Skip to main content

Nonlinear Time Series: Models and Simulation

  • Chapter
  • First Online:
Book cover Statistical Analysis of Financial Data in R

Part of the book series: Springer Texts in Statistics ((STS))

  • 13k Accesses

Abstract

Most financial time series exhibit nonlinear features which cannot be captured by the linear models seen in the previous two chapters. In this last chapter, we present the elements of a theory of nonlinear time series adapted to financial applications. We review a set of standard econometric models which were first introduced in the discrete time setting. They include the famous, ARCH, GARCH, models, but we also discuss stochastic volatility models and we emphasize the differences between these concepts which are too often confused. However, because of the growing influence of the theoretical developments of continuous time finance in the everyday practice, we spend quite a significant part of the chapter analyzing the time series models derived from the discretization of continuous time stochastic differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Amari. Differential Geometrical Methods in Statistics, volume 28 of Lecture Notes in Statistics. Springer Verlag, New York, NY, 1985.

    Google Scholar 

  2. N. Anderson, F. Breedon, M. Deacon, A. Derry, and G. Murphy. Estimating and Interpreting the Yield Curve. Wiley, Chichester, 1996.

    Google Scholar 

  3. A. Antoniadis, J. Berruyer, and R. Carmona. Régression Non-linéaire et Applications. Economica, 1992.

    Google Scholar 

  4. P. Artzner, F. Delbaen, J.M. Eber, and D. Heath. Coherent measures of risk. Mathematical Finance, 9(3):203–228, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  5. E. Banks, editor. Weather Risk Management, New York, NY, 2002. Palgrave.

    Google Scholar 

  6. T. Bollerslev. Generalized Auto Regressive Heteroskedasticity. Journal of Econometrics, 31:307–327, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  7. T. Bollerslev, R.F Engle, and J.M. Wooldridge. ARCH models. In Handbook of Econometrics, IV, pages 2959–3038. 1994.

    Google Scholar 

  8. G.E.P. Box and G.M. Jenkins. Time Series Analysis: Forecasting and Control. Holden Day, San Francisco, revised edition, 1976.

    Google Scholar 

  9. L. Breiman, J.H. Friedman, R.A. Olshen, and C.I. Stone. Classification And Regression Trees. Wadsworth and Brooks Cole, Monterey, CA, 1984.

    MATH  Google Scholar 

  10. P.J. Brockwell and R.A. Davis. Introduction to Time Series and Forecasting. Springer Texts in Statistics. Springer Verlag, New York, NY, 1996.

    Book  MATH  Google Scholar 

  11. R.L. Brown, J. Durbin, and J.M. Evans. Techniques for testing the constancy of regression relationship over time (with comments). Journal of the Royal Statistical Society, 37:149–192, 1975.

    MATH  MathSciNet  Google Scholar 

  12. A. Bruce and H.Y. Gao. Applied Wavelet Analysis with S-Plus. Springer Verlag, New York, N.Y, 1996.

    Google Scholar 

  13. J.Y. Campbell, A.W. Lo, and A.C. MacKinlay. The Econometrics of Financial Markets. Princeton University Press, Princeton, N.J., 1997.

    MATH  Google Scholar 

  14. R. Carmona, W. Hwang, and B. Torresani. Time Frequency Analysis: Continuous Wavelet and Gabor Transform, with an implementation in S-Plus. Academic Press, New York, N.Y., 1998.

    Google Scholar 

  15. R. Carmona and J. Morrisson. EVANESCE, an S-Plus library for heavy tail distributions and copulas. Technical report, Dept. of Operations Research & Financial Engineering, Princeton University, 2000. http://www.princeton.edu/~rcarmona.

  16. R. Carmona, and J.P. Fouque and D. Vestal. Interacting Particle Systems for the Computation of CDO Tranche Spreads with Rare Defaults. Finance and Stochastics, 13:613–633, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  17. R. Carmona and S. Crepey. Importance Sampling and Interacting Particle Systems for the Estimation of Markovian Credit Portfolio Loss Distributions. Intern. J. of Theoretical and Applied Finance, 13:577–602, 2010.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Carmona and M. Tehranchi. Interest Rate Modes: an Infinite Dimensional Stochastic Analysis Perspective. Springer Verlag, New York N.Y., 2010.

