation induced by elliptically polarized light.’ Astrophys. J. 106, 457–465. [5]Google Scholar
  540. Hammond, B. L., Lester, Jr., W. A., Reynolds, P. J. (1994): Monte Carlo Methods in Ab-Initio Quantum Chemistry. World Scientific, London, Singapore, River Edge, New Jersey. [3]Google Scholar
  541. Hansen, J. P. (1973): ‘Statistical mechanics of dense ionized matter. I. Equilibrium properties of the classical one-component plasma.’ Phys. Rev. A 8, 3096–3109. [6]Google Scholar
  542. Hansen, W. W. (1935): ‘A new type of expansion in radiation problems.’ Phys. Rev. 47, 139–143. [5]Google Scholar
  543. Harris III, D. L. (1948): ‘On the line-absorption coefficient due to Doppler effect and damping.’ Astrophys. J. 108, 112–115. [7]Google Scholar
  544. Harris, F. E. (1960): ‘Molecular orbital studies of diatomic molecules. I. Method of computations of heteronuclear systems.’ J. Chem. Phys. 32, 3–18. [3]Google Scholar
  545. Harris, F. E. (1967): ‘Open-shell orthogonal molecular orbital theory.’ J. Chem. Phys. 46, 2769–2776. [3]Google Scholar
  546. Harris, R., Blackledge, M., Generosa, J. (1969): ‘Rydberg–Klein–Rees F–C factors for the O2 Schumann-Runge system including high vibrational quantum numbers.’ J. Mol. Spectr. 30, 506–512. [3]Google Scholar
  547. Harrison, A. J., Cederholm, B. J., Terwilliger, M. A. (1959): ‘Absorption of acyclic oxygen compounds in the vacuum ultraviolet. I. Alcohols.’ J. Chem. Phys. 30, 355–356. [5]Google Scholar
  548. Harter, W. G. (1996): ‘Molecular symmetry and dynamics.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 378–393. [3]Google Scholar
  549. Harter, W. G., Patterson, C. W., da Paixao, F. J. (1978): ‘Frame transformation relations and multipole transitions in symmetric polyatomic molecules.’ Rev. Mod. Phys. 50, 37–83. [3]Google Scholar
  550. Hartmann, J. M., Taine, J., Bonamy, J., Labani, B., Robert, D. (1987): ‘Collisional broadening of rotation–vibration lines for asymmetric–top molecules. II. H2O diode laser measurements in the 400–900 K range; calculations in the 300–2000 K range.’ J. Chem. Phys. 86, 144–156. [7]Google Scholar
  551. Hartree, D. R. (1957): The Calculation of Atomic Structures. John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London. [3]Google Scholar
  552. Hartree, D. R. (1958): Numerical Analysis. 2nd ed., Oxford University Press, London. [4]Google Scholar
  553. Hauschildt, P. H. (1992): ‘A fast operator perturbation method for the solution of the special relativistivc equation of radiative transfer in spherical symmetry.’ J. Quant. Spectr. Rad. Transfer 47, 433–453. [14]Google Scholar
  554. Hauschildt, P. H. (1993): ‘Multi-level non-LTE radiative transfer in expanding shells.’ J. Quant. Spectr. Rad. Transfer 50, 301–318. [14]Google Scholar
  555. Hauschildt, P. H., Störzer, H., Baron, E. (1994): ‘Convergence properties of the accelerated Λ-iteration method for the solution of radiative transfer problems.’ J. Quant. Spectr. Rad. Transfer 51, 875–891. [14]Google Scholar
  556. Hauschildt, P. H., Starrfield, S., Shore, S. N., Allard, F., Baron, E. (1995): ‘The physics of early nova spectra.’ Astrophys. J. 447, 829–847. [14]Google Scholar
  557. Hauschildt, P. H., Baron, E., Starrfield, S., Allard, F. (1996): ‘The effect of Fe II non-LTE on nova atmospheres and spectra.’ Astrophys. J. 462, 386–403. [14]Google Scholar
  558. Hauschildt, P. H., Allard, F., Alexander, D. R., Baron, E. (1997a): ‘Non-local thermodynamic equilibrium effects of Ti I in M dwarfs and giants.’ Astrophys. J. 488, 428–442. [14]Google Scholar
  559. Hauschildt, P. H., Baron, E., Allard, F. (1997b): ‘Parallel implementation of the PHOENIX generalized stellar atmosphere program.’ Astrophys. J. 483, 390–398. [14]Google Scholar
  560. Hauschildt, P. H., Lowenthal, D. K., Baron, E. (2001): ‘Parallel implementation of the PHOENIX generalized stellar atmosphere program. III. A parallel algorithm for direct opacity sampling.’ Astrophys. J. Suppl. Ser. 134, 323–329. [14]Google Scholar
  561. Hay, P. J. (1981): ‘Electronic structure of molecules using relativistic effective core potentials.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 383–402. [3]Google Scholar
  562. Head-Gordon, M., Artacho, E. (2008): ‘Chemistry on the computer.’ Phys. Today April, 58–63. [3]Google Scholar
  563. Heaps, H. S., Herzberg, G. (1952): ‘Intensity distribution in the rotation–vibration spectrum of the OH molecule.’ Z. Physik 133, 48–64. [5]Google Scholar
  564. Hefferlin, R., Kuznetsova, L. A. (1999): ‘Systematics of diatomic molecular transition moments.’ J. Quant. Spectr. Rad. Transfer 62, 765–774. [3, 5]Google Scholar
  565. Hehre, W. J. (1986): Ab Initio Molecular Orbital Theory. Wiley, New York. [3]Google Scholar
  566. Heitler, W. (1954). The Quantum Theory of Radiation. Clarendon Press, Oxford. [5, 7]Google Scholar
  567. Helgaker, T. (1992): ‘Calculation of geometrical derivatives in molecular electronic structure theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 353–422. [5]Google Scholar
  568. Heller, E. J. (1981): ‘The semiclassical way to molecular spectroscopy.’ Acc. Chem. Res. 14, 368–375. [5]Google Scholar
  569. Henke, B. L., Elgin, R. L. (1970): ‘X-ray absorption tables for the 2-to-200 Å region.’ In Advances in X-Ray Analysis 13. Eds. B. L. Henke, J. B. Newkirk, G. R. Mallett; Plenum Press, New York, NY, p. 639–665. [5]Google Scholar
  570. Herman, F., Skillman, S. (1963): Atomic Structure Calculations. Prentice Hall, Inc., Englewood Cliffs, NJ. [3]Google Scholar
  571. Herman, R. C., Wallis, R. F. (1955): ‘Influence of vibration–rotation interaction on line intensities in vibration–rotation bands of diatomic molecules.’ J. Chem. Phys. 23, 637–646. [5, 7]Google Scholar
  572. Hermann, M. R. (1984): ‘Explicit Hilbert-space representations of atomic and molecular photoabsorption spectra.’ Ph. D. Dissertation, Indiana University, Bloomington, IN. [5]Google Scholar
  573. Herzberg, G. (1945): Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules. D. Van Nostrand Co., Inc., Princeton, NJ, Toronto, London, New York. [3, 4, 5]Google Scholar
  574. Herzberg, G. (1950): Molecular Spectra and Molecular Structure. I. Spectra of Diatomic Molecules. D. van Nostrand Co., Inc., Princeton, NJ, Toronto, London, New York. [3, 4, 5]Google Scholar
  575. Herzberg, G. (1966): Molecular Spectra and Molecular Structure. III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. D. Van Nostrand Co., Inc., Princeton, NJ, Toronto, London, New York. [3, 5, 7]Google Scholar
  576. Hess Jr., B. A., Schaad, L. J., Čársky, P., Zahradník, R. (1986): ‘Ab initio calculations of vibrational spectra and their use in the identification of unusual molecules.’ Chem. Rev. 86, 709–730. [5]Google Scholar
  577. Hesser, J. E. (1968): ‘Absolute transition probabilities in ultraviolet molecular spectra.’ J. Chem. Phys 48, 2518–2535. [5]Google Scholar
  578. Hibbert, A. (1975): ‘CIV3 – A general program to calculate configuration interaction wave functions and electric-dipole oscillator strengths.’ Comp. Phys. Comm. 9, 141–172. [3]Google Scholar
  579. Hinderling, J., Sigrist, M. W., Kneubühl, F. K. (1987): ‘Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8–14 μm atmospheric window.’ Infrared Phys. 27, 63–120. [7]Google Scholar
  580. Hilborn, R. C. (1982): ‘Einstein coefficients, cross sections, f values, dipole moments, and all that’ Am. J. Phys. 50, 982–986; updated: http://arxiv.org/abs/physics/0202029. [5]
  581. Hirota, F. (1976): ‘Calculation of the molecular photoionization cross sections in the UV region. I. Diatomic molecules.’ J. Electron Spectr. Related Phenom. 9, 149–167. [5]Google Scholar
  582. Hirschfelder, J. O., Magee, J. L. (1945): ‘Opacity and thermodynamic properties of air at high temperatures.’ Los Alamos Scientific Laboratory report LA-296. [1]Google Scholar
  583. Hirschfelder, J. O., Curtiss, C. F., Bird, R. B. (1954): Molecular Theory of Gases and Liquids. J. Wiley & Sons, Inc., New York, Chapman & Hall, Limited, London. [9]Google Scholar
  584. Hjerting, F. (1938): ‘Tables facilitating the calculation of line absorption coefficients.’ Astrophys. J. 88, 508–515. [7]Google Scholar
  585. Hochstrasser, UẆ. (1972): ‘Orthogonal Polynomials,’ Chap. 22 In Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Abramowitz, M., Stegun, I. A., (Eds.) (1972), NBS Applied Mathematics Series 55, U.S. Dept. Commerce, Washington, DC. Tenth printing, December 1972, with corrections. [13]Google Scholar
  586. Hönl, H. (1926): ‘Zum Intensitätsproblem der Spektrallinien.’ Ann. Phys. Ser. 4 79, 273–323. [5]Google Scholar
  587. Hönl, H., London, F. (1925): ‘Über die Intensitäten der Bandenlinien.’ Z. Phys. 33, 803–809. [5]Google Scholar
  588. Hohenberg, P., Kohn, W. (1964): ‘Inhomogeneous Electron Gas.’ Phys. Rev. B 136, 864–871. [3]Google Scholar
  589. Hollstein, M., Lorents, D. C., Peterson, J. R., Sheridan, J. R. (1969): ‘Time of flight measurement of N2 and N2 + lifetimes.’ Can. J. Chem. 47, 1858–1861. [5]Google Scholar
  590. Holtsmark, J. (1919a): ‘Über die Verbreiterung von Spektrallinien.’ Ann. Physik 58, 577–630. [7]Google Scholar
  591. Holtsmark, J. (1919b): ‘Über die Verbreiterung von Spektrallinien.’ Physik. Z. 20, 162–168. [7]Google Scholar
  592. Holtsmark, J. (1924): ‘Über die Verbreiterung von Spektrallinien. II.’ Physik. Z. 25, 73–84. [7]Google Scholar
  593. Holweger, H., Müller, E. A. (1974): ‘The photospheric barium spectrum: Solar abundance and collision broadening of Ba II lines by hydrogen.’ Solar Physics 39, 19–30. [5]Google Scholar
  594. Hottel, H. C. (1954): ‘Radiant heat transfer.’ In Heat Transmission. Ed. W. H. McAdams; 3rd ed., McGraw-Hill Book Co., Inc., New York, p. 55–125. [7]Google Scholar
  595. Houdeau, J. P., Boulet, C., Robert, D. (1985): ‘A theoretical and experimental study of the infrared line shape from resonance to the wings for uncoupled lines.’ J. Chem. Phys. 82, 1661–1673. [7]Google Scholar
  596. Hougen, J. T., Watson, J. K. G. (1965): ‘Anomalous rotational line intensities in electronic transitions of polyatomic molecules: Axis-switching.’ Can. J. Phys. 43, 298–320. [5, 7]Google Scholar
  597. Hougen, J. T., Bunker, P. R., Johns, J. W. C. (1970): ‘The vibration–rotation problem in triatomic molecules allowing for a large-amplitude bending motion.’ J. Mol. Spectr. 34, 136–172. [3]Google Scholar
  598. Hoy, A. R., Bunker, P. R. (1974): ‘The effective rotation-bending Hamiltonian of a triatomic molecule and its application to extreme centrifugal distortion in the water molecule.’ J. Mol. Spectr. 52, 439–456. [3]Google Scholar
  599. Hoy, A. R., Mills, I. M., Strey, G. (1972): ‘Anharmonic force constant calculations.’ Mol. Phys. 24, 1265–1290. [3]Google Scholar
  600. Hsu, D. K. (1981): ‘Experimental lifetimes, F–C factors, and vibrational and rotational oscillator strengths.’ In Handbook of Spectroscopy. III. Ed. J. W. Robinson, CRC Press, Boca Raton, p. 269–402. [5]Google Scholar
  601. Hubač, I., Svrček, M. (1992): ‘Many-body perturbation theory for vibrational-electronic molecular Hamiltonian.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 471–512. [3]Google Scholar
  602. Hubbard, W. B. (1966): ‘Studies in stellar evolution. V. Transport coefficients of degenerate stellar matter.’ Astrophys. J. 146, 858–870. [9]Google Scholar
  603. Hubbard, W. B., Lampe, M. (1969): ‘Thermal conduction by electrons in stellar matter.’ Astrophys. J. Suppl. Ser. 18, 297–346. [9]Google Scholar
  604. Huber, D. L., van Vleck, J. H. (1966): ‘The role of Boltzmann factors in line shape.’ Rev. Mod. Phys. 38, 187–204. [8]Google Scholar
  605. Huber, K. P., Herzberg, G. (1979): Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules. Van Nostrand Reinhold Co., New York. [3]Google Scholar
  606. Huebner, W. F. (1967): ‘Some estimates of the radiative Rosseland mean opacity.’ J. Quant. Spectr. Rad. Transfer 7, 943–949. [11]Google Scholar
  607. Huebner, W. F. (1968): ‘Electron–Electron Interaction from Single-Electron Theory.’ Los Alamos Scientific Laboratory report LA-3899. [3]Google Scholar
  608. Huebner, W. F. (1970): ‘Electron–electron interaction in energy level determination.’ J. Quant. Spectr. Rad. Transfer 10, 949–973; 11, 142. [3]Google Scholar
  609. Huebner, W. F. (1986): ‘Atomic and Radiative Processes in the Solar Interior.’ In Physics of the Sun. Ed. P. A. Sturrock; D. Reidel Publishing Co., Dordrecht, Boston, Lancaster, Tokyo, Vol. 1, p. 33–75. [1, 6, 13]Google Scholar
  610. Huebner, W. F., Fullerton, L. W. (1974): ‘Status of molecular opacities of interest in the modeling of a proto-solar nebula.’ In Exploration of the Planetary System, Eds. A. Woszczyk and C. Iwaniszewska. IAU Symposium 65, Torun, Poland, D. Reidel Pub. Co. Dordrecht-Holland, Boston, p. 13–20. [2]Google Scholar
  611. Huebner, W. F., Stuart, R. S. (1964): ‘Status Report on Opacity Calculations.’ Los Alamos Scientific Laboratory report LAMS-3002. [5]Google Scholar
  612. Huebner, W. F., Stuart, R. S. (1965): ‘Status Report on Opacity Calculations.’ Los Alamos Scientific Laboratory report LAMS-3002 Suppl. I. [5]Google Scholar
  613. Huebner, W. F., Mayer, H., Meyerott, R. E., Penner, S. S., (Eds.) (1965): ‘Opacities. Proceedings of the second international conference.’ J. Quant. Spectr. Rad. Transfer 5, 1–280. [1, 13]Google Scholar
  614. Huebner, W. F., Generosa, J., Harris, R. (1967): ‘Status Report on Opacity Calculations.’ Los Alamos Scientific Laboratory report LA-3002-MS Suppl. II. [5]Google Scholar
  615. Huebner, W. F., Merts, A. L., Magee Jr., N. H., Argo, M. F. (1977): Astrophysical Opacity Library. Los Alamos Scientific Laboratory report LA-6760-M. [10]Google Scholar
  616. Huebner, W. F., Keady, J. J., Lyon, S. P. (1992): ‘Solar Photo Rates for Planetary Atmospheres and Atmospheric Pollutants.’ Astrophys. Space Sci. 195, 1–294. [4, 5]Google Scholar
  617. Huffman, R. E., Tanaka, Y., Larrabee, J. C. (1963): ‘Absorption coefficients of xenon and argon in the 600–1025 Å wavelength regions.’ J. Chem. Phys. 39, 902–909. [5]Google Scholar
  618. Hummer, D. G. (1962): ‘Non-coherent scattering.’ Mon. Not. Roy. Astron. Soc. 125, 21–37. [7]Google Scholar
  619. Hummer, D. G. (1965): ‘The Voigt function. An eight-significant-figure table and generating procedure.’ Memoirs, Roy. Astron. Soc. 70, 1–31. [7]Google Scholar
  620. Hummer, D. G. (1991): ‘The opacity project and the practical utilization of atomic data.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 431–439. [1, 3]Google Scholar
  621. Hummer, D. G., Mihalas, D. (1988): ‘The equation of state for stellar envelopes. I. An occupation probability formalism for the truncation of internal partition functions.’ Astrophys. J. 331, 794–814. [4]Google Scholar
  622. Hund, F. (1925a): ‘Zur Deutung verwickelter Spektren, insbesondere der Elemente Scandium bis Nickel.’ Z. Physik 33, 345–371. [7]Google Scholar
  623. Hund, F. (1925b): ‘Zur Deutung verwickelter Spektren. II.’ Z. Physik 34, 296–308. [7]Google Scholar
  624. Hundley, R. O. (1962): ‘Bremsstrahlung During the Collision of Low-Energy Electrons with Neutral Atoms and Molecules.’ Rand Corporation report RM 3334-ARPA. [6]Google Scholar
  625. Hüpper, B., Eckhardt, B. (1999): ‘Uniform semiclassical calculation of the direct part of the photodissociation cross section of water.’ J. Chem. Phys. 110, 11749–11755. [5]Google Scholar
  626. Hüpper, B., Eckhardt, B., Engel, V. (1997): ‘Semiclassical photodissociation cross section for H2O.’ J. Phys. B 30, 3191–3209. [5]Google Scholar
  627. Hurley, A. C. (1962): ‘Equivalence of Rydberg–Klein–Rees and simplified Dunham potentials.’ J. Chem. Phys. 36, 1117–1118. [3]Google Scholar
  628. Hurley, A. C. (1976a): Introduction to the Electron Theory of Small Molecules. Academic Press, London, New York, p. 165–168. [3]Google Scholar
  629. Hurley, A. C. (1976b): Electron Correlation in Small Molecules. Theoretical Chemistry Monographs 6. Academic Press, London, New York. [3, 5]Google Scholar
  630. Iachello, F., Levine, R. D. (1995): Algebraic Theory of Molecules. Oxford University Press. [5]Google Scholar
  631. Iben Jr., I. (1968): ‘Electron conduction in Red Giants.’ Astrophys. J. 154, 557–579. [9]Google Scholar
  632. Iben Jr., I. (1975): ‘Thermal pulses; p-capture, α-capture s-process nucleosynthesis; and convective mixing in a star of intermediate mass.’ Astrophys. J. 196, 525–547. [9]Google Scholar
  633. Iglesias, C. A., Rogers, F. J. (1991): ‘Opacities for the solar radiative interior.’ Astrophys. J. 371, 408–417. [13]Google Scholar
  634. Iglesias, C. A., Rogers, F. J. (1996): ‘Updated Opal Opacities.’ Astrophys. J. 464, 943–953. [13]Google Scholar
  635. Infeld, L. (1947): ‘The influence of the width of the gap upon the theory of antennas.’ Quart. Appl. Math. 5, 113–132. [5]Google Scholar
  636. Inglis, D. R. (1931): ‘Energy relations in complex spectra.’ Phys. Rev. 38, 862–872. [3]Google Scholar
  637. Ishikawa, Y., Malli, G. L. (1981): ‘Fully relativistic effective core potentials (FRECP).’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 363–382. [3]Google Scholar
  638. Ishikawa, Y., Kaldor, U. (1996): ‘Relativistic many-body calculations on atoms and molecules.’ In Computational Chemistry: Reviews of Current Trends. Ed., J. Leszczynski, World Scientific, Singapore, New Jersey, London, Hong Kong, Bangalore, Taipei., p. 1–52. [3]Google Scholar
  639. Islampour, R. (1989): ‘Electronic spectral line shape of a polyatomic molecule.’ Chem. Phys. 133, 425–435. [7]Google Scholar
  640. Islampour, R., Kasha, M. (1983a): ‘Molecular translational-rovibronic Hamiltonian. I. Non-linear molecules.’ Chem. Phys. 74, 67–76. [7]Google Scholar
  641. Islampour, R., Kasha, M. (1983b): ‘Molecular translational-rovibronic Hamiltonian. II. Linear molecules.’ Chem. Phys. 75, 157–164. [7]Google Scholar
  642. Islampour, R., Lin, S. H., (1991): ‘A new expression for multidimensional F–C integrals.’ Trends Chem. Phys. 1 249–275. [5]Google Scholar
  643. Islampour, R., Sutcliffe, B. T. (1987): ‘Theories of electronic spectral bandshape functions of molecules.’ Iran J. Chem. - Chem. Eng. 9, 3–25. [7]Google Scholar
  644. Islampour, R., Dehestani, M., Lin, S. H. (1999): ‘A new expression for multidimensional Franck–Condon integrals.’ J. Mol. Spectr. 194, 179–184. [5]Google Scholar
  645. Isnard, P., Boulet, C., Robert, D., Galatry, L. (1977): ‘Line-widths in the vibration–rotation spectra of diatomic molecules perturbed by tetrahedral molecules.’ Mol. Phys. 33, 259–280. [7]Google Scholar
  646. Isobe, S. (1971): ‘Graph of scattering for spherical particles and application to interstellar extinction.’ Ann. Tokyo Astron. Obs. 12, 263–285. [5]Google Scholar
  647. Itikawa, Y. (1978a): ‘Vibrational-rotational structure in the angular distribution and intensity of photoelectrons from diatomic molecules.’ Chem. Phys. 28, 461–471. [5]Google Scholar
  648. Itikawa, Y. (1978b): ‘Vibrational-rotational structure in the angular distribution and intensity of photoelectrons from diatomic molecules. II. H2.’ Chem. Phys. 30, 109–117. [5]Google Scholar
  649. Itikawa, Y. (1987): ‘Asymmetry parameters of the angular distribution of photoelectrons form the hydrogen molecule.’ Comments At. Mol. Phys. 20, 51–62. [5]Google Scholar
  650. Itikawa, Y., Hayashi, M., Ichimura, A., Onda, K., Sakimoto, K. Takayanagi, K., Nakamura, M., Nishimura, H., Takayanagi, T. (1986): ‘Cross sections for collisions of electrons and photons with nitrogen molecules.’ J. Phys. Chem. Ref. Data 15, 985–1010. [6]Google Scholar
  651. Itoh, N., Kohyama, Y. (1993): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. II. Impurity scattering.’ Astrophys. J. 404, 268–270. [9]Google Scholar
  652. Itoh, N., Kohyama, Y. (1994): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. II. Impurity scattering.’ Astrophys. J. 420, 943. [9]Google Scholar
  653. Itoh, N., Mitake, S., Iyetomi, H., Ichimaru, S. (1983): ‘Electrical and thermal conductivities of dense matter in the liquid metal phase. I. High-temperature results.’ Atrophys. J. 273, 774–782. [9]Google Scholar
  654. Itoh, N., Kohyama, Y., Matsumoto, N., Seki, M. (1984): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase.’ Astrophys. J. 285, 758–765. [9]Google Scholar
  655. Itoh, N., Nakagawa, M., Kohyama, Y. (1985): ‘Relativistic free–free opacity for high-temperature stellar plasma.’ Astrophys. J. 294, 17–22. [6]Google Scholar
  656. Itoh, N., Kojo, K., Nakagawa, M. (1990): ‘Relativistic free–free Gaunt factor of the dense high-temperature stellar plasma. II. Carbon and oxygen plasmas.’ Astrophys. J. Suppl. Ser. 74, 291–314. [6]Google Scholar
  657. Itoh, N., Hayashi, H., Kohyama, Y. (1993): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. III. Inclusion of lower densities.’ Astrophys. J. 418, 405–413. [9]Google Scholar
  658. Itoh, N., Hayashi, H., Kohyama, Y. (1994): ‘Electrical and thermal conductivities of dense matter in the crystalline lattice phase. III. Inclusion of lower densities.’ Astrophys. J. 436, 418. [9]Google Scholar
  659. Itoh, N., Sakamoto, T., Kusano, S., Nozawa, S., Kohyama, Y. (2000): ‘Relativistic thermal bremsstrahlung Gaunt factor for the intracluster plasma. II. Analytic fitting formulae.’ Astrophys. J. Suppl. Ser. 128, 125–138. [6]Google Scholar
  660. Iwata, S., Nagukura, S. (1974): ‘Theoretical study of the photoelectron intensities and angular distributions.’ Mol. Phys. 27, 425–440. [5]Google Scholar
  661. Jackson, J. D. (1962): Classical Electrodynamics. John Wiley & Sons, New York, p. 459. [9]Google Scholar
  662. Jacobsohn, B. A. (1947): ‘The opacity of uranium at high temperature.’ Ph. D. Dissertation, Dept. Physics, University of Chicago, Chicago, IL. [1, 5, 7]Google Scholar
  663. Jahn, H. A., Hope, J. (1954): ‘Symmetry properties of the Wigner 9j symbol.’ Phys. Rev. 93, 318–321. [5]Google Scholar
  664. Jahoda, F. C., Sawyer, G. A. (1971): ‘Optical refractivity of plasmas.’ Methods of Experimental Physics, Vol. 9B. Ed. L. Marton; Academic Press, New York, London. [13]Google Scholar
  665. Jarmain, W. R. (1959): ‘Simplified analytical representation of Klein-Dunham potential energy functions.’ J. Chem. Phys. 31, 1137–1138. [3]Google Scholar
  666. Jarmain, W. R. (1960): ‘Klein-Dunham potential energy functions in simplified analytical form.’ Can. J. Phys. 38, 217–230. [3]Google Scholar
  667. Jarmain, W. R., Nicholls, R. W. (1964): ‘A theoretical study of the O2 X\({}^{3}\!\varSigma _{\mathrm{g}}^{-}-\) B\({}^{3}\!\varSigma _{\mathrm{u}}^{-}\) photodissociation continuum.’ Proc. Phys. Soc. (London) 84, 417–424. [5]Google Scholar
  668. Jarmain, W. R., Fraser, P. A., Nicholls, R. W. (1953): ‘Vibrational transition probabilities of diatomic molecules: Collected results N2, N\(_{2}^{+}\), NO, O\(_{2}^{+}\).’ Astrophys. J. 118, 228–233. [11]Google Scholar
  669. Jauch, J. M., Rohrlich, F. (1976): The Theory of Photons and Electrons. 2nd ed., Springer-Verlag, New York, Heidelberg. [5]Google Scholar
  670. Jefferies, J. T. (1968): Spectral Line Formation. Blaisdell Publ. Co., Waltham, MA, Toronto, London. [7]Google Scholar
  671. Jensen, H. (1934): ‘Interchange in the Thomas–Fermi atom.’ Z. Physik 89, 713–719. [3]Google Scholar
  672. Jensen, P. (1983): ‘The non-rigid bender Hamiltonian for calculating the rotation–vibration energy levels of a triatomic molecule.’ Comp. Phys. Rep. 1, 1–55. [3]Google Scholar
  673. Jensen, P. (1992): ‘Calculation of molecular rotation–vibration energies directly from the potential energy function.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 423–470. [3]Google Scholar
  674. Jeunehomme, M. (1966): ‘Transition moment of the first positive band system of nitrogen.’ J. Chem. Phys. 45, 1805–1811. [5]Google Scholar
  675. Joens, J. A. (1987): ‘Gaussian approximation for the temperature dependence of a continuous electronic spectrum.’ Chem. Phys. Lett. 138, 512–515. [6]Google Scholar
  676. Jørgensen, U. G., Almlöf, J., Gustafsson, B., Larsson, M., Siegbahn, P. (1985): ‘CASSCF and CCI calculations of the vibrational band strengths of HCN.’ J. Chem. Phys. 83, 3034–3041. [5]Google Scholar
  677. Jørgensen, U. G., Almlöf, J., Siegbahn, P. E. M. (1989): ‘Complete active space self-consistent field calculations of the vibrational band strength for C3.’ Astrophys. J. 343, 554–561. [5]Google Scholar
  678. John, I. G., Bacskay, G. Z., Hush, N. S. (1980): ‘Finite field method calculations. VI. Raman scattering activities, infrared absorption intensities and higher-order moments: SCF and CI calculations for the isotopic derivatives of H2O and SCF calculation for CH4.’ Chem. Phys. 51, 49–60. [5]Google Scholar
  679. Johnson, C. R. (1949): An Introduction to Molecular Spectra. Pitman Publ. Corp., New York, London. [5]Google Scholar
  680. Johnson, H. R., Krupp, B. M. (1976): ‘Treatment of atomic and molecular line blanketing by opacity sampling.’ Astrophys. J. 206, 201–207. [7]Google Scholar
  681. Johnson, H. R., Collins, J. G., Krupp, B., Bell, R. A. (1977): ‘The line blanketing and structure of the atmosphere of Arcturus.’ Astrophys. J. 212, 760–767. [7]Google Scholar
  682. Johnson, K. H. (1973): ‘Scattered-wave theory of the chemical bond.’ Adv. Quantum Chem. 7, 143–185. [3]Google Scholar
  683. Johnson, W. R. (1998): ‘Relativistic many-body perturbation theory for highly charged ions.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 39–64. [3]Google Scholar
  684. Johnston, R. R., Landshoff, R. K. M., Platas, O. R. (1972): ‘Radiative properties of high temperature air,’ Lockheed Palo Alto Research Laboratory report LMSC D267205. [3, 7]Google Scholar
  685. Jones, T. W., Merrill, K. M. (1976): ‘Model dust envelopes around late-type stars.’ Astrphys. J. 209, 509–524. [6]Google Scholar
  686. Jones, W. W. (1973): ‘Comparison of measured and calculated Stark parameters for singly ionized atoms.’ Phys. Rev. A 7, 1826–1832. [12]Google Scholar
  687. Julienne, (1985): ‘Collision-induced radiative transitions at optical frequencies.’ In Phenomena Induced by Intermolecular Interactions. Ed. G. Birnbaum; Plenum Press, New York, London, p. 749–772. [8]Google Scholar
  688. Jungen, C., Ross, S. C. (1997): ‘Unified quantum-defect theory treatment of molecular ionization and dissociation.’ Phys. Rev. A 55, 2503–2506. [5]Google Scholar
  689. Kähler, H. (1971): ‘The computation of photoionization cross sections by means of the scaled Thomas–Fermi potential.’ J. Quant. Spectr. Rad. Transfer 11, 1521–1535. [12]Google Scholar
  690. Kähler, H. (1973): ‘A simplified Hartree–Fock method for opacity calculations.’ J. Quant. Spectr. Rad. Transfer 13, 401–416. [3]Google Scholar
  691. Kahn, F. D. (1959): ‘Long-range interactions in ionized gases in thermal equilibrium.’ Astrophys. J. 129, 205–216. [6]Google Scholar
  692. Kalkofen, W., (Ed.) (1984): Methods of Radiative Transfer. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney. [2]Google Scholar
