Computational Modeling of Ultrasound Wave Propagation in Bone

  • Vassiliki T. Potsika
  • Maria G. Vavva
  • Vasilios C. Protopappas
