Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Opacity

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 402))

  • 1184 Accesses

Abstract

Interaction of radiation with matter has been a pervasive causal phenomenon in the universe since the “Big Bang.” It unites physics and astronomy and has led to major discoveries in astrophysics. Opacity is a property of matter that determines its resistance to the transmission of radiation (or, more comprehensively, its resistance to energy transport by photons and elementary particles). It plays an important role in the formation, evolution, and structure of stars. For example, photon opacity provides the dominant obstacle to energy transport during star formation in the inner, opaque region of an accretion disk and later during nuclear burning of hydrogen and helium in the core of the star. Thus, opacity regulates the evolution of the universe since its creation. For this reason the principal investigators of opacities have been astrophysicists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also known simply as the “atomic model.” It is the predecessor of the “mean ion model with term and fine structure splitting.”

  2. 2.

    Also referred to as the “method of detailed configuration accounting” or “ionic model.” It is the predecessor of the “method of detailed configuration accounting with explicit term splitting.”

  3. 3.

    Radiative transfer in liquids and solids is not considered here.

References

  • Adelman, S. J., Wiese, W. L.(1995): Astrophysical applications of powerful new databases: Joint discussion no. 16 of the 22nd General Assembly of the IAU. Astronomical Society of the Pacific, San Francisco. [1, 13]

    Google Scholar 

  • Armstrong, B. H. (1964b): ‘Research on opacity of high-temperature air.’ J. Quant. Spectr. Rad. Transfer 4, 731–736. [1]

    Google Scholar 

  • Armstrong, B. H., Sokoloff, J., Nicholls, R. W., Holland, D. H., Meyerott, R. E. (1961): ‘Radiative properties of high temperature air.’ J. Quant. Spectr. Rad. Transfer 1, 143–162. [1]

    Google Scholar 

  • Armstrong, B. H., Johnston, R. R., Kelly, P. S., DeWitt, H. E., Brush, S. G. (1967): ‘Opacity of high-temperature air.’ Prog. High Temp. Phys. Chem. 1, 139–242. [1, 4, 5, 7]

    Google Scholar 

  • Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969a): ‘Optical properties of heated air – I. Basic procedures of spectral characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 89–111. [1]

    Google Scholar 

  • Avilova, I. V., Biberman, L. M., Vorobjev, V. S., Zamalin, V. M., Kobzev, G. A., Lagar’kov, A. N., Mnatsakanian, A. Ch., Norman, G. E. (1969b): ‘Optical properties of heated air – II. Integrated characteristics.’ J. Quant. Spectr. Rad. Transfer 9, 113–122. [1]

    Google Scholar 

  • Berrington, K. (1997a): The Opacity Project, Volume 2. Inst. of Physics Publishing, Bristol, Philadelphia. [1, 3, 4]

    Google Scholar 

  • Berrington, K. A. (1997b): ‘The opacity and iron projects - an overview.’ In Photon and Electron Collisions with Atoms and Molecules. Eds. P. G. Burke and C. J. Joachain. Plenum Press; New York, London, p. 297–312. [1, 7]

    Google Scholar 

  • Biberman, L. M., Norman, G. E. (1967): ‘Continuous spectra of atomic gases and plasma.’ Soviet Phys. Usp. (Engl. trans.) 10, 52–90. [1, 5]

    Google Scholar 

  • Bode, G. (1965): ‘Die kontinuierliche Absorption von Sternatmosphären in Abhängigkeit von Druck, Temperatur und Elementhäufigkeiten.’ Institut für Theoretische Physik und Sternwarte der Universität Kiel report. [1]

    Google Scholar 

  • Carson, T. R. (1971): ‘Stellar opacities.’ In Progress in High Temperature Physics and Chemistry, Vol. 4. Ed. C. A. Rouse; Pergamon Press, Oxford, New York. [1, 9]

    Google Scholar 

  • Carson, T. R. (1972): ‘Stellar opacity.’ In Stellar Evolution. Eds. H.-Y. Chiu, A. Muriel; MIT Press, Cambridge, MA, London, England. [1]

    Google Scholar 

  • Carson, T. R. (1976): ‘Stellar opacities.’ Ann. Rev. Astron. Astrophys. 14, 95–117. [1]

    Google Scholar 

  • Carson, T. R., Hollingsworth, H. M. (1968): ‘A critique of the hydrogenic approximation in the calculation of stellar opacity.’ Mon. Not. Roy. Astron. Soc. 141, 77–108. [1, 4]