  693. Kalkofen, W., (Ed.) (1987): Numerical Radiative Transfer. Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney. [2]Google Scholar
  694. Kaplan, G. (1975): Symmetry of Many-Electron Systems. Academic Press, London, New York. [3]Google Scholar
  695. Kaplan, L. D. (1953): ‘Regions of validity of various absorption coefficient approximations.’ J. Atmos. Sci. 10, 100–104. [7]Google Scholar
  696. Karwowski, J. (1992): ‘The configuration interaction approach to electron correlation.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 65–98. [3]Google Scholar
  697. Karwowski, J., Planelles, J., Rajadell, F. (1997): ‘Average energy of an N-electron system in a finite-dimensional and spin-adapted model space.’ Int. J. Quantum Chem. 61, 63–65. [3]Google Scholar
  698. Karzas, W. J., Latter, R. (1961): ‘Electron radiative transitions in a Coulomb field.’ Astrophys. J. Suppl. Ser. 6, 167–212. [5, 6]Google Scholar
  699. Kassel, L. S. (1936): ‘The calculation of thermodynamic functions from spectroscopic data.’ Chem. Rev. 18, 277–313. [4]Google Scholar
  700. Kato, S., Ackerman, T. P., Mather, J. H., Clothiaux, E. E. (1999): ‘The k-distribution method and correlated-k approximation for a shortwave radiative transfer model.’ J. Quant. Spectr. Rad. Transfer 62, 109–121. [7]Google Scholar
  701. Kattawar, G. W., Humphreys, T. J. (1980): ‘Electromagnetic scattering from two identical pseudospheres.’ In Light Scattering by Irregular Shaped Particles, Ed. D. W. Schuerman, Plenum Press, New York, London, p. 177–190. [5]Google Scholar
  702. Keady, J. J., Huebner, W. F., Abdallah Jr., J., Magee Jr., N. H. (1990): ‘Progress in LTE and non-LTE radiative transport properties.’ In Physical Processes in Hot Cosmic Plasmas. Eds. W. Brinkmann, A. C. Fabian, F. Giovannelli; NATO ASI Ser. C. 305, p. 181–195. [6]Google Scholar
  703. Keck, J. C., Camm, J. C., Kivel, B., Wentink Jr., T. (1959): ‘Radiation from hot air. Part II. Shock tube study of absolute intensities.’ Ann. Phys. N. Y. 7, 1–38. [7]Google Scholar
  704. Keck, J. C., Allen, R. A., Taylor, R. L. (1963): ‘Electronic transition moments for air molecules.’ J. Quant. Spectr. Rad. Transfer 3, 335–353. [5]Google Scholar
  705. Keller, G., Meyerott, R. E. (1952): ‘The ionization of gas mixtures in stellar interiors.’ Argonne National Laboratory report ANL-4771. [4]Google Scholar
  706. Kelly, H. P. (1963): ‘Correlation effects in atoms.’ Phys. Rev. 131, 684–699. [5]Google Scholar
  707. Kelly, H. P. (1968): ‘Correlation structure in atoms.’ Advances in Theoretical Physics. Ed. K. A. Brueckner; Academic Press, New York, London, Vol. 2, p. 75–169. [5]Google Scholar
  708. Kelly, H. P. (1969): ‘Applications of many-body diagram techniques in atomic physics.’ In Advances in Chemical Physics. (Correlation Effects in Atoms and Molecules). Eds. R. Lefebvre, C. Moser; Interscience Publishers - John Wiley & Sons, Ltd., London, New York, Sydney, Toronto, Vol. 14, p. 129–190. [5]Google Scholar
  709. Kemper, M. J. H., van Dijk, J. M. F., Buck, H. M. (1978): ‘A backtracking algorithm for exact counting of internal molecular energy levels.’ Chem. Phys. Lett. 53, 121–124. [7]Google Scholar
  710. Kendall, M. G., Stuart, A. (1963): Advanced Theory of Statistics. Vol. 1. Distribution Theory. 2nd ed., Charles Griffin and Company Limited, London. [7]Google Scholar
  711. Kerker, M. (1969): The Scattering of Light and Other Electromagnetic Radiation. Academic Press, New York. [5]Google Scholar
  712. Kieffer, L. J. (1976): ‘Bibliography of Low Energy Electron and Photon Cross Section Data (through December 1974): Final Report.’ U. S. N. B. S. Special Publication 426. [6]Google Scholar
  713. Kilcrease, D. P. (2007): Private communication. [6]Google Scholar
  714. Kilcrease, D. P., Magee Jr., N. H. (2001): ‘Plasma non-ideality effects on the photo-electron scattering contribution to radiative opacity.’ J. Quant. Spectr. Rad. Transfer 71, 445–453. [6]Google Scholar
  715. Kim, D-S. (2001): ‘Photoionization of the excited 3s3p1, 3P0 states of atomic magnesium.’ J. Phys. B 34, 2615–2629. [5]Google Scholar
  716. Kirby, K. P. (1990): ‘Molecular photoabsorption processes.’ In Molecular Astrophysics. Ed. T. W. Hartquist; Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney, p. 159–180. [5]Google Scholar
  717. Kirby-Docken, K., Liu, B. (1977): ‘Theoretical study of molecular dipole moment functions. I. The X\({{}^{1}\varSigma }^{+}\) state of CO.’ J. Chem. Phys. 66, 4309–4316. [5, 10]Google Scholar
  718. Kirby, K. P., van Dishoeck, E. F. (1988): ‘Photodissociation processes.’ Adv. Atom. Mol. Phys. 25, 437–476. [5]Google Scholar
  719. Kirby, K., Uzer, T., Allison, A. C., Dalgarno, A. (1981): ‘Dissociative photoionization of H2 at 26.9 and 30.5 eV.’ J. Chem. Phys. 75, 2820–2825. [5]Google Scholar
  720. Kiss, Z. J., Welsh, H. L. (1959): ‘Pressure-induced infrared absorption of mixtures of rare gases.’ Phys. Rev. Lett. 2, 166–168. [8]Google Scholar
  721. Kittel, C. (1963): Quantum Theoy of Solids John Wiley & Sons, Inc., New York, London. [4]Google Scholar
  722. Kittel, C., Kroemer, H. (1980): Thermal Physics. 2nd ed., W. H. Freeman and Co., New York, San Francisco, London. [4]Google Scholar
  723. Kivel, B. (1954): ‘Opacity of Air at High Temperatures.’ Los Alamos National Laboratory report LA-1738. [1]Google Scholar
  724. Kivel, B. (1967a): ‘Neutral atom bremsstrahlung.’ J. Quant. Spectr. Rad. Transfer 7, 27–49. [6]Google Scholar
  725. Kivel, B. (1967b): ‘Bremsstrahlung in air.’ J. Quant. Spectr. Rad. Transfer 7, 51–60. [6]Google Scholar
  726. Kivel, B., Mayer, H., Bethe, H. (1957): ‘Radiation from hot air. Part I. Theory of nitric oxide absorption.’ Ann. Phys. (NY) 2, 57–80. [1, 7]Google Scholar
  727. Klein, O. (1932): ‘Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit Hilfe von Spektraltermen.’ Z. Physik 76, 226–235. [3]Google Scholar
  728. Klotz, I. M., Rosenberg, R. M. (2008): Chemical Thermodynamics, Basic Theory and Methods. 7th ed., John Wiley & Sons, Inc., Hoboken, N.J. [4]Google Scholar
  729. Kobus, J. (1997): ‘Diatomic molecules: Exact solutions of HF equations.’ In Advances in Quantum Chemistry: Recent Advances in Computational Chemsitry. Eds. P.-O. Lowden, J. R. Sabin, M. C. Zerner, J. Karwowski, M. Karelson; Academic Press, New York, London, p. 2–15. [3]Google Scholar
  730. Koch, H. W., Motz, J. W. (1959): ‘Bremsstrahlung cross-section formulas and related data.’ Rev. Mod. Phys. 31, 920–955. [5]Google Scholar
  731. Kohn, W., Sham, L. J. (1965): ‘Self-consistent equations including exchange and correlation effects.’ Phys. Rev. A 140, 1133–1138. [3, 4]Google Scholar
  732. Kong, F.-A. (1982): ‘The periodicity of diatomic molecules.’ J. Mol. Struct. 90, 17–28. [3]Google Scholar
  733. Koopmans, T. (1934): ‘Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den einzelnen Elektronen eines Atoms.’ Physica 1, 104–113. [3]Google Scholar
  734. Kourganoff, V. (1963): Basic Methods in Transfer Problems. Dover Publication, Inc., New York. [2]Google Scholar
  735. Kovács, I. (1969): Rotational Structure in the Spectra of Diatomic Molecules. American Elsevier Publ. Co., New York. [3, 5]Google Scholar
  736. Kovetz, A., Shaviv, G. (1973): ‘The electrical and thermal conductivities of stellar degenerate matter.’ Astron. Astrophys. 28, 315–318. [9]Google Scholar
  737. Kraeft, W. D., Schlanges, M., Kremp, D. (1986): ‘A quantum kinetic equation for nonideal gases in the three-particle collision approximation.’ J. Phys. A 19, 3251–3260. [4]Google Scholar
  738. Kraemer, W.-P., Diercksen, G. H. F. (1976): ‘Identification of interstellar X-ogen as HCO+.’ Astrophys. J. 205, L97–L100. [3]Google Scholar
  739. Kraemer, W. P., Bunker, P. R., Yoshimine, M. (1984): ‘Theoretical study of the rotation–vibration energy levels and dipole moment functions of CCN+, CNC+, and C3.’ J. Mol. Spectr. 107, 191–207. [3]Google Scholar
  740. Krainov, V. P., Reiss, H. R., Smirnov, B. M. (1997): Radiative Processes in Atomic Physics. Wiley & Sons, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto. [5]Google Scholar
  741. Kramers, H. A. (1923): ‘On the theory of x-ray absorption and of the continuous x-ray spectrum.’ London, Edinburgh and Dublin Philos. Mag. J. Sci. Ser. 6 46, 836–871. [5]Google Scholar
  742. Kramers, H. A. (1927): ‘La diffusion de la lumière par les atomes.’ Atti Congr. Int. Fisico Como-Pavia-Roma 2, 545–557. [5]Google Scholar
  743. Krasnikov, Yu. G. (1968): ‘Concerning the thermodynamics of a dense plasma.’ Zh. Eksper. Teor. Fiz. 53, 2223–2232 (Sov. Phys. - JETP 26, 1252–1256). [4]Google Scholar
  744. Krasnikov, Yu. G. (1977): ‘Thermodynamics of nonideal low-temperature plasma.’ Zh. Eksper. Teor. Fiz. 73, 516–525 (Sov. Phys. - JETP 46, 270–274). [4]Google Scholar
  745. Krasnikov, Yu. G., Kucerenko, V. I. (1978): ‘Thermodynamics of nonideal low-temperature multicomponent plasma: Chemical model.’ High Temp. 16, 34–42 (Teplofizika Vysokikh Temperatur 16, 43–53.) [4]Google Scholar
  746. Kronig, R. de L. (1926): ‘On the theory of dispersion of x-rays.’ J. Opt. Soc. Am. 12, 547–557. [5]Google Scholar
  747. Kronig, R. de L. (1930): Band Spectra and Molecular Structure. MacMillan Co., New York; At the University Press, Cambridge, England. [3]Google Scholar
  748. Kronig, R. de L., Kramers, H. A. (1928): ‘Zur Theorie der Absorption und Dispersion in den Röntgenspektren.’ Z. Physik 48, 174–179. [5]Google Scholar
  749. Krügel, E. (2003): The Physics of Interstellar Dust. Institute of Physics and Astrophysics, Bristol, UK. [5]Google Scholar
  750. Krupenie, P. H. (1972): ‘The spectrum of molecular oxygen.’ J. Phys. Chem. Ref. Data 1, 423–534. [3, 5]Google Scholar
  751. Krupp, B. M., Collins, J. G., Johnson, H. R. (1978): ‘The effects of TiO opacity on the atmospheric structure of cool stars.’ Astrophys. J. 219, 963–969. [7]Google Scholar
  752. Kubo, R. (1956): ‘A general expression for the conductivity tensor.’ Can. J. Phys. 34, 1274–1277. [7]Google Scholar
  753. Kubo, R. (1957): ‘Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conductive problems.’ J. Phys. Soc. Japan 12, 570–586. [7]Google Scholar
  754. Kubo, R. (1959): ‘Some aspects of the statistical-mechanical theory of irreversible processes.’ In Lectures in Theoretical Physics, Vol. 1. Ed. W. E. Britten, L. G. Dunham; Interscience Publishers, Inc., New York, p. 120–203. [5, 8]Google Scholar
  755. Kubo, R. (1962a): ‘A stochastic theory of line-shape and relaxation.’ In Fluctuation, Relaxation, and Resonance in Magnetic Systems. Ed. D. ter Haar; Oliver and Boyd, Edinburg, p. 23–68. [7]Google Scholar
  756. Kubo, R. (1962b): ‘Generalized cumulant expansion method.’ J. Phys. Soc. Japan 17, 1100–1120. [7]Google Scholar
  757. Kubo, R. (1971): Statistical Mechanics. North Holland, Amsterdam. [7]Google Scholar
  758. Kuchitsu, K., Morino, Y. (1965): ‘Estimation of anharmonic potential constants. II. Bent XY2 molecules.’ Bull. Chem. Soc. Japan 38, 814–824. [5]Google Scholar
  759. Kuhn, H. G. (1969): Atomic Spectra. 2nd ed., Longmans, Green & Co. Ltd., London & Harlow. [5]Google Scholar
  760. Kuntz, M., Höpfner, M. (1999): ‘Efficient line-by-line calculation of absorption coefficients.’ J. Quant. Spectr. Rad. Transfer 63, 97–114. [7]Google Scholar
  761. Kupka, H., Cribb, P. H. (1986): ‘Multidimensional Franck–Condon integrals and Duschinsky mixing effects.’ J. Chem. Phys. 85, 1303–1315. [5]Google Scholar
  762. Kurucz, R. L. (1970): ‘ATLAS: A computer program for calculating model stellar atmospheres.’ Smithsonian Astrophysical Observatory special report 309. [1, 7]Google Scholar
  763. Kurucz, R. L. (1979): ‘Model atmospheres for G, F, A, B, and O stars.’ Astrophys. J. Suppl. Ser. 40, 1–340. [1, 7]Google Scholar
  764. Kurucz, R. L. (1991): ‘New opacity calculations.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 441–448. [1, 7]Google Scholar
  765. Kurucz, R. L., Avrett, E. H. (1981): ‘Solar spectrum synthesis.’ Smithsonian Astrophys. Obs. Special report 391. [7, 10]Google Scholar
  766. Kurucz, R. L., Peytremann, E., Avrett, E. H. (1975): Blanketed Model Atmospheres for Early-Type Stars. Smithsonian Institution Press, Washington, DC. [1, 7]Google Scholar
  767. Kuz’menko, N. E., Kuznetsova, L. A., Monyakin, A. P., Kuzyakov, Yu. Ya., Plastinin, Yu. A. (1979): ‘Electronic transition probabilities and lifetimes of electronically excited states of diatomic molecules.’ Usp. Fiz. Nauk 127, 451–478; Engl. trans. (Sov. Phys. Usp. 22, 160–173). [5]Google Scholar
  768. Kuz’menko, N. E., Kuznetsova, L. A., Monyakin, A. P., Kuzyakov, Yu. Ya. (1980): ‘Probabilities for electronic transitions of molecular systems of high-temperature air components – I. The Schumann–Runge system of the O2-molecule and the first positive system of the N2-molecule. J. Quant. Spectr. Rad. Transfer 24, 29–41. [5]Google Scholar
  769. Kuznetsova, L. A. (1987): ‘Electronic transition strengths for diatomic molecules.’ Spectr. Lett. 20, 665–723. [5]Google Scholar
  770. Kuznetsova, L. A., Kuz’menko, N. E., Kuzyakov, Yu. Ya., Plastinin, A. (1974): ‘Probabilities of optical transitions in electronic vibration–rotation spectra of diatomic molecules.’ Usp. Fiz. Nauk 113, 285–325; Engl. trans. (Sov. Phys. Usp. 17, 405–423). [5]Google Scholar
  771. Labani, B., Bonamy, J., Robert, C., Hartmann, J. M., Taine, J. (1986): ‘Collisional broadening of rotation–vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions.’ J. Chem. Phys. 84, 4256–4267. [7]Google Scholar