    Google Scholar 

  19. R. Carmona, P. Del Moral, P. Hu and N. Oudjane. An introduction to particle methods in Finance. in Numerical Methods in Finance eds R. Carmona, P. Del Moral, P. Hu and N. Oudjane, pp. 1–45, Springer Verlag, 2012.

    Google Scholar 

  20. R. Carmona and M. Croulon. A Survey of Commodity Markets and Structural Approaches to Modeling Electricity. In Energy Markets, Proceedings of the WPI Special Year eds. F. Benth, Springer Verlag, pp. 1–42, 2012.

    Google Scholar 

  21. J.M. Chambers. Programming with Data: A Guide to the S Language. MathSoft, Seattle WA, 1998.

    Book  MATH  Google Scholar 

  22. N.H. Chan. Time Series: Applications to Finance. John Wiley & Sons, New York, N.Y., 2002.

    Google Scholar 

  23. W.S. Cleveland. The Elements of Graphing Data. Hobart Press, Summit, N.J., 1994.

    Google Scholar 

  24. L. Clewlow and C. Strickland. Energy Derivatives, Pricing and Risk Management. Lacima Publications, London, 2000.

    Google Scholar 

  25. P. Dalgaard. Introductory Statistics with R. Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  26. C. de Boor. A Practical Guide to Splines. Springer Verlag, New York, N.Y., 1978.

    Book  MATH  Google Scholar 

  27. D. Duffie and J. Singleton. Credit Risk: Pricing, Measement, and Management. 2003.

    Google Scholar 

  28. P. Embrechts, R. Frey, and A. McNeil. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton, NJ, 2005.

    Google Scholar 

  29. P. Embrechts, C. Klüppelberg, and T. Mikosch. Modelling Extremal Events for Insurance and Finance. Springer-Verlag, New York, 2000.

    Google Scholar 

  30. R.F. Engle. Autoregressive conditional heteroskedasticity with estimates of the variance of the United Kingdom inflation. Econometrica, pages 987–1006, 1982.

    Google Scholar 

  31. R.F. Engle and T. Bollerslev. Modeling the persistence of conditional variances. Econometric Reviews, 5:1–50, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  32. R.F. Engle and C. Granger. Cointegration and error-correction: Representation, estimation and testing. Econometrica, 55:251–276, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  33. J. A. Greenwood et al. Extreme Value Theory based on the r largest annual events: a robust approach. Water Resources Research, 15:1049–1054, 1979.

    Article  Google Scholar 

  34. E.F. Fama and R.R. Biss. The information in long-maturity forward rates. American Economic Review, 77:680–692, 1987.

    Google Scholar 

  35. J. Fan and Q. Yao. Nonlinear Time Series: Nonparametric and Parametric Methods. Springer Verlag, New York, N.Y., 2003.

    Book  Google Scholar 

  36. H. Foellmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time. De Gruyter, Berlin, 2002.

    Book  Google Scholar 

  37. Bank for International Settlements. Zero-coupon yield curves. Technical report, March 1999.

    Google Scholar 

  38. J.P Fouque, G. Papanicolaou, and R. Sircar. Derivatives in Financial Markets with Stochastic Volatility. Cambridge University Press, London, 2000.

    Google Scholar 

  39. R. Gençay, F. Selçuk, and B. Whitcher. An Introduction to Wavelets and Other Filtering Methods in Finance and Economics. Academic Press, New York, N.Y., 2002.

    MATH  Google Scholar 

  40. P. Glasserman. Monte Carlo Methods in Financial Engineering. Springer-Verlag, New York, N.Y., 2004.

    MATH  Google Scholar 

  41. C. Gouriéroux. ARCH Models and Financial Applications. Springer Verlag, New York, N.Y., 1997.

    Book  MATH  Google Scholar 

  42. C. Gourieroux and J. Jasiak. Financial Eeconometrics: Problems, Models and Methods. Princeton University Press, Princeton, NJ, 2001.

    Google Scholar 

  43. W. Haerdle. Non-parametric Regression. Springer Verlag, New York, N.Y., 1994.

    Google Scholar 

  44. J.D. Hamilton. Time Series Analysis. Princeton University Press, Princeton, N.J., 1994.

    MATH  Google Scholar 

  45. T. Hastie, Tibshirani, and J. Friedman. The Elements of Statistical Learning, Data mining, Inference and Prediction. Springer Verlag, New York, N.Y., 2001.

    Google Scholar 

  46. J. R. M. Hosking. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B, 52(1):105–124, 1990.

    MATH  MathSciNet  Google Scholar 

  47. J. R. M. Hosking and J. R. Wallis. Parameter and quantile estimation for the generalized Pareto distribution. Technometrics, 29(3):339–349, 1987.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. R. M. Hosking, J. R. Wallis, and E. F. Wood. Estimation of the generalized extreme value distribution by the Method of Probability-Weighted Moments. Technometrics, 27(3):251–261, 1985.

    Article  MathSciNet  Google Scholar 

  49. P.J. Huber. Robust Statistics. John Wiley & Sons, New York, N.Y., 1981.

    Book  MATH  Google Scholar 

  50. J.C. Hul. Options, Futures, and Other Derivatives. Prentice Hall, New York, N.Y., 6th edition, 2006.

    Google Scholar 

  51. J.M. Hutchinson, A.W. Lo, and T. Poggio. A nonparametric approach to the pricing and hedging of derivative securities via learning networks. Journal of Finance, 49, 1994.

    Google Scholar 

  52. S. Johansen. Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press, Oxford, 1995.

    Book  MATH  Google Scholar 

  53. P. Jorion. Value at Risk: The New Benchmark for Managing Financial Risk. McGraw Hill, New York, N.Y., 2nd edition, 2000.

    Google Scholar 

  54. J. Rice. Mathematical Statistics and Data Analysis. Duxbury Press, Belmont, CA, 2nd edition, 1995.

    MATH  Google Scholar 

  55. C.J. Kim and C.R. Nelson. State-Space Models with Regime Switching. Cambridge, MA, 1999.

    Google Scholar 

  56. G. Kitagawa. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 5:1–25, 1996.

    MathSciNet  Google Scholar 

  57. T. Kohonen. Self-organizing Maps. Springer Verlag, New York, N.Y., 1995.

    Book  Google Scholar 

  58. D. Lamberton and B. Lapeyre. Introduction to Stochastic Calculus Applied to Finance. CRC Press, 1996.

    Google Scholar 

  59. D. Lando. Credit Risk Modeling: Theory and Aplications. 2004.

    Google Scholar 

  60. R. Litterman and J. Scheinkman. Common factors affecting bond returns. Journal of Fixed Income, 1:49–53.

    Google Scholar 

  61. F.M. Longin. From value at risk to stress testing: The extreme value approach. Journal of Banking and Finance, 24:10971130, 2000.

    Google Scholar 

  62. F. A. Longstaff and R. S. Schwartz. Valuing American options by simulation : A simple least-square approach. Review of Financial Studies, 14:113–147, 2001.

    Article  Google Scholar 

  63. G. Lindren M. R. Leadbetter and H. Rootzén. Extremes and Related Properties of Random Sequences and Processes. Springer-Verlang, New York, 1983.

    Google Scholar 

  64. B.B. Mandelbrot. New methods in statistical economics. Journal of Political Economy, 71:421–440, 1963.

    Article  Google Scholar 

  65. B.B. Mandelbrot. The variation of certain speculative prices. Journal of Business, 36:394–419, 1963.

    Article  Google Scholar 

  66. B.B. Mandelbrot. Fractal, Form Dimension and Chance. W.H. Freeman & Co., San Francisco, CA, 1977.

    Google Scholar 

  67. K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press, New York, N.Y., 1979.

    MATH  Google Scholar 

  68. D. Drouet Mari and S. Kotz. Correlation and Dependence. Imperial College Press, London, 2001.

    Book  MATH  Google Scholar 

  69. D.C. Montgomery and E.A. Peck. Introduction to Linear Regression Analysis. John Wiley & Sons, New York, N.Y., 2nd edition, 1992.

    MATH  Google Scholar 

  70. S. Menendez N. Perez and L. Seco. New families of distributions fitting l-moments for modelling financial data, 2004.

    Google Scholar 

  71. G.P. Nason. Wavelet Methods in Statistics with R. Springer Verlag, New York, NY, 2008.

    Book  MATH  Google Scholar 

  72. A. Mc Neil, R. Frey, and P. Embrechts. Quantitative Risk Management: Concepts, Techniques and Tools. Princeton University Press, Princeton, NJ, 2005.