    Google Scholar 

  • Carson, T. R., Mayers, D. F., Stibbs, D. W. N. (1968): ‘The calculation of stellar radiative opacity.’ Mon. Not. Roy. Astron. Soc. 140, 483–536. [1, 4, 5, 12, 13]

    Google Scholar 

  • Cowley, C. R. (1970): Theory of Stellar Spectra. Gordon & Breach Science Publishers, New York, London, Paris. [1]

    Google Scholar 

  • Cox, A. N. (1965): ‘Stellar absorption coefficients and opacities.’ In Stars and Stellar Systems, Vol. 8: Stellar Structure, p. 195–268. Eds. L. H. Aller, D. B. McLaughlin; The University of Chicago Press, Chicago. [1, 4, 9, 11]

    Google Scholar 

  • Cox, A. N., Stewart, J. N. (1965): ‘Radiative and conductive opacities for eleven astrophysical mixtures.’ Astrophys. J. Suppl. Ser. 11, 22–46. [1, 9, 12]

    Google Scholar 

  • Cox, A. N., Stewart, J. N., Eilers, D. D. (1965): ‘Effects of bound-bound absorption on stellar opacities.’ Atrophys. J. Suppl. Ser. 11, 1–21. [1]

    Google Scholar 

  • Fano, U., Cooper, J. W. (1968): ‘Spectral distribution of atomic oscillator strengths.’ Rev. Mod. Phys. 40, 441–507. [1, 5]

    Google Scholar 

  • Hirschfelder, J. O., Magee, J. L. (1945): ‘Opacity and thermodynamic properties of air at high temperatures.’ Los Alamos Scientific Laboratory report LA-296. [1]

    Google Scholar 

  • Huebner, W. F. (1986): ‘Atomic and Radiative Processes in the Solar Interior.’ In Physics of the Sun. Ed. P. A. Sturrock; D. Reidel Publishing Co., Dordrecht, Boston, Lancaster, Tokyo, Vol. 1, p. 33–75. [1, 6, 13]

    Google Scholar 

  • Huebner, W. F., Mayer, H., Meyerott, R. E., Penner, S. S., (Eds.) (1965): ‘Opacities. Proceedings of the second international conference.’ J. Quant. Spectr. Rad. Transfer 5, 1–280. [1, 13]

    Google Scholar 

  • Hummer, D. G. (1991): ‘The opacity project and the practical utilization of atomic data.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 431–439. [1, 3]

    Google Scholar 

  • Jacobsohn, B. A. (1947): ‘The opacity of uranium at high temperature.’ Ph. D. Dissertation, Dept. Physics, University of Chicago, Chicago, IL. [1, 5, 7]

    Google Scholar 

  • Kivel, B. (1954): ‘Opacity of Air at High Temperatures.’ Los Alamos National Laboratory report LA-1738. [1]

    Google Scholar 

  • Kivel, B., Mayer, H., Bethe, H. (1957): ‘Radiation from hot air. Part I. Theory of nitric oxide absorption.’ Ann. Phys. (NY) 2, 57–80. [1, 7]

    Google Scholar 

  • Kurucz, R. L. (1970): ‘ATLAS: A computer program for calculating model stellar atmospheres.’ Smithsonian Astrophysical Observatory special report 309. [1, 7]

    Google Scholar 

  • Kurucz, R. L. (1979): ‘Model atmospheres for G, F, A, B, and O stars.’ Astrophys. J. Suppl. Ser. 40, 1–340. [1, 7]

    Google Scholar 

  • Kurucz, R. L. (1991): ‘New opacity calculations.’ In Stellar Atmospheres: Beyond Classical Models, Eds. L. Crivellari, I. Hubeny, and D. G. Hummer; Kluwer Academic Publ., p. 441–448. [1, 7]

    Google Scholar 

  • Kurucz, R. L., Peytremann, E., Avrett, E. H. (1975): Blanketed Model Atmospheres for Early-Type Stars. Smithsonian Institution Press, Washington, DC. [1, 7]

    Google Scholar 

  • Landshoff, R. K. M., Magee, J. L. (Eds.) (1969): Thermal Radiation Phenomena, Vol. 1: Radiative Properties of Air. IFI/Plenum Data Corp., Plenum Publ. Corp. New York, Washington. [1]