  772. Labzowsky, L. N., Klimchitskaya, G. L., Dmitriev, Yu. Yu. (1993): ‘Relativistic effects in the spectra of atomic systems.’ Institute of Physics Publishing, Bristol, Philadelphia. [5]Google Scholar
  773. Lacis, A. A., Oinas, V. J. (1991): ‘A description of the correlated-k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres.’ J. Geophys. Res. 96, 9027–9063. [7]Google Scholar
  774. Ladenburg, R. (1914): ‘Atoms concerned in emission of spectral lines.’ Verhandl. deut. physik. Ges. 16, 765–779. [6]Google Scholar
  775. Ladenburg, R. (1921): ‘Die quantentheoretische Deutung der Zahl der Dispersionselektronen.’ Z. Physik 4, 451–468. [6]Google Scholar
  776. Ladenburg, R., van Voorhis, C. C. (1933): ‘The continuous absorption of oxygen between 1750 and 1300 Å and its bearing upon the dispersion.’ Phys. Rev. 43, 315–321. [6]Google Scholar
  777. Ladik, J., Cizek, J., Mukherjee, P. K. (1981): ‘Relativistic Hartee-Fock theories for molecules and crystals in a linear combination of atomic orbitals form.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 305–334. [3]Google Scholar
  778. Lam, K. S. (1977): ‘Application of pressure broadening theory to the calculation of atmospheric oxygen and water vapor microwave absorption.’ J. Quant. Spectr. Rad. Transfer 17, 351–383. [7]Google Scholar
  779. Lampe, M. (1968a): ‘Transport coefficients of degenerate plasma.’ Phys. Rev. 170, 306–319. [9]Google Scholar
  780. Lampe, M. (1968b): ‘Transport theory of a partially degenerate plasma.’ Phys. Rev. 174, 276–289. [9]Google Scholar
  781. Landshoff, R. (1949): ‘Transport phenomena in a completely ionized gas in presence of a magnetic field.’ Phys. Rev. 76, 904–909. [9]Google Scholar
  782. Landshoff, R. K. M., Magee, J. L. (Eds.) (1969): Thermal Radiation Phenomena, Vol. 1: Radiative Properties of Air. IFI/Plenum Data Corp., Plenum Publ. Corp. New York, Washington. [1]Google Scholar
  783. Langhoff, P. W. (1983a): ‘Schrödinger Spectra.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel, Dordrecht, Boston, p. 299–333. [5]Google Scholar
  784. Langhoff, P. W. (1983b): ‘Aspects of electonic configuration interaction in molecular photoionization.’ In Electron–Atom and Electron–Molecule Collisions. Ed. J. Hinze; Plenum Press, New York, p. 297–313. [5]Google Scholar
  785. Langhoff, P. W. (1988): ‘Stieltjes methods for Schrodinger spectra: Hilbert-space approximations to the discrete and continuum eigenstates of spatially anisotropic Hamiltonian operators.’ In Mathematical Frontiers in Computational Chemical Physics. Ed. D. G. Truhlar; Springer-Verlag, New York, Berlin, Heidelberg, London, Paris, Tokyo, p. 85–135. [5]Google Scholar
  786. Langhoff, P. W., Padial, N., Csanak, G., Rescigno, T. N., McKoy, B. V. (1980): ‘Theoretical studies of photoionization in diatomic and polyatomic molecules.’ Int. J. Quantum Chem. Symp. 14, 285–304. [5]Google Scholar
  787. Langhoff, S. R., van Dishoeck, E. F., Wetmore, R., Dalgarno, A. (1982): ‘Radiative lifetimes and dipole moments of the A2Σ +, B2Σ +, and C2Σ + states of OH.’ J. Chem. Phys. 77, 1379–1390. [5]Google Scholar
  788. Larimer, J. W. (1973): ‘Chemistry of the solar nebula.’ In Cosmochemistry. Ed. A. G. W. Cameron, Astrophys. Space Sci. Lib. 40, D. Reidel Publ. Co., Dordrecht-Holland, p. 103–120. [4]Google Scholar
  789. Larkin, A. I. (1960): ‘Thermodynamic functions of a low-temperature plasma.’ Zh. Eksper. Teor. Fiz. 38, 1896–1898 (Sov. Phys. - JETP 11, 1363–1364). [4]Google Scholar
  790. Larsson, M., Siegbahn, P. E. M. (1983): ‘A theoretical study of the radiation lifetime of the CH A2Δ state.’ J. Chem. Phys. 79, 2270–2277. [5]Google Scholar
  791. Lassettre, E. N., Skerbele, A. (1974): ‘Generalized oscillator strengths for 7.4 eV excitation of H2O at 300, 400, and 500 eV kinetic energy. Singlet–triplet energy differences.’ J. Chem. Phys. 60, 2464–2469. [5]Google Scholar
  792. Latter, R. (1955): ‘Temperature behavior of the Thomas–Fermi statistical model for atoms.’ Phys. Rev. 99, 1854–1870. [4]Google Scholar
  793. Lax, M. (1952): ‘The Franck–Condon principle and its application to crystals.’ J. Chem. Phys. 20, 1752–1760. [7]Google Scholar
  794. Layzer, D. (1959): ‘On a screening theory of atomic spectra.’ Ann. Phys. (NY) 8, 271–296. [3]Google Scholar
  795. Layzer, D., Bahcall, J. (1962): ‘Relativistic Z-dependent theory of many-electron atoms.’ Ann. Phys. (NY) 17, 177–204. [3]Google Scholar
  796. Lebedev, V. S., Beigman, I. I. (1998): Physics of Highly Excited Atoms and Ions. Springer-Verlag, Berlin, Heidelberg, New York. [5]Google Scholar
  797. Lee, B. I., Kesler, M. G. (1975): ‘A generalized thermodynamic correlation based on three-parameter corresponding states.’ Am. Inst. Chem. Eng. J. 21, 510–527. [4]Google Scholar
  798. Lee, C. M., Thorsos, E. I. (1978): ‘Properties of matter at high pressures and temperatures.’ Phys. Rev. A 17, 2073–2076. [4]Google Scholar
  799. Lee, C. M., Kissel, L., Pratt, R. H., Tseng, H. K. (1976): ‘Electron bremsstrahlung spectrum, 1–500 keV.’ Phys. Rev. A 13, 1714–1727. [5]Google Scholar
  800. Lee, R. W. (1987): ‘Very very very simple to use (and accurate) spectral line-broadening codes for hydrogen-, helium- and lithium-like ions in plasmas.’ Livermore Lawrence National Laboratory report UCID-21292. [7]Google Scholar
  801. Lee, T. D. (1950): ‘Hydrogen content and energy-productive mechanism of white dwarfs.’ Astrophys. J. 111, 625–640. [9]Google Scholar
  802. Lefebvre-Brion, H., Field, R. W. (1986): Perturbations in the Spectra of Diatomic Mmolecules. Academic Press, Orlando. [5]Google Scholar
  803. Lenard, A. (1960): ‘On Bogoliubov’s kinetic equation for a spatially homogeneous plasma.’ Ann. Phys. (NY) 10, 390–400. [9]Google Scholar
  804. Lengsfield, B. H., Jafri, J. A., Phillips, D. H., Bauschlicher Jr., C. W. (1981): ‘On the use of corresponding orbitals in the calculation of nonorthogonal transition moments.’ J. Chem. Phys. 74, 6849–6856. [5]Google Scholar
  805. Lenoble, J. (1985): Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak Publishing, Hampton, VA. [2]Google Scholar
  806. Lenoble, J. (1993): Atmospheric Radiative Transfer. A. Deepak Publishing, Hampton, VA. [7]Google Scholar
  807. LeRoy, R. J., Macdonald, R. G., Burns, G. (1976): ‘Diatom potential curves and transition moment functions from continuum absorption coefficients: Br2.’ J. Chem. Phys. 65, 1485–1500. [7]Google Scholar
  808. Leszczynski, J. (1996): Computational Chemistry: Reviews of Current Trends. World Scientific, Singapore, New Jersey, London, Hong Kong, Bangalore, Taipei. [3]Google Scholar
  809. Levi di Leon, R., Taine, J. (1986): ‘A fictive gas-method for accurate computation of low-resolution IR gas transmissivities: Application to the 4.3 μm CO2 band.’ Rev. Phys. App. 21, 825–832. [7]Google Scholar
  810. Levine, H. B., Birnbaum, G. (1967): ‘Classical theory of collision-induced absorption in rare-gas mixtures.’ Phys. Rev. 154, 86–92. [8]Google Scholar
  811. Levine, Z. H., Sovin, P. (1983): ‘Electron correlation effects in photoemission from the 1π u level in acetylene.’ Phys. Rev. Lett. 50, 2074–2077. [5]Google Scholar
  812. Lewis, G. N. (1901a): ‘The laws of physico-chemical change.’ Daedalus, Proc. Am. Acad. Arts Sci. 37, 49–69. [4]Google Scholar
  813. Lewis, G. N. (1901b): ‘Das Gesetz physiko-chemischer Vorgänge.’ Z. Phys. Chem. 38, 205–226. [4]Google Scholar
  814. Lewis, M. (1961): ‘Stark broadening of spectral lines by high-velocity charged particles.’ Phys. Rev. 121, 501–505. [7]Google Scholar
  815. Li, X., Paldus, J. (1997): ‘Perturbation theory for low-spin open-shell states.’ In Advances in Quantum Chemistry: Recent Advances in Computational Chemsitry. Eds. P.-O. Lowden, J. R. Sabin, M. C. Zerner, J. Karwowski, M. Karelson; Academic Press, New York, London, p. 16–33. [3]Google Scholar
  816. Liberman, D. (1962): ‘Upper Limits on the Rosseland Mean Opacity.’ Los Alamos Scientific Laboratory report LA-2700. [11]Google Scholar
  817. Liberman, D. (1979): ‘Self-consistent field model for condensed matter.’ Phys. Rev. B 20, 4981–4989. [4]Google Scholar
  818. Liberman, D., Waber, J. T., Cromer, D. T. (1965): ‘Self-consistent-field Dirac–Slater wave functions for atoms and ions. I. Comparison with previous calculations.’ Phys. Rev. 137, A27–A34. [3]Google Scholar
  819. Liberman, D. A., Cromer, D. T., Waber, J. T. (1971): ‘Relativistic self-consistent Field program for atoms and ions.’ Comp. Phys. Comm. 2, 107–113. [3]Google Scholar
  820. Lin, C. D. (1977): ‘Oscillator strengths of transitions between low-lying S and P states of helium-like ions.’ Astrophys. J. 217, 1011–1015. [5]Google Scholar
  821. Lin, S. C., Kivel, B. (1959): ‘Slow-electron scattering by atomic oxygen.’ Phys. Rev. 114, 1026–1027. [6]Google Scholar
  822. Lind, A. C., Greenberg, J. M. (1966): ‘Electromagnetic scattering by obliquely oriented cylinders.’ J. Appl. Phys. 37, 3195–3203. [5]Google Scholar
  823. Lindgren, I. (1998): ‘Development of atomic many-body theory.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 3–38. [3]Google Scholar
  824. Lindhard, J. (1954): ‘On the properties of a gas of charged particles.’ Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd. 28, No. 8. [5]Google Scholar
  825. Lindholm, E., Åsbrink, L. (1985): Molecular Orbitals and their Energies, Studied by the Semiempirical HAM Method. Springer-Verlag, Berlin, New York. [3]Google Scholar
  826. Linsky, J. L. (1969): ‘On the pressure-induced opacity of molecular hydrogen in late-type stars.’ Astrophys. J. 156, 989–1006. [8]Google Scholar
  827. Liu, Z. (1998): ‘Direct double photoionization in atoms.’ In Many-Body Atomic Physics. Eds. J. J. Boyle and M. S. Pindzola; Cambridge University Press, Cambridge, New York, Melbourne, p. 150–156. [5]Google Scholar
  828. Loftus, A., Krupenie, P. H. (1977): ‘The spectrum of molecular nitrogen.’ J. Phys. Chem. Ref. Data 6, 113–307. [3, 5]Google Scholar
  829. Löwdin, P.-O. (1955): ‘Quantum theory of many-particle systems. I. Physical interpretation by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction.’ Phys. Rev. 97, 1474–1489. [3]Google Scholar
  830. Löwdin, P.-O. (1963): ‘Studies in perturbation theory. Part I. An elementary iteration-variation procedure for solving the Schrödinger equation by partitioning techniques.’ J. Mol. Spectr. 10, 12–33. [5]Google Scholar
  831. Louck, J. C. (1976): ‘Derivation of the molecular vibration-rotation Hamiltonian from the Schrödinger equation for the molecular model.’ J. Mol. Spectr. 61, 107–137. [3]Google Scholar
  832. Lucas, N. J. D. (1973): ‘The Franck–Condon principle for polyatomic molecules.’ J. Phys. B 6, 155–163. [5]Google Scholar
  833. Lucchese, R. R., Raseev, G., McKoy, V. (1982): ‘Studies of differential and total photoionization cross sections of molecular nitrogen.’ Phys. Rev. A 25, 2572–2587. [5]Google Scholar
  834. Lucchese, R. R., Takatsuka, K., Watson, D. K., McKoy, V. (1983): ‘The Schwinger variational principle: An approach to electron–molecule collisions.’ In Electron–Atom and Electron–Molecule Collisions. Ed. J. Hinze; Plenum Press, New York, p. 29–49. [5]Google Scholar
  835. Lucchese, R. R., Zurales, R. W. (1990): ‘Comparison of the differential and total photoionization cross sections of N2 in the multichannel frozen-core Hartree–Fock and random phase approximations.’ Bull. Am. Phys. Soc. 35, 1166. [5]Google Scholar
  836. Ludwig, C. B. (1971): ‘Measurements of the curves-of-growth of hot water vapor.’ Appl. Optics 10, 1057–1073. [13]Google Scholar
  837. Ludwig, C. B., Ferriso, C. C. (1967): ‘Prediction of total emissivity of N2-broadened and self-broadened hot water vapor.’ J. Quant. Spectr. Rad. Transfer 7, 7–26. [7, 13]Google Scholar
  838. Ludwig, C. B., Malkmus, W., Reardon, J. E. Thomson, J. A. L. (1973): ‘Handbook of infrared radiation from combustion gases.’ NASA report SP-3080, Washington, DC. [7, 11, 13]Google Scholar
  839. Lukirskii, A. P., Brytov, I. A., Zimkina, T. M. (1964): ‘Photoionization absorption of He, Kr, Xe, CH4, and methylal in the 23.6–250 Å region.’ Optics Spectrosk. (USSR) 17, 234–237. [5]Google Scholar
  840. Lundqvist, S., Sjölander, A. (1964): ‘On polarization waves in van der Waals crystals.’ Arkiv Fysik 26, 17–34. [5]Google Scholar
  841. Luo, D., Pradhan, A. K. (1989): ‘Atomic data for opacity calculations: XI. The carbon isoelectronic sequence.’ J. Phys. B 22, 3377–3395. [3]Google Scholar
  842. Luzhkov, V., Warshel, A. (1991): ‘Microscopic calculations of solvent effects on absorption spectra of conjugated molecules.’ J. Am. Chem. Soc. 113, 4491–4499. [5]Google Scholar
  843. Lynch, R. (1995): ‘Halfwidths and line shifts of water vapor perturbed by both nitrogen and oxygen.’ Ph. D. dissertation, Phys. Dept., U. Massachusetts, Lowell. [7]Google Scholar
  844. Lynch, R., Gamache, R. R., Neshyba, S. P. (1998): ‘N2 and O2 induced halfwidths and line shifts of water vapor transitions in the (301) ← (000) and (221) ← (000) bands.’ J. Quant. Spectr. Rad. Transfer 59, 595–613. [7]Google Scholar
  845. Ma, Q., Tipping, R. H. (1991): ‘A far wing line-shape theory and its application to the water continuum absorption in the infrared region.’ J. Chem. Phys. 95, 6290–6301. [7]Google Scholar
  846. Ma, Q., Tipping, R. H. (1992a): ‘A far wing line-shape theory and its application to the water vibrational bands. (II).’ J. Chem. Phys. 96, 8655–8663. [7]Google Scholar
  847. Ma, Q., Tipping, R. H. (1992b): ‘A far wing line-shape theory and its application to the foreign-broadened water continuum absorption. III.’ J. Chem. Phys. 97, 818–828. [7]Google Scholar
  848. Ma, Q., Tipping, R. H. (1994): ‘The detailed balance requirement and general empirical formalisms for continuum absorption.’ J. Quant. Spectr. Rad. Transfer 51, 751–757. [7]Google Scholar
  849. Ma, Q., Tipping, R. H., Boulet, C. (1996): ‘The frequency detuning and band-average approximations in a far wing line shape theory satisfying detailed balance.’ J. Chem. Phys. 104, 9678–9688. [7]Google Scholar
  850. Mackowski, D. W. (1991): ‘Analysis of radiative scattering for multiple sphere configurations.’ Proc. Roy. Soc. London Ser. A 433, 599–614. [5]Google Scholar
  851. Mackowski, D. W. (1995): ‘Calculation of total cross sections of multiple-sphere clusters.’ J. Opt. Soc. Am. A 11, 2851–2861. [5]Google Scholar
  852. Madden, R. P., Codling, K. (1963): ‘New autoionizing atomic energy levels in He, Ne, and Ar.’ Phys. Rev. Lett. 10, 516–518. [5]Google Scholar
  853. Magee, J. L., Aroeste, H. (1967): ‘Thermal Radiation Phenomena,’ Vol. 1–4. Defense Atomic Support Agency report DASA 1917. [1]Google Scholar
  854. Magee Jr., N. H., Abdallah Jr., J., Clark, R. E. H., Cohen, J. S., Collins, L. A., Csanek, G., Fontes, C. J. Gauger, A., Keady, J. J., Kilcrease, D. P., Merts, A. L. (1995): ‘Atomic structure calculations and new Los Alamos astrophysical opacities.’ In Astrophysical Applications of Powerful New Databases: Joint Discussion no. 16 of the 22nd General Assembly of the IAU. Eds. S. J. Adelman, W. L. Wiese, Astronomical Society of the Pacific Conference Series, 78 San Francisco. [13]Google Scholar
  855. Mahan, G. D., Subbaswamy, K. R. (1990): Local Density Theory of Polarizability. Plenum Press, New York, London. [7]Google Scholar
  856. Mahapatra, S. (2002): ‘Unraveling the highly overlapping \({\tilde{A}}^{2}B_{2}\), \({\tilde{B}}^{1}A_{1}\), photoelectron bands of Cl2O: Nonadiabatic effects due to conical interactions.’ J. Chem. Phys. 116, 8817–8826. [5]Google Scholar
  857. Malkmus, W. (1963): ‘Infrared emissivity of carbon dioxide (4.3-μm band).’ J. Opt. Soc. Am. 53, 951–961. [7]Google Scholar
  858. Malkmus, W. (1967): ‘Random Lorentz band model with exponential-tailed S −1 line-intensity distribution function.’ J. Opt. Soc. Am. 57, 323–329. [7]Google Scholar
  859. Malkmus, W. (1968): ‘Random band models with lines of pure Doppler shape.’ J. Opt. Soc. Am. 58, 1214–1217. [7]Google Scholar
  860. Malkmus, W., Thomson, A. (1961): ‘Infrared emissivity of diatomic gases for the anharmonic vibrating-rotator model.’ J. Quant. Spectr. Rad. Transfer 2, 17–39. [7]Google Scholar
  861. Mallard, W. G., Westley, F., Herron, J. T., Hampson, R. F., Frizzell, D. H. (1998): ‘NIST Standard Reference Database 17.’ NIST Chemical Kinetics Database U.S. Dep. of Commerce, Technology Administration, National Institute of Standards and Technology, Stand. Ref. Data, Gaithersburg, MD 20899. [4]Google Scholar
  862. Malli, G. L. (1981): ‘Relativistic self-consistent-field theory for molecules.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 183–212. [3]Google Scholar
  863. Mann, J. B. (1967): ‘Atomic Structure Calculations, I. Hartree–Fock Energy Results for the Elements Hydrogen to Lawrencium.’ Los Alamos Scientific Laboratory report LA-3690. [3, 4]Google Scholar
  864. Mann, J. B. (1968): ‘Atomic Structure Calculations, II. Hartree–Fock Wavefunctions and Radial Expectation Values: Hydrogen to Lawrencium.’ Los Alamos Scientific Laboratory report LA-3691. [3]Google Scholar
  865. Mann, J. B., Waber, J. T. (1970): ‘SCF relativistic Hartree–Fock calculations on the superheavy elements 118–131.’ J. Chem. Phys. 53, 2397–2406. [3]Google Scholar
  866. Manneback, C. (1951): ‘Computation of the intensities of vibrational spectra of electronic bands in diatomic molecules.’ Physica 17, 1001–1010. [5]Google Scholar
  867. Manson, S. T., Kennedy, D. J. (1974): ‘X-ray emission rates in the Hartree–Slater approximation.’ Atomic Data Nucl. Data Tables 14, 111–120. [5]Google Scholar
  868. Mantz, A. W., Watson, J. K. G., Narahari Rao, K., Albritton, D. L., Schmeltekopf, A. L., Zare, R. N. (1971): ‘Rydberg–Klein–Rees potential for the X1 Σ + state of the CO molecule.’ J. Mol. Spectr. 39, 180–184. [5]Google Scholar
  869. Margenau, H. (1939): ‘Van der Waals forces.’ Rev. Mod. Phys. 11, 1–35. [7]Google Scholar
  870. Margenau, H., Watson, W. W. (1936): ‘Pressure effects on spectral lines.’ Rev. Mod. Phys. 8, 22–53. [7]Google Scholar
  871. Marić, D., Burrows, J. P. (1996): ‘Application of a Gaussian distribution function to describe molecular UV-visible absorption continua.’ J. Phys. Chem. 100, 8645–8659. [7]Google Scholar
  872. Marić, D., Burrows, J. P. (1999): ‘Analysis of UV absorption spectrum of ClO: A comparative study of four methods for spectral computation.’ J. Quant. Spectr. Rad. Transfer 62, 345–369. [7]Google Scholar
  873. Marin, O., Buckius, R. O. (1998): ‘A model of the cumulative distribution function for wide band radiative properties.’ J. Quant. Spectr. Rad. Transfer 59, 671–685. [7]Google Scholar
  874. Marques, M. A. L., Marques, C. A., Nogueira, F., Rubio, A., Burke, K., Gross, E. K. U. (2006): Time-Dependent Density Functional Theory, Series Lecture Notes in Physics 706, Springer-Verlag. [3]Google Scholar
  875. Marr, G. V. (1967): Photoionization Processes in Gases. Academic Press, New York, London. [1]Google Scholar
  876. Marr, G. V., Morton, J. M., Holmes, R. M., McCoy, D. G. (1979): ‘Angular distribution of photoelectrons from free molecules of N2 and CO as a function of photon energy.’ J. Phys. B 12, 43–52. [5]Google Scholar
  877. Marshak, R. E. (1945): ‘Opacity of Air, BeO, C, Fe, and U at High Temperatures.’ Los Alamos National Laboratory report LA-229. [1]Google Scholar
  878. Marshall, W. (1960): ‘The kinetic theory of an ionized gas.’ UK Atomic Energy Authority report AWRE T/R 2247, Part 2: 2352, Part 3: 2419, Harwell, Berkshire, England. [9]Google Scholar
  879. Martin, G. A., Fuhr, J. R., Wiese, W. L. (1988): ‘Atomic transition probabilities scandium through manganese.’ J. Phys. Chem. Ref. Data (Suppl. 3) 17, 1–523. [5]Google Scholar
  880. Martin, P. C., Schwinger, J. (1959): ‘Theory of many-particle systems. I.’ Phys. Rev. 115, 1342–1373. [4]Google Scholar
  881. Martin, W. C., Zalabas, R., Hagan, L. (1978): Atomic Energy Levels. Natl. Stand. Ref. Data Ser. National Bureau of Standards, 60. [3, 4]Google Scholar
  882. Matsubara, T. (1955): ‘A new approach to quantum-statistical mechanics.’ Prog. Theor. Phys. 14, 351–378. [4]Google Scholar
  883. Mayer, H. (1947): ‘Methods of Opacity Calculations.’ Los Alamos Scientific Laboratory report LA-647. [1, 2, 3, 4, 7, 11]Google Scholar
  884. Mayer, H. L., (Ed.) (1964): ‘Conference on opacities.’ J. Quant. Spectr. Rad. Transfer 4, 581–760. [1, 13]Google Scholar
  885. Mayer, J. E., Mayer, M. G. (1940): Statistical Mechanics. J. Wiley & Sons, New York. [7]Google Scholar
  886. McCallum, J. C. (1979): ‘Computational study of the accuracy of the r-centroid approximation.’ J. Quant. Spectr. Rad. Transfer 21, 563–572. [5]Google Scholar
  887. McCurdy Jr., C. W., Rescigno, T. N., Yeager, D. L., McKoy, V. (1977): ‘The equations of motion method: An approach to the dynamical properties of atoms and molecules.’ In Methods of Electronic Structure Theory. Ed. H. F. Schaefer, III; Plenum Press, New York, London, p. 339–386. [5]Google Scholar
  888. McDougall, J., Stoner, E. C. (1938): ‘The computation of Fermi–Dirac functions.’ Phil. Trans. Roy. Soc. London, Ser. A 237, 67–104. [4, 9]Google Scholar
  889. McGuire, E. J. (1968): ‘Photo-ionization cross sections of the elements helium to xenon.’ Phys. Rev. 175, 20–30. [5]Google Scholar
  890. McQuarrie, D. A. (1976): Statistical Mechanics. Harper and Row Publishers, New York, Evanston, San Francsco, London. [5, 7]Google Scholar
  891. McWeeny, R. (1992): ‘The electron correlation problem.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 47–56. [3]Google Scholar
  892. Mebel, A. M., Hayashi, M., Liang, K. K., Lin, S. H. (1999): ‘Ab initio calculations of vibronic spectra and dynamics for small polyatomic molecules: Role of Duschinsky effect.’ J. Phys. Chem. A 103, 10674–10690. [5, 7]Google Scholar
  893. Meerts, W. L., Dymanus, A. (1973): ‘Electric dipole moments of OH and OD by molecular beam electric resonance.’ Chem. Phys. Lett. 23, 45–47. [5]Google Scholar
  894. Meggers, W. F., Corliss, C. H., Scribner, B. F. (1975): Tables of Spectral Line Intensities. NBS Monograph 145, Part I, U. S. Government Printing Office, Washington, DC. [5]Google Scholar
  895. Mendoza, C. (1992): ‘Atomic data from the opacity project.’ In Atomic and Molecular Data for Space Astronomy – Needs, Analysis, and Availability. Eds. P. L. Smith, W. L. Wiese; Springer-Verlag, Berlin, Heidelberg, New York, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, p. 85–119. [3, 10]Google Scholar
  896. Menzel, D. H. (1968): ‘Oscillator strengths for high-level transitions in H.’ Nature 218, 756–757. [5]Google Scholar
  897. Menzel, D. H. (1969): ‘Oscillator strengths, f, for high-level transitions in hydrogen.’ Astrophys. J. Suppl. Ser. 18, 221–246. [5]Google Scholar
  898. Menzel, D. H., Goldberg, L. (1936): ‘Multiplet strengths for transitions involving equivalent electrons.’ Astrophys. J. 84, 1–10. [5]Google Scholar
  899. Menzel, D. H., Pekeris, C. L. (1936): ‘Absorption coefficients and hydrogen line intensities.’ Mon. Not. Roy. Astron. Soc. 96, 77–111. [5]Google Scholar
  900. Menzel, D. H., Bhatnagar, P. L., Sen, H. K. (1963): Stellar Interiors. Chapman & Hall, London. [1]Google Scholar
  901. Mercier, R. P. (1964): ‘The radio-frequency emission coefficient of a hot plasma.’ Proc. Phys. Soc. (London) 83, 819–822. [6]Google Scholar
  902. Merdji, H, Mißalla, T., Gilleron, F., Chenais-Popovics, C., Gauthier, J. C., Renaudin, P., Gary, S., Bruneau, J. (1997): ‘Opacity measurements of a radiatively heated boron sample.’ J. Quant. Spectr. Rad. Transfer 58, 783–789. [13]Google Scholar
  903. Merts, A. L., Magee Jr., N. H. (1972): ‘On the contribution of autoionization lines to stellar opacities.’ Astrophys. J. 177, 137–143. [5, 12]Google Scholar
  904. Mestel, L. (1950): ‘On the thermal conductivity in dense stars.’ Proc. Cambridge Phil. Soc. 46, 331–338. [9]Google Scholar
  905. Meyer, W. (1976): ‘Theory of self-consistent electron pairs. An iterative method for correlated many-electron wavefunctions.’ J. Chem. Phys. 64, 2901–2907. [5]Google Scholar
  906. Meyer, W., Borysow, A., Frommhold, L. (1989): ‘Absorption spectra of H2 – H2 pairs in the fundamental band.’ Phys. Rev. A 40, 6931–6949. [8]Google Scholar
  907. Meyerott, R. E., Sokoloff, J., Nicholls, R. W. (1959): ‘Absorption Coefficients of Air.’ Lockheed Aircraft Corp. Missile and Space Div. Report LMSD-288052, Palo Alto. [7]Google Scholar
  908. Michels, H. H. (1972): ‘Theoretical Determination of Electronic Transition Probabilities for Diatomic Molecules.’ Air Force Weapons Laboratory report AFWL-TR-72-1. [3]Google Scholar
  909. Mie, G. (1908): ‘Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen.’ Ann. Physik 25, 377–445. [5]Google Scholar
  910. Mihalas, D. (1978): Stellar Atmospheres. 2nd ed., W. H. Freeman & Co., San Francisco. [1, 2]Google Scholar
  911. Mihalas, D., Mihalas, B. W. (1984): Foundations of Radiation Hydrodynamics. Oxford University Press, New York, Oxford. [2]Google Scholar
  912. Mihalas, D., Däppen, W., Hummer, D. G. (1988): ‘The equation of state for stellar envelopes. II. Algorithm and selected results.’ Astrophys. J. 331, 815–825. [4]Google Scholar
  913. Miller, M. S., McQuarrie, D. A., Birnbaum, G., Poll, J. D. (1972): ‘Constant acceleration approximation in collision-induced absorption.’ J. Chem. Phys. 57, 618–624. [8]Google Scholar
  914. Mínguez, E., Serrano, J. F., Gámez, M. L. (1988): ‘Analysis if atomic models for the extinction coefficient calculation.’ Laser Particle Beams 6, 265–275. [13]Google Scholar
  915. Mirone, A., Gauthier, J. C., Gilleron, F., Chenais-Popovics, C. (1997): ‘Non-LTE opacity calculations with nl splitting for radiative hydrodynamic codes.’ J. Quant. Spectr. Rad. Transfer 58, 791–802. [13]Google Scholar
  916. Mishchenko, M. I., Hovenier, J. W., Travis, L. D. (2000): Light Scattering by Nonspherical Particles. Theory, Measurements, and Applications. Academic Press San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo. [5]Google Scholar
  917. Mitake, S., Ichimaru, S., Itoh, N. (1984): ‘Electrical and thermal conductivities of dense matter in the liquid metal phase. II. Low-temperature quantum corrections.’ Astrophys. J. 277, 375–378. [9]Google Scholar
  918. Mjolsness, R. C., Ruppel, H. M. (1967a): ‘Bremsstrahlung emission from low-energy electrons on atoms.’ Phys. Rev. 154, 98–109. [5, 6]Google Scholar
  919. Mjolsness, R. C., Ruppel, H. M. (1967b): ‘Contributions of inverse neutral bremsstrahlung to the absorption coefficient of heated air.’ J. Quant. Spectr. Rad. Transfer 7, 423–427. [5, 6]Google Scholar
  920. Mjolsness, R. C., Ruppel, H. M. (1969): ‘Evaluation of electron – atom bremsstrahlung from elastic scattering.’ Phys. Rev. 186, 83–88. [6]Google Scholar
  921. Møller, C., Plesset, M. S. (1934): ‘Note on an approximation treatment for many-electron systems.’ Phys. Rev. 46, 618–622. [3]Google Scholar
  922. Mok, D. K. W., Lee, E. P. F., Chau, F.-T., Wang, D. C., Dyke, J. M. (2000): ‘A new method of calculation of Franck–Condon factors which includes allowance for anharmonicity and the Duschinsky effect: Simulation of the He I photoelectron spectrum of ClO2.’ J. Chm. Phys. 113, 5791–5803. [5]Google Scholar
  923. Moore, C. E. (1949): Atomic Energy Levels. Vol. I. National Bureau of Standards, Circ. 467. [3, 4]Google Scholar
  924. Moore, C. E. (1952): Atomic Energy Levels. Vol. II. National Bureau of Standards, Circ. 467. [3, 4]Google Scholar
  925. Moore, C. E. (1958): Atomic Energy Levels. Vol. III. National Bureau of Standards, Circ. 467. [3, 4]Google Scholar
  926. Moore, C. E. (1968): An Ultraviolet Multiplet Table. National Bureau of Standards, Circ. 488, Sect. 1–5. [5]Google Scholar
  927. Moore, C. E. (1971): Atomic Energy Levels. Vol. IV National Bureau of Standards, Circ. 467. [3, 4, 5]Google Scholar
  928. Moore, C. E. (1972): ‘Selected tables of atomic spectra, atomic energy levels, and multiplet tables. H, D, T’ National Bureau of Standards Reference Data Ser. 40 [5]Google Scholar
  929. Moore, C. E., Gallagher, J. W. (1993): Tables of Spectra of Hydrogen, Carbon, Nitrogen, and Oxygen Atoms and Ions. Ed. J. W. Gallagher; CRC Press, Boca Raton. [3, 4]Google Scholar
  930. Moores, D. L. (1966): ‘Quantum defect theory. IV. The absorption of radiation by calcium atoms.’ Proc. Phys. Soc. (London) 88, 843–859. [3]Google Scholar
  931. More, R. M., Skupsky, S. (1976): ‘Nuclear motion corrections to the Thomas–Fermi equation of state for high-density matter.’ Phys. Rev. A 14, 474–479. [4]Google Scholar
  932. Moraldi, M., Borysow, A., Frommhold, L. (1988): ‘Rotovibrational collision-induced absorption by nonpolar gases and mixtures (H2-He pairs): Symmetry of line profiles.’ Phys. Rev. A 38, 1839–1847. [8]Google Scholar
  933. More, R. M., Warren, K. H. (1991): ‘Semicalssical calculation of matrix elements.’ Ann. Phys. 207, 282–342. [5]Google Scholar
  934. Mori, K., Wiese, W. L., Shirai, T., Nakai, Y., Ozama, K. (1986): ‘Spectral data and Grotrian diagrams for highly ionized titanium, Ti V – XXII.’ Atomic Data Nucl. Data Tables 34, 79–184. [5]Google Scholar
  935. Morris, J. C., Krey, R. U., Garrison, R. L. (1969): ‘Bremsstrahlung and recombination radiation of neutral and ionized nitrogen.’ Phys. Rev. 180, 167–183. [13]Google Scholar
  936. Morse, P., Feshbach, H. (1953): Methods of Theoretical Physics. McGraw-Hill Book Co., Inc., New York, Toronto, London. [5]Google Scholar
  937. Morton, D. C. (1970): ‘The Effective Temperatures of the O Stars.’ In International Astronomical Union Symposium No. 36, Ultraviolet Stellar Spectra and Related Ground-Based Observations. Eds. L. Houziaux, H. E. Butler; D. Reidel Publ. Co., Dordrecht-Holland. [7]Google Scholar
  938. Moszkowski, S. A. (1962): ‘On the energy distribution of terms and line arrays in atomic spectra.’ Prog. Theor. Phys. 28, 1–23. [7]Google Scholar
  939. Motte-Tollet, F., Delwiche, J., Heinesch, J., Hubin-Franskin, M. J., Gingell, J. M., Jones, N. C., Mason, N. J., Marston, G. (1998): ‘On the high-resolution HeI photoelectron spectrum of Cl2O.’ Chem. Phys. Lett. 284, 452–458. [5]Google Scholar
  940. Mozer, B. (1960): ‘Atomic Line Shapes from a Plasma.’ Ph. D. Dissertation, Carnegie Institute of Technology, report 3. [7]Google Scholar
  941. Mozer, B., Baranger, M. (1960): ‘Electric field distributions in an ionized gas. II.’ Phys. Rev. 118, 626–631. [7]Google Scholar
  942. Muchmore, D., Kurucz, R. L., Ulmschneider, P. (1988): ‘Effects of CO molecules on the outer solar atmosphere. Dynamical models with opacity distribution functions.’ Astron. Astrophys. 201, 138–142. [7]Google Scholar
  943. Müller, T., Vaccaro, P. H., Pérez-Bernal, F., Iachello, F. (1999): ‘The vibronically-resolved emission spectrum of disulfur monoxide (S2O): An algebraic calculation and quantitative interpretation of Franck–Condon transition intensities.’ J. Chem. Phys. 111, 5038–5055. [5]Google Scholar
  944. Muenter, J. S. (1975): ‘Electric dipole moment of CO.’ J. Mol. Spectr. 55, 490–491. [5]Google Scholar
  945. Mukai, S., Mukai, T., Giese, R. H. (1980): ‘Scattering of radiation by a large particle with a rough surface.’ In Light Scattering by Irregularly Shaped Particles, Ed. D. W. Schuerman, Plenum Press, New York, London, p. 219–225. [5]Google Scholar
  946. Mulliken, R. S., Ermler, W. C. (1977): Diatomic Molecules: Results of Ab Initio Calculations. Academic Press, New York, San Francisco, London. [3, 5]Google Scholar
  947. Mulliken, R. S., Ermler, W. C. (1981): Polyatomic Molecules: Results of ab Initio Calculations. Academic Press, New York, London, Toronto, Sydney, San Francisco. [3, 5]Google Scholar
  948. Murrell, J. N., Carter, S., Farantos, S. C., Huxley, P., Varandas, A. J. C. (1984): Molecular Potential Energy Functions. John Wiley & Sons, Chichester, New York, Brisbane, Toronto, Singapore. [3]Google Scholar
  949. Mutschlecner, J. P., Keller, C. F. (1970): ‘Semi-empirical solar line blanketing. I. Statistical Basis and Method.’ Solar Phys. 14, 294–309. [7]Google Scholar
  950. Mutschlecner, J. P., Keller, C. F. (1972): ‘Semi-empirical solar line blanketing. II. The results of blanketing in solar model atmospheres.’ Solar Phys. 22, 70–87. [7]Google Scholar
  951. Nahar, S. N., Pradhan, A. K. (1997): ‘Electron-ion recombination rate coefficients, photoionization cross sections, and ionization fractions for astrophysically abundant elements. I. C and N.’ Astrophys. J. Suppl. Ser. 111, 339–355. [5]Google Scholar
  952. Nakagawa, M., Kohyama, Y., Itoh, N. (1987): ‘Relativistic free–free Gaunt factor of the dense high-temperature stellar plasma.’ Astrophys. J. Suppl. Ser. 63, 661–684. [6]Google Scholar
  953. Nandkumar, R., Pethick, C. J. (1984): ‘Transport coefficients of dense matter in the liquid metal regime.’ Mon. Not. Roy. Astron. Soc. 209, 511–524. [9]Google Scholar
  954. National Bureau of Standards (1949): Tables of Scattering Functions for Spherical Particles. NBS Applied Mathematics Series 4, Government Printing Office, Washington. [5]Google Scholar
  955. Neshyba, S. P., Lynch, R., Gamache, R., Gabard, T., Champion, J.-P. (1994): ‘Pressure-induced widths and shifts for the ν 3 band of methane.’ J. Chem. Phys. 101, 9412–9421. [7]Google Scholar
  956. Neuforge-Verheecke, C., Guzik, J. A., Keady, J. J., Magee Jr., N. H., Bradley, P. A., Noels, A. (2001): ‘Helioseismic tests of the new Los Alamos LEDCOP opacities.’ Astrophys. J. 561, 450–454. [13]Google Scholar
  957. Nicholls, R. W. (1964): ‘Transition probabilities of aeronomically important spectra.’ Annales Géophys. 20, 144–181. [5]Google Scholar
  958. Nicholls, R. W. (1977): ‘Transition probability data for molecules of astrophysical interest.’ Ann. Rev. Astron. Astrphys. 15, 197–234. [5]Google Scholar
  959. Nicholls, R. W., Jarmain, W. R. (1956): ‘r-centroids: Average internuclear separations associated with molecular bands.’ Proc. Phys. Soc. (London) A 69, 253–264. [5]Google Scholar
  960. Nicholls, R. W., Stewart, A. L. (1962): ‘Allowed Transitions.’ In Atomic and Molecular Processes. Ed. D. R. Bates; Academic Press, New York, London. [3, 5]Google Scholar
  961. Nicolaides, C. A. (1984): ‘State-specific theory of electron correlation in excited states.’ In Advanced Theories and Computational Approaches to the Electronic Structure of Molecules. Ed. C. E. Dykstra; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, p. 161–184. [5]Google Scholar
  962. Nicolaides, C. A., Beck, D. R. (1978): ‘Time dependence, complex scaling, and the calculation of resonances in many-electron systems.’ Int. J. Quantum Chem. 14, 457–703. [5]Google Scholar
  963. Nicolaides, C. A., Theodorakopoulos, G. (1980): ‘FOTOS applied to molecules: Oscillator strengths in H2O.’ Int. J. Quantum Chem. Symp. 14, 315–322. [5]Google Scholar
  964. Nielson, H. H. (1951): ‘The vibration–rotation energies of molecules.’ Rev. Mod. Phys. 23, 90–136. [5]Google Scholar
  965. Nielson, H. H. (1959): ‘The vibration–rotation energies of molecules and their spectra in the infra-red.’ In Handbuch der Physik XXXVII/1. Ed. S. Flügge; Springer-Verlag, Berlin, Göttingen, Heidelberg. [7]Google Scholar
  966. Noci, G. (1971): ‘Atomic processes in the solar corona.’ In Physics of the Solar Corona. Ed. C. J. Macris; D. Reidel Publ. Co., Dordrecht-Holland, p. 13–28. [4]Google Scholar
  967. Normand, C. E. (1930): ‘The absorption coefficient for slow electrons in gases.’ Phys. Rev. 35, 1217–1225. [6]Google Scholar
  968. Nozawa, S., Itoh, N., Kohyama, Y. (1998): ‘Relativistic thermal bremsstrahlung Gaunt factor for the intracluster plasma.’ Astrophys. J. 507, 530–557. [6]Google Scholar
  969. Nozières, R., Pines, D. (1958): ‘Correlation energy of a free electron gas.’ Phys. Rev. 111, 442–454. [4]Google Scholar
  970. Numerov, B. (1932): ‘Anwendung der Extrapolationsmethode auf die numerische Integration linearer Differentialgleichungen zweiter Ordnung.’ Izvest. Akad. Nauk (SSSR) 1932, 1–8. [3]Google Scholar
  971. Nussbaumer, H., Storey, P. J. (1978): ‘[Fe VI] emission under nebular conditions.’ Astron. Astrophys. 70, 37–42. [3]Google Scholar
  972. Oddershede, J. (1978): ‘Polarization propagator calculations.’ Adv. Quantum Chem. 11, 275–352. [5]Google Scholar
  973. Oddershede, J. (1983): ‘Introductory polarization propagator theory.’ In Methods in Computational Molecular Physics. Eds. G. H. F. Diercksen and S. Wilson; D. Reidel, Dordrecht, Boston, p. 249–271. [5]Google Scholar
  974. Oddershede, J. (1985): ‘Calculation of radiative lifetimes of allowed and forbidden transitions,’ In Molecular Astrophysics: State of the Art and Future Directions. Eds. G. H. F. Diercksen, W. F. Huebner, and P. W. Langhoff; D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, p. 533–547. [5]Google Scholar
  975. Oddershede, J. (1987): ‘Propagator methods.’ Adv. Chem. Phys. 69, 201–239. [5]Google Scholar
  976. Oddershede, J. (1992): ‘Response and propagator methods.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 303–324. [5]Google Scholar
  977. Oddershede, J., Joergensen, P., Yeager, D. L. (1984): ‘Polarization propagator methods in atomic and molecular calculations.’ Comp. Phys. Rep. 2, 33–92. [5]Google Scholar
  978. Oddershede, J., Gruener, N. E., Diercksen, G. H. F. (1985): ‘Comparison between equation of motion and polarization propagator calculations.’ Chem. Phys. 97, 303–310. [5]Google Scholar
  979. Oellrich, L., Plöcker, U., Prausnitz, J. M., Knapp, H. (1981): ‘Equation-of-state methods for computing phase equilibria and enthalpies.’ Int. Chem. Eng. 21, 1–16. [4]Google Scholar
  980. Oertel, G. K., Shomo, L. R. (1968): ‘Tables for the calculation of radial multipole matrix elements by the Coulomb approximation.’ Astrophys. J. Suppl. Ser. 16, 175–218. [5]Google Scholar
  981. Özkan, I. (1990): ‘F–C principle for polyatomic molecules: Axis-switching effects and transformation of normal coordinates.’ J. Molec. Spectr. 139, 147–162. [5]Google Scholar
  982. Ogata, S., Ichimaru, S. (1987): ‘Critical examination of N dependence in the Monte Carlo calculations for a classical one-component plasma.’ Phys. Rev. A 36, 5451–5454. [9]Google Scholar
  983. Ohno, K., Morokuma, K. (1982): Quantum chemistry literature data base. Bibliography of ab initio calculations for 1978–1980. Elsevier, Amsterdam. [3, 5]Google Scholar
  984. Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Kashiwagi, H., Obara, S., Osamura, Y., Yamamoto, S., Kosugi, N., Nishimoto, K., Tanaka, K., Togasi, M., Yamabe, S. (1982): ‘Quantum chemistry literature data base. Supplement 1. Bibliography of ab initio calculations for 1981.’ J. Mol. Struct. 91; THEOCHEM 8, 1–252. [3, 5]Google Scholar
  985. Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kosugi, N., Nakatsuji, H., Nishimoto, K., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1983): ‘Quantum chemistry literature data base. Bibliography of ab initio calculations for 1982.’ J. Mol. Struct. 106; THEOCHEM 15, 1–215. [3, 5]Google Scholar
  986. Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kosugi, N., Nakatsuji, H., Nishimoto, K., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1984): ‘Quantum chemistry literature data base. Bibliography of ab initio calculations for 1983.’ J. Mol. Struct. 119; THEOCHEM 20, 1–229. [3, 5]Google Scholar
  987. Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kitaura, K., Kosugi, N., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1985): ‘Quantum chemistry literature data base. Supplement 4. Bibliography of ab initio calculations for 1984.’ J. Mol. Struct. 134; THEOCHEM 27, 1–298. [3, 5]Google Scholar
  988. Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Kashiwagi, H., Yamamoto, S., Kitaura, K., Kosugi, N., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1986): ‘Quantum chemistry literature data base. Supplement 5. Bibliography of ab initio calculations for 1985.’ J. Mol. Struct. 148; THEOCHEM 33, 181–500. [3, 5]Google Scholar
  989. Ohno, K., Morokuma, K., Hirota, F., Hosoya, H., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kitaura, K., Kosugi, N., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1987): ‘Quantum chemistry literature data base. Supplement 6. Bibliography of ab initio calculations for 1986.’ J. Mol. Struct. 154; THEOCHEM 39, 1–315. [3, 5]Google Scholar
  990. Ohno, K., Morokuma, K., Hosoya, H., Hirota, F., Iwata, S., Osamura, Y., Kashiwagi, H., Yamamoto, S., Kitaura, K., Nakatsuji, H., Obara, S., Tanaka, K., Togasi, M., Yamabe, S. (1988): ‘Quantum chemistry literature data base. Supplement 7. Bibliography of ab initio calculations for 1987.’ J. Mol. Struct. 182; THEOCHEM 51, 1–310. [3, 5]Google Scholar
  991. Oka, T. (1973): ‘Collision-induced transitions between rotational levels.’ Adv. Atom. Mol. Phys. 9, 127–206. [7]Google Scholar
  992. Omidvar, K., Guimaraes, P. T. (1990): ‘New tabulation of the bound–continuum optical oscillator strength in hydrogenic atoms.’ Astrophys. J. Suppl. Ser. 73, 555–602. [5]Google Scholar
  993. Omidvar, K., McAllister, A. M. (1995): ‘Evaluation of high-level bound–bound and bound–continuum hydrogenic oscillator strengths by asymptotic expansion.’ phys. Rev A 51, 1063–1066. [5]Google Scholar
  994. O’Neil, S. V., Reinhardt, W. P. (1978): ‘Photoionization of molecular hydrogen.’ J. Chem. Phys. 69, 2126–2142. [5]Google Scholar
  995. Onsager, L., (1931a): ‘Reciprocal relations in irreversible processes, I.’ Phys. Rev. 37, 405–426. [9]Google Scholar
  996. Onsager, L., (1931b): ‘Reciprocal relations in irreversible processes, II.’ Phys. Rev. 38, 2265–2279. [9]Google Scholar
  997. Ornstein, L. S., Burger, H. C. (1924): ‘Strahlungsgesetz und Intesität von Mehrfachlinien.’ Z. Phys. 24, 41–47. [5]Google Scholar
  998. O’Rourke, R. C. (1953): ‘Absorption of light by trapped electrons.’ Phys. Rev. 91, 265–270. [7]Google Scholar
  999. Oster, L. (1961): ‘Emission, absorption, and conductivity of a fully ionized gas at radio frequencies.’ Rev. Mod. Phys. 33, 525–543. [6, 9]Google Scholar
  1000. Oster, L. (1970): ‘The free-free emission and absorption coefficients in the radio frequency range at very low temperatures.’ Astron. Astrophys. 9, 318–320. [6]Google Scholar
  1001. Paldus, J. (1992a): ‘Unitary group approach in the many-electron correlation problem.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 57–64. [3]Google Scholar
  1002. Paldus, J. (1992b): ‘Coupled cluster theory.’ In Methods in Computational Molecular Physics. Eds. S. Wilson and G. H. F. Diercksen; Plenum Press, New York, London, p. 99–194. [3]Google Scholar
  1003. Panofsky, W. K. H., Phillips, M. (1962): Classical Electricity and Magnetism. 2nd ed., Addison-Wesley, New York. [5]Google Scholar
  1004. Papoušek, D., Aliev, M. R. (1982): Molecular Vibrational-Rotational Spectra: Theory and Applications of High Resolution Infrared, Microwave, and Raman Spectroscopy of Polyatomic Molecules. Elsevier Scientific Publ. Co., Amsterdam, Oxford, New York. [3]Google Scholar
  1005. Parks, D. E., Rotenberg, M. (1972): ‘Incoherent x-ray scattering by a statistical atom.’ Phys. Rev. A 5, 521–526. [5]Google Scholar
  1006. Parks, D. E., Lane, G., Stewart, J. C., Peyton, S. (1968): Optical Constants of Uranium Plasma. NASA report NASA-CR-72348. [5, 7]Google Scholar
  1007. Patch, R. W. (1971): ‘Absorption coefficients for pressure-induced H2−H2 vibrational absorption in the fundamental region.’ J. Quant. Spectr. Rad. Transfer 11, 1331–1353. [8]Google Scholar
  1008. Patch, R. W., Shackleford, W. L., Penner, S. S. (1962): ‘Approximate spectral absorption coefficient calculations for electronic band systems belonging to diatomic molecules.’ J. Quant. Spectr. Rad. Transfer 2, 263–271. [7]Google Scholar
  1009. Paulsen, D. E., Sheridan, W. F., Huffman, R. E. (1970): ‘Thermal recombination emission of NO2.’ J. Chem. Phys. 53, 647–658. [5]Google Scholar
  1010. Peach, G. (1965): ‘A general formula for the calculation of absorption cross sections for free-free transitions in the field of positive ions.’ Mon. Not. Roy. Astron. Soc. 130, 361–377. [5]Google Scholar
  1011. Peach, G. (1967): ‘A revised general formula for the calculation of atomic photoionization cross sections.’ Mem. R. Astr. Soc. 71, 13–45. [5, 12]Google Scholar
  1012. Peach, G. (1970): ‘Continuous absorption coefficients for non-hydrogenic atoms.’ Mem. R. Astr. Soc. 73, 1–123. [5, 12]Google Scholar
  1013. Peach, G., Saraph, H. E., Seaton, M. J. (1988): ‘Atomic data for opacity calculations: IX. The lithium isoelectronic sequence.’ J. Phys. B 21, 3669–3683. [3]Google Scholar
  1014. Peacock, N. J., Hobby, M. G., Galanti, M. (1973): ‘Satellite spectra for helium-like ions in laser-produced plasmas.’ J. Phys. B 6, L298–L304. [13]Google Scholar
  1015. Pegg, D. L. (1996): ‘Photodetachment.’ In Atomic, Molecular, and Optical Physics Handbook. Ed. G. W. F. Drake; AIP Press, Woodbury, NY, p. 681–689. [5]Google Scholar
  1016. Peng, D.-Y., Robinson, D. B. (1976): ‘New two-constant equation of state.’ Ind. Eng. Chem. Fundam. 15, 59–64. [4]Google Scholar
  1017. Penner, S. S. (1959): Quantitative Molecular Spectroscopy and Gas Emissivities. Addison-Wesley Publ. Co., Reading, Massachusetts, USA. [5, 7, 11]Google Scholar
  1018. Penner, S. S., Thomson, A. (1957): ‘Infrared emissivities and absorptivities of gases.’ J. Appl. Phys. 28, 614–623. [11]Google Scholar
  1019. Penner, S. S., Gray, L. D. (1961): ‘Approximate IR emissivity calculations for HCl at elevated temperatures.’ j. Opt. Soc. Am. 51, 460–462. [7]Google Scholar
  1020. Penner, S. S., Olfe, D. B. (1968): Radiation and Reentry. Academic Press, New York, London. [1, 2, 7, 11, 13]Google Scholar
  1021. Penner, S. S., Varanasi, P. (1964): ‘Approximate band absorption and total emissivity calculations for CO2.’ J. Quant. Spectr. Rad. Transfer 4, 799–806. [7]Google Scholar
  1022. Penner, S. S., Varanasi, P. (1965): ‘Approximate band absorption and total emissivity calculations for H2O.’ J. Quant. Spectr. Rad. Transfer 5, 391–401. [7, 11, 13]Google Scholar
  1023. Penner, S. S., Varanasi, P. (1966): ‘Effect of (partial) overlapping of spectral lines on the total emissivity of H2O-CO2 mixtures (T ≈ > 800o K).’ J. Quant. Spectr. Rad. Transfer 6, 181–192. [13]Google Scholar
  1024. Penner, S. S., Varanasi, P. (1967): ‘Spectral absorption coefficient in the pure rotation spectrum of water vapor.’ J. Quant. Spectr. Rad. Transfer 7, 687–690. [7]Google Scholar
  1025. Penner, S. S., Sulzmann, K. G. P., Ludwig, C. B. (1961): ‘Approximate infrared emissivity calculations for NO at elevated temperatures.’ J. Quant. Spectr. Rad. Transfer 1, 96–103. [7]Google Scholar
  1026. Perrot, F. (1996): ‘New approximation for calculating free – free absorption in hot dense plasmas.’ Laser Particle Beams 14, 731–748. [13]Google Scholar
  1027. Perry, T. S., Davidson, S. J., Serduke, F. J. D., Bach, D. R., Smith, C. C., Foster, J. M., Doyas, R. J., Ward, R. A., Iglesias, C. A., Rogers, F. J., Abdallah Jr., J., Stewart, R. E., Kilkenny, J. D., Lee, R. W. (1991): ‘Opacity measurements in a hot dense medium.’ Phys. Rev. Lett. 67, 3784–3787. [13]Google Scholar
  1028. Perry, T. S., Springer, P. T., Fields, D. F., Bach, D. R., Serduke, F. J., Iglesias, C. A., Rogers, F. J., Nash, J. K., Chen, M. H., Wilson, B. G., Goldstein, W. H., Rozsnyai, B., Ward, R. A., Kilkenny, J. D., Doyas, R., da Silva, L. B., Back, C. A., Cauble, R., Davidson, S. J., Foster, J. M., Smith, C. C., Bar-Shalom, A., Lee, R. W. (1996): ‘Absorption experiments on x-ray-heated mid-Z constrained samples.’ Phys. Rev. E 54, 5617–5631. [13]Google Scholar
  1029. Petsalakis, I. D., Theodorakopoulos, G., Nicolaides, C. A., Buenker, R. J., Peyerimhoff, S. D. (1984): ‘Nonorthonormal CI for molecular excited states. I. The sudden polarization effect in 90 twisted ethylene.’ J. Chem. Phys. 81, 3161–3167. [5]Google Scholar
  1030. Petschek, A., Cohen, H. D. (1972): ‘Continuous approximate treatment of ionization potential lowering.’ Phys. Rev. A 5, 383–389. [4]Google Scholar
  1031. Peyerimhoff, S. D. (1984): ‘Calculation of molecular spectra.’ Faraday Symp. Chem. Soc. 19, 63–77. [5]Google Scholar
  1032. Peyerimhoff, S. D., Buenker, R. J. (1974): ‘Ab Initio Calculations for Excited States of Molecules.’ In Chemical Spectroscopy and Photochemistry in the Vacuum-Ultraviolet. Eds. C. Sandorfy, P. J. Ausloos, M. B. Robin; D. Reidel Publ. Co., Dordrecht-Holland, Boston, p. 257–286. [5]Google Scholar
  1033. Peyerimhoff, S. D., Buenker R. J. (1981): ‘Electronically excited and ionized states of the chlorine molecule.’ Chem. Phys. 57, 279–296. [5]Google Scholar
  1034. Peytremann, E. (1974): ‘Line-blanketing and model stellar atmospheres. I. Statistical method and calculation of a grid of models.’ Astron. Astrophys. 33, 203–214. [7]Google Scholar
  1035. Pfennig, H., Trefftz, E. (1966): ‘Die Druckverbreiterung der diffusen Heliumlinien, Vergleich Zwischen Messung und Theorie im quasistatischen Bereich.’ Z. Naturforsch. 21a, 697–718. [7]Google Scholar
  1036. Phillips, R. A., Buenker, R. J. (1987): ‘Factors involved in the accurate calculation of oscillator strengths: The A1​B1− X​1A1 transition of H2O.’ Chem. Phys. Lett. 137, 157–161. [5]Google Scholar
  1037. Picart, J., Edmonds, A. R., Tran Minh, N. (1978): ‘Extrapolations to high principal quantum numbers of radial integrals in the Coulomb approximation.’ J. Phys. B 11, L651–L654. [5]Google Scholar
  1038. Pierrot, A., Soufian, A., Taine, J. (1999): ‘Accuracy of narrow-band and global models for radiative transfer in H2O, CO2, and H2O-CO2 mixtures at high temperatures.’ J. Quant. Spectr. Rad. Transfer 62, 523–548. [7]Google Scholar
  1039. Pimpale, A., Mande, C. (1971): ‘Influence of plasmons on Compton scattering.’ J. Phys. C 4, 2593–2597. [5, 6]Google Scholar
  1040. Pines, D. (1955): ‘Electron interaction in metals.’ Solid State Physics 1, 367–450. [5]Google Scholar
  1041. Pines, D. (1963): Elementary Excitations in Solids. W. A. Benjamin, Inc., New York, Amsterdam. [5]Google Scholar
  1042. Pitzer, K. S. (1981): ‘Electron structure of molecules with very heavy atoms using effective core potentials.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 403–420. [3]Google Scholar
  1043. Placzek, G. (1934): ‘Rayleigh-Streuung und Raman-Effekt.’ In Handbuch der Radiologie, 3. Kap. (Vol. VI). Ed. E. Marx; Akademische Verlagsgesellschaft, Leipzig. [5]Google Scholar
  1044. Planck, M. (1924): ‘Zur Quantenstatistik des Bohrschen Atommodells.’ Ann. Phys. (Vierte Folge) 75, 673–684. [4]Google Scholar
  1045. Plass, G. N. (1958): ‘Models for spectral band absorption.’ J. Opt. Soc. Am. 48, 690–703. [7]Google Scholar
  1046. Plass, G. N. (1960): ‘Useful representations for measurements of spectral band absorption.’ J. Opt. Soc. Am. 50, 868–875. [7]Google Scholar
  1047. Plock, R. J. (1957): ‘I. Non-Newtonian Viscoelastic Properties of Rod-Like Macromolecules in Solution. II. The Debye–Hückel, Fermi–Thomas Theory of Plasmas and Liquid Metals.’ Ph. D. Dissertation, Yale University, New Haven, CT. [4]Google Scholar
  1048. Poll, J. D., van Kranendonk, J. (1961): ‘Theory of translational absorption in gases.’ Can. J. Phys. 39, 189–204 [8]Google Scholar
  1049. Pollack, J. B., Toon, O. B., Khare, B. N. (1973): ‘Optical properties of some terrestrial rocks and glasses.’ Icarus 19, 372–389. [6]Google Scholar
  1050. Pollack, J. B., McKay, C. P., Christofferson, B. M. (1985): ‘A calculation of the Rosseland mean opacity of dust grains in primordial solar system nebulae.’ Icarus 64, 471–492. [6]Google Scholar
  1051. Pollack, J. B., Hollenbach, D., Beckwith, S., Simonelli, D. P., Roush, T., Fong, W. (1994): ‘Composition and radiative properties of grains in molecular clouds and accretion disks.’ Astrophys. J. 421, 615–639. [6]Google Scholar
  1052. Pomraning, G. C. (1971): ‘High temperature radiative transfer and hydrodynamics,’ In Progress in High Temperature Physics and Chemistry. Ed. C. A. Rouse; Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig, Vol. 4, p. 1–84. [2]Google Scholar
  1053. Pople, J. A. (1982): ‘Molecular orbital theories and the structural properties of molecules.’ Ber. Bunsenges. Phys. Chem. 86, 806–811. [3]Google Scholar
  1054. Pople, J. A., Segal, G. A. (1965): ‘Approximate self-consistent molecular orbital theory. II. Calculations with complete neglect of differential overlap.’ J. Chem. Phys. 43, S136–S151. [3]Google Scholar
  1055. Pople, J. A., Segal, G. A. (1966): ‘Approximate self-consistent molecular orbital theory. III. CNDO results for AB2 and AB3 systems.’ J. Chem. Phys. 44, 3289–3296. [3]Google Scholar
  1056. Pople, J. A., Beveridge, D. L. (1970): Approximate Molecular Orbital Theory. McGraw-Hill Book Co., Inc., New York, St. Louis, San Francisco, Düsseldorf, London, Mexico, Panama, Sydney, Toronto. [3]Google Scholar
  1057. Pople, J. A., Santry, D. P., Segal, G. A. (1965): ‘Approximate self-consistent molecular orbital theory. I. Invariant procedures.’ J. Chem. Phys. 43, S129–135. [3]Google Scholar
  1058. Pradhan, A. K. (1987): ‘Opacity project: Astrophysical and fusion applications.’ Phys. Scripta 35, 840–845. [5]Google Scholar
  1059. Pratt, R. H. (1981): ‘Electron bremsstrahlung spectrum.’ Comments At. Mol. Phys. 10, 121–131. [6]Google Scholar
  1060. Pratt, R. H., Tseng, H. K. (1975): ‘Tip region of the bremsstrahlung spectrum from incident electrons of kinetic energy 50 keV–1.84 MeV.’ Phys. Rev. A 11, 1797–1803. [5]Google Scholar
  1061. Pratt, R. H., Ron, A., Tseng, H.K. (1973): ‘Atomic photoelectric effect above 10 keV.’ Rev. Mod. Phys. 45, 273–325; 45, 663–664. [3, 5]Google Scholar
  1062. Przybylski, A. (1960): ‘On the mean absorption coefficient in the computation of model stellar atmospheres of solar type stars.’ Mon. Not. Roy. Astron. Soc. 120, 3–21. [2]Google Scholar
  1063. Pugh, L. A., Rao, K. N. (1976): ‘Intensities from infrared spectra.’ In Molecular Spectroscopy: Modern Research. Ed. K. N. Rao; Academic Press, New York, San Francisco, London, Vol. 2, p. 165–227. [5]Google Scholar
  1064. Pulay, P. (1977): ‘Direct use of the gradient for investigating molecular energy surfaces.’ In Modern Theoretical Chemistry. Ed. H. F. Schaefer, III; Plenum Press, New York, Vol. 4, p. 153–185. [5]Google Scholar
  1065. Pulay, P. (1987): ‘Analytical derivative methods in quantum chemistry.’ Adv. Chem. Phys. 69, 241–286. [5]Google Scholar
  1066. Purcell, E. M., Pennypacker, C. R. (1973): ‘Scattering and absorption of light by nonspherical dielectric grains.’ Astrophys. J. 186, 705–714. [5]Google Scholar
  1067. Pyper, N. C. (1981): ‘Relativistic calculations for atoms, molecules and ionic solids: Fully ab-initio calculations and the foundations of pseudo-potential and perturbation theory methods.’ In Relativistic Effects in Atoms, Molecules, and Solids. Ed. G. L. Malli; Plenum Press, New York, London, p. 437–488. [3]Google Scholar
  1068. Pyykkö, P. (1991): ‘Basis set expansion Dirac Fock SCF calculations and MBPT refinement – Comment.’ In The Effects of Relativity in Atoms, Molecules and the Solid State. Eds. S. Wilson, I. P. Grant, and B. L. Gyorffy; Plenum Press, New York, p. 163–164. [3]Google Scholar
  1069. Rabalais, J. W. (1977): Principles of Ultraviolet Photoelectron Spectroscopy. Wiley, New York. [5]Google Scholar
  1070. Racah, G. (1943): ‘Theory of complex spectra. III.’ Phys. Rev. 63, 367–382. [7]Google Scholar
  1071. Rademacher, H., Reiche, F. (1927): ‘Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik. II. Intensitätsfragen.’ Z. Phys. 41, 453–492. [5]Google Scholar
  1072. Raĭzer, Yu. P. (1959): ‘Simple method for computing the mean range of radiation in ionized gases at high temperatures.’ Sov. Phys. - JETP 10, 769–771. [11]Google Scholar
  1073. Rakavy, G., Ron, A. (1967): ‘Atomic photoeffect in the range E γ = 1–2000 keV.’ Phys. Rev. 159, 50–56. [5]Google Scholar
  1074. Rapoport, L. P., Lisitsin, V. I., Yazykova, S. M. (1977): ‘Semi-empirical calculation method for the variation of electronic transition moments in diatomic molecules.’ J. Phys. B 10, 3359–3363. [5]Google Scholar
  1075. Raseev, G., LeRouzo, H. (1983): ‘Electronic ab initio quantum-defect theory. Low-resolution H2 photoionization spectrum.’ Phys. Rev. A 27, 268–284. [5]Google Scholar
  1076. Rauk, A., Barriel, J. M. (1977): ‘The computation of oscillator strengths and optical rotatory strengths from molecular wavefunctions. The electronic states of H2O, CO, HCN, H2O2, CH2O and C2H4.’ Chem. Phys. 25, 409–424. [5]Google Scholar
  1077. Reader, J., Corliss, C. H. (1999): ‘Line spectra of the elements.’ In Handbook of Chemistry and Physics, 80th ed., Ed. D. R. Lide; CRC Press, Boca Raton, p. 10-1–10-87. [5]Google Scholar
  1078. Rees, A. L. G. (1947): ‘The calculation of potential-energy curves from band-spectroscopic data.’ Proc. Phys. Soc. (London) 59, 998–1008. [3]Google Scholar
  1079. Reiche, F., Rademacher, H. (1926): ‘Die Quantelung des symmetrischen Kreisels nach Schrödingers Undulationsmechanik.’ Z. Phys. 39, 444–464. [5]Google Scholar
  1080. Reid, R. C., Prausnitz, J. M., Poling, B. E. (1987): The Properties of Gases and Liquids. McGraw-Hill, 4th ed. [4]Google Scholar
  1081. Reimers, J. R. (2001): ‘A practical method for the use of curvilinear coordinates in calculations of normal-mode-projected displacements and Duschinsky rotation matrices for large molecules.’ J. Chem. Phys. 115, 9103–9109. [3, 5]Google Scholar
  1082. Rhodes, P. (1950): ‘Fermi–Dirac functions of integral order.’ Proc. Roy. Soc. London A 204, 396–405. [9, App. C]Google Scholar
  1083. Richard, C., Gordon, I. E., Rothman, L. S., Abel, M., Frommhold, L., Gustafsson, M., Hartmann, J.-M., Hermans, C., Lafferty, W. J., Orton, G. S., Smith, K. M., Tran, H. (2012): ‘New section of the HITRAN database: Collision-induced absorption (CIA).’ J. Quant. Spectr. Rad. Transfer 113, 1276–1285. [8]Google Scholar
  1084. Richards, W. G., Cooper, D. L. (1983): Ab Initio Molecular Orbital Calculations for Chemists. 2nd ed. Clarenden Press, Oxford. [3]Google Scholar
  1085. Richards, W. G., Walker, T. E. H., Hinkley, R. K. (1971): A Bibliography of Ab Initio Molecular Wave Functions. Oxford University Press, London, Glasgow, New York, Toronto, Melbourne, Wellington, Cape Town, Salisbury, Ibadan, Nairobi, Dar es Salaam, Lusaka, Addis Ababa, Bombay, Calcutta, Madras, Karachi, Lahore, Dacca, Kuala Lumpur, Singapore, Hong Kong, Tokyo. [3, 5]Google Scholar
  1086. Richards, W. G., Walker, T. E. H., Farnell, L., Scott, P. R. (1974): Bibliography of Ab Initio Molecular Wave Functions. (Supplement for 1970–1973). Oxford University Press, London, Glasgow, New York, Toronto, Melbourne, Wellington, Cape Town, Ibadan, Nairobi, Dar es Salaam, Lusaka, Addis Ababa, Delhi, Bombay, Calcutta, Madras, Karachi, Lahore, Dacca, Kuala Lumpur, Singapore, Hong Kong, Tokyo. [3, 5]Google Scholar
  1087. Richards, W. G., Scott, P. R., Colbourn, E. A., Marchington, A. F., (1978): Bibliography of Ab Initio Molecular Wave Functions. (Supplement for 1974–1977). Oxford University Press, Oxford, London, Glasgow, New York, Toronto, Melbourne, Wellington, Ibadan, Nairobi, Dar es Salaam, Lusaka, Cape Town, Kuala Lumpur, Singapore, Addis Ababa, Jakarta, Hong Kong, Tokyo, Delhi, Bombay, Calcutta, Madras, Karachi. [3, 5]Google Scholar
  1088. Richards, W. G., Scott, P R., Sackwild, V., Robins, S. A. (1981): Bibliography of Ab Initio Molecular Wave Functions. (Supplement for 1978–1980). Oxford University Press, Oxford, London, Glasgow, New York, Toronto, Delhi, Bombay, Calcutta, Madras, Karachi, Kuala Lumpur, Singapore, Hong Kong, Tokyo, Nairobi, Dar es Salaam, Cape Town, Melbourne, Wellington, Beirut, Berlin, Ibadan, Mexico City. [3, 5]Google Scholar
  1089. Rickert, A. (1993): ‘Zustand und optische Eigenschaften dichter Plasmen.’ Dissertation Technische Universität München, Max-Planck-Institut report MPQ-175. [13]Google Scholar
  1090. Rickert, A. (1995): ‘Review of the third international opacity workshop and code comparison study.’ J. Quant. Spectr. Rad. Transfer 54, 325–332. [1, 13]Google Scholar
  1091. Rickert, A., Meyer-ter-Vehn, J. (1993): ‘Modeling of high-Z plasmas and opacities for radiation hydrodynamics simulations.’ Nuovo Cim. 106 A, 1845–1850. [13]Google Scholar
  1092. Robert, D., Bonamy, J. (1979): ‘Short range force effects in semiclassical molecular line broadening calculations.’ J. Physique 40, 923–943. [7]Google Scholar
  1093. Robert, D., Giraud, M., Galatry, L. (1969): ‘Intermolecular potentials and width of pressure-broadened spectral lines. I. Theoretical formulation.’ J. Chem. Phys. 51, 2192–2205. [7]Google Scholar
  1094. Roche, M. (1990): ‘On the polyatomic Franck–Condon factors.’ Chem. Phys. Let. 168, 556–558. [5]Google Scholar
  1095. Rogers, F. J. (1971): ‘Phase shifts of the static screened Coulomb potential.’ Phys. Rev. A 4, 1145–1155. [4]Google Scholar
  1096. Rogers, F. J. (1974): ‘Statistical mechanics of Coulomb gases of arbitrary charge.’ Phys. Rev. A 10, 2441–2456. [4]Google Scholar
  1097. Rogers, F. J. (1979): ‘Formation of composites in equilibrium plasmas.’ Phys. Rev. A 19 375–388. [4]Google Scholar
  1098. Rogers, F. J. (1981): ‘Analytic electron – ion effective potentials for Z ≤ 55.’ Phys. Rev. A 23, 1008–1014. [3, 4]Google Scholar
  1099. Rogers, F. J., Iglesias, C. A. (1992): ‘Radiative Atomic Rosseland Mean Opacity Tables.’ Astrophys. J. Suppl. Ser. 79, 507–568. [1, 13]Google Scholar
  1100. Rogers, F. J., Graboske Jr., H. C., Harwood, D. J. (1970): ‘Bound eigenstates of the static screened Coulomb potential.’ Phys. Rev. A 1, 1577–1586. [4]Google Scholar
  1101. Rogers, F. J., Wilson, B. G., Iglesias, C. A. (1988): ‘Parametric potential method for generating atomic data.’ Phys. Rev. A 38, 5007–5020. [3, 5]Google Scholar
  1102. Rogers, F. J., Iglesias, C. A., Wilson, B. G. (1992): ‘Spin-orbit interaction effects on the Rosseland mean opacity.’ Astrophys. J. 397, 717–728. [1, 13]Google Scholar
  1103. Roney, R. L. (1994a): ‘Theory of spectral line shape. I. Formulation and line coupling.’ J. Chem. Phys. 101, 1037–1049. [7]Google Scholar
  1104. Roney, R. L. (1994b): ‘Theory of spectral line shape. II. Collision time theory and the line wing.’ J. Chem. Phys. 101, 1050–1060. [7]Google Scholar
  1105. Roney, R. L. (1995): ‘Theory of spectral line shapes. III. The Fano operator from near to far wing.’ J. Chem. Phys. 102, 4757–4771. [7]Google Scholar
  1106. Roothaan, C. C. J. (1951): ‘New developments in molecular orbital theory.’ Rev. Mod. Phys. 23, 69–89. [3]Google Scholar
  1107. Roothaan, C. C. J., Bagus, P. S. (1963): ‘Atomic self-consistent field calculations by the expansion method.’ Methods Comp. Phys. 2, 47–94. [3]Google Scholar
  1108. Rose, M. E. (1937): ‘Relativistic wave function in the continuous spectrum for the Coulomb field.’ Phys. Rev. 51, 484–485. [5]Google Scholar
  1109. Rose, M. E. (1955): Multipole Fields. John Wiley & Sons, Inc., New York. [5]Google Scholar
  1110. Rose, M. E., Biedenharn, L. C. (1954): ‘Theory of the Photoelectric Effect.’ Oak Ridge National Laboratory report ORNL-1779. [5]Google Scholar
  1111. Rose, S. J. (1992): ‘Calculations of the radiative opacity of laser-produced plasmas.’ J. Phys. B 25, 1667–1681. [13]Google Scholar
  1112. Rose, S. J. (1994): ‘A review of opacity workshops.’ J. Quant. Spectr. Rad. Transfer 51, 317–318. [13]Google Scholar
  1113. Rose, S. J. (1995): ‘The effect of degeneracy on the scattering contribution to the radiative opacity.’ Astrophys. J. Lett. 453, L45–L47. [6]Google Scholar
  1114. Rose, S. J. (2001): ‘The radiative opacity at the Sun center – a code comparison study.’ J. Quant. Spectr. Rad. Transfer 71, 635–638. [13]Google Scholar
  1115. Rosen, B. (1970): ‘Spectroscopic data relative to diatomic molecules.’ In Tables Internationales de Constantes Selectionnees, Vol. 17. Pergamon Press, Oxford, New York, Toronto, Sydney, Braunschweig. [3]Google Scholar
  1116. Rosenbluth, M. N., Kaufman, A. N. (1958): ‘Plasma diffusion in a magnetic field.’ Phys. Rev. 109, 1–5. [9]Google Scholar
  1117. Rosenkranz, P. W. (1975): ‘Shape of the 5 mm oxygen band in the atmosphere.’ IEEE Trans. Antennas Prop. 23, 498–506. [7]Google Scholar
  1118. Rosenkranz, P. W. (1985): ‘Pressure broadening of rotational bands. I. A statistical theory.’ J. Chem. Phys. 83, 6139–6144. [7]Google Scholar
  1119. Rosenkranz, P. W. (1987): ‘Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm−1.’ J. Chem. Phys. 87, 163–170. [7]Google Scholar
  1120. Rosseland, S. (1924): ‘Note on the absorption of radiation within a star.’ Mon. Not. Roy. Astron. Soc. 84, 525–528. [2]Google Scholar
  1121. Rotenberg, M., Bivins, R., Metropolis, N., Wooten Jr., J. K., (1959): The 3–j and 6–j Symbols. Technology Press, MIT. [3]Google Scholar
  1122. Rothman, (1981): ‘AFGL atmospheric absorption line parameters compilation: 1980 version.’ Appl. Opt. 20, 791–795. [7]Google Scholar
  1123. Rozsnyai, B. F. (1972): ‘Relativistic Hartree–Fock–Slater calculations for arbitrary temperature and matter density.’ Phys. Rev. A 5, 1137–1149. [13]Google Scholar
  1124. Rozsnyai, B. F. (1973): ‘Photoexcitation and photoionization of atoms at arbitrary temperature and matter density.’ J. Quant. Spectr. Rad. Transfer 13, 1285–1299. [4, 12]Google Scholar
  1125. Rozsnyai, B. F. (1979): ‘Computation of free – free Gaunt factors and conductive opacities in hot matter.’ J. Quant. Spectr. Rad. Transfer 22, 337–343. [5, 9]Google Scholar
  1126. Rozsnyai, B. F. (1982): ‘An overview of the problems connected with theoretical calculations for hot plasmas.’ J. Quant. Spectr. Rad. Transfer 27, 211–217. [12]Google Scholar
  1127. Rozsnyai, B. (1997): ‘Collisional-radiative average-atom model for hot plasmas.’ Phys. Rev. E 55, 7507–7521. [14]Google Scholar
  1128. Rozsnyai, B. F. (2001): ‘Solar opacities.’ J. Quant. Spectr. Rad. Transfer 71, 655–663. [13]Google Scholar
  1129. Rudkjøbing, M. (1947): ‘On the Atmospheres of B-stars.’ Publ. Kopenhagen Obs. Nr. 145. [2]Google Scholar
  1130. Ruhoff, P. T., Ratner, M. A. (2000): ‘Algorithms for computing Franck–Condon overlap integrals.’ Int. J. Quantum Chem. 77, 383–392. [5]Google Scholar
  1131. Russell, H. N. (1936): ‘Tables for intensities of lines in multiplets.’ Astrophys. J. 83, 129–139. [5]Google Scholar
  1132. Rydberg, R. (1932): ‘Graphische Darstellung einiger bandenspektroscopischer Ergebnisse.’ Z. Physik 73, 376–385. [3]Google Scholar
  1133. Sakai, T. (1942): ‘Thomas–Fermi’s equation at any temperature.’ Proc. Phys. Math. Soc. Japan 24, 254–260. [4]Google Scholar
  1134. Salem, S. I., Panossian, S. L., Krause, R. A. (1974): ‘Experimental K and L relative x-ray emission rates.’ Atomic Data Nucl. Data Tables 14, 91–109. [5]Google Scholar
  1135. Salpeter, E. E. (1961): ‘Energy and pressure of a zero-temperature plasma.’ Astrophys. J. 134, 669–682. [9]Google Scholar
  1136. Salpeter, E. E. (1974a): Unpublished data. [4]Google Scholar
  1137. Salpeter, E. E. (1974b): ‘Dying stars and reborn dust.’ Rev. Mod. Phys. 46, 433–436. [4]Google Scholar
  1138. Sampson, D. H. (1959): ‘The opacity at high temperatures due to Compton scattering.’ Astrophys. J. 129, 734–751. [6, 11]Google Scholar
  1139. Sampson, D. H. (1961): ‘Radiation relaxation times at high temperatures.’ Astrophys. J. 134, 482–499. [6]Google Scholar
  1140. Samson, J. A. R. S. (1966): ‘The measurement of the photoionization cross sections of the atomic gases.’ Adv. At. Mol. Phys. 2, 177–261. [5]Google Scholar
  1141. Sapirstein, J. (1998): ‘Theoretical methods for the relativistic atomic many-body problem.’ Rev. Mod. Phys. 70, 55–76. [3, 5]Google Schola