    Google Scholar 

  73. R. B. Nelsen. An Introduction to Copulas. Springer-Verlag, New York, 1999.

    Book  MATH  Google Scholar 

  74. C.R. Nelson and A.F. Siegel. Parsimonious modeling of yield curves.

    Google Scholar 

  75. J. Pickands. Multivariate extreme value distributions. pages 229–231, 1981.

    Google Scholar 

  76. M.B. Priestley. Nonlinear and Non-stationary Time Series Analysis. Academic Press, New York, N.Y., 1988.

    Google Scholar 

  77. R. Rebonato. Interest-Rate Option Models: Understanding, Analyzing and Using Models for Exotic Interest-Rate Options. Wiley, New York, N.Y., 1996.

    Google Scholar 

  78. E. Renault and N. Touzi. Option hedging and implied volatility in a stochastic volatility model. Mathematical Finance, 6:215–236, 1996.

    Article  Google Scholar 

  79. S.I. Resnick. Extreme Values, Regular Variation and Point Processes. Springer Verlag, New York, 1987.

    MATH  Google Scholar 

  80. R. Roll. A critique of the asset pricint theory’s test, part one: Past and potential testability of the theory. Journal of Financial Economics, 4, 1977.

    Google Scholar 

  81. M. Rosenblatt. Gaussian and Non-Gaussian Linear Time Series and Random Fields. Springer Verlag, New York N.Y., 2000.

    Book  MATH  Google Scholar 

  82. P.J. Rousseeuw and A.M. Leroy. Robust Regression and Outlier Detection. New York, N.Y., 1984.

    Google Scholar 

  83. B. Van Roy and J. N. Tsitsiklis. Regression methods for pricing complex American-style options. IEEE Trans. on Neural Networks, 2000.

    Google Scholar 

  84. P.A. Ruud. An Introduction to Classical Econometric Theory. Oxford University Press, New York, N.Y., 2000.

    Google Scholar 

  85. Y. Ait Sahalia and A.W. Lo. Nonparametric estimation of state price densities implicit in financial asset prices. The Journal of Finance, 53:499–547, 1998.

    Article  Google Scholar 

  86. P. Schönbucher. Credit Dderivatives Pricing Models: Model, Pricing and Implementation. John Wiley & Sons, New York, N.Y., 2003.

    Google Scholar 

  87. R.H. Shumway and D.S. Stoffer. Time Series Analysis and Its Applications. Springer Verlag, Newy York, N.Y., 2000.

    Book  MATH  Google Scholar 

  88. B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman & Hall, London, 1986.

    Book  MATH  Google Scholar 

  89. R. L. Smith. Threshold methods in statistics. In J. Tiago de Olivera, editor, Statistical Extremes and Applications, volume 131 of NATO ASI Series, pages 621–638. Reidel, 1984.

    Google Scholar 

  90. J.M. Steele. Stochastic Calculus and Financial Applications. Springer Verlag, New York N.Y., 2000.

    Google Scholar 

  91. L.E.O. Svensson. Estimating and interpreting forward interest rates: Sweden 1992–94. 4871, 1994.

    Google Scholar 

  92. R.S. Tsay. Analysis of Financial Time Series. John Wiley & Sons, New York, N.Y., 2002.

    Book  MATH  Google Scholar 

  93. O. Vasicek and G. Fong. Term structure estimation using exponential splines. Journal of Finance, 38:339–348, 1982.

    Article  Google Scholar 

  94. W. N. Venables and B. D. Ripley, Modern Applied Statistics with S-PLUS. Springer-Verlag, New York, 1997.

    Book  MATH  Google Scholar 

  95. H. von Storch and F.W. Zwiers. Statistical Analysis in Climate Research. Cambridge University Press, New York, N.Y., 1999.

    Google Scholar 

  96. L. De Vroye. Non-uniform Variates. Springer Verlag, 1984.

    Google Scholar 

  97. M.V. Wickerhauser. Adapted Wavelet Analysis: from Theory to Software. A.K.Peters LTd, Wellesley, MA, 1994.

    MATH  Google Scholar 

  98. I.H. Witten and E. Frank. Data Mining. Academic Press, San Diego, CA, 2000.

    Google Scholar 

  99. E. Zivot and J. Wang. Modeling Financial Time Series with S-PLUS. Springer Verlag, New York, N.Y., 2003.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carmona, R. (2014). Nonlinear Time Series: Models and Simulation. In: Statistical Analysis of Financial Data in R. Springer Texts in Statistics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8788-3_8

Download citation

Publish with us

Policies and ethics