    Google Scholar 

  • Magee, J. L., Aroeste, H. (1967): ‘Thermal Radiation Phenomena,’ Vol. 1–4. Defense Atomic Support Agency report DASA 1917. [1]

    Google Scholar 

  • Marr, G. V. (1967): Photoionization Processes in Gases. Academic Press, New York, London. [1]

    Google Scholar 

  • Marshak, R. E. (1945): ‘Opacity of Air, BeO, C, Fe, and U at High Temperatures.’ Los Alamos National Laboratory report LA-229. [1]

    Google Scholar 

  • Mayer, H. (1947): ‘Methods of Opacity Calculations.’ Los Alamos Scientific Laboratory report LA-647. [1, 2, 3, 4, 7, 11]

    Google Scholar 

  • Mayer, H. L., (Ed.) (1964): ‘Conference on opacities.’ J. Quant. Spectr. Rad. Transfer 4, 581–760. [1, 13]

    Google Scholar 

  • Menzel, D. H., Bhatnagar, P. L., Sen, H. K. (1963): Stellar Interiors. Chapman & Hall, London. [1]

    Google Scholar 

  • Mihalas, D. (1978): Stellar Atmospheres. 2nd ed., W. H. Freeman & Co., San Francisco. [1, 2]

    Google Scholar 

  • Penner, S. S., Olfe, D. B. (1968): Radiation and Reentry. Academic Press, New York, London. [1, 2, 7, 11, 13]

    Google Scholar 

  • Rickert, A. (1995): ‘Review of the third international opacity workshop and code comparison study.’ J. Quant. Spectr. Rad. Transfer 54, 325–332. [1, 13]

    Google Scholar 

  • Rogers, F. J., Iglesias, C. A. (1992): ‘Radiative Atomic Rosseland Mean Opacity Tables.’ Astrophys. J. Suppl. Ser. 79, 507–568. [1, 13]

    Google Scholar 

  • Seaton, M. J. (1955): ‘Le calcul approximatif des sections efficaces de photoionisation atomique. II. Une relation entre le défaut quantique et la phase de la fonction d’onde à la limite spectrale.’ Compt. Rend. 240, 1317–1318. [3]

    Google Scholar 

  • Serduke, F. J. D., Minguez, E., Davidson, S. J., Iglesias, C. A. (2000): ‘WorkOp-IV summary: lessons from iron opacities.’ J. Quant. Spectr. Rad. Transfer 65, 527–541. [1, 13]

    Google Scholar 

  • Sneden, C., Johnson, H. R., Krupp, B. M. (1976): ‘A statistical method for treating molecular line opacities.’ Astrophys. J. 204, 281–289. [1, 7]

    Google Scholar 

  • Stewart, A. L. (1967): ‘The quantal calculation of photoionization cross sections.’ In Advances in Atomic and Molecular Physics. Eds. D. R. Bates and J. Estermann; Academic Press, New York, Vol. 3, p. 1–52. [1]

    Google Scholar 

  • Strom, S. E., Kurucz, R. L. (1966): ‘A statistical procedure for computing line-blanketed model stellar atmospheres with applications to the F5 IV star Procyon.’ J. Quant. Spectr. Rad. Transfer 6, 591–607. [1, 7]

    Google Scholar 

  • Tsuji, T. (1966a): ‘The atmospheric structure of late-type stars. I. Physical properties of cool gaseous mixtures and the effect of molecular line absorption on stellar opacities.’ Pub. Astron. Soc. Japan 18, 127–173. [1]

    Google Scholar 

  • Tsuji, T. (1966b): ‘Some problems on the atmospheric structure of late-type stars.’ Proc. Japan Acad. Tokyo 42, 258–263. [1]

    Google Scholar 

  • Tsuji, T. (1971): ‘Effect of molecular line absorptions on stellar opacities.’ Publ. Astron. Soc. Japan 23, 553–565. [1]

    Google Scholar 

  • Vitense, E. (1951): ‘Der Aufbau der Sternatmosphären. IV. Teil. Kontinuierliche Absorption und Streuung als Funktion von Druck und Temperatur.’ Z. Astrophys. 28, 81–112. [1, 4]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walter F. Huebner .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Huebner, W.F., Barfield, W.D. (2014). Introduction. In: Opacity. Astrophysics and Space Science Library, vol 402. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8797-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8797-5_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8796-8

  • Online ISBN: 978-1-4614-8797-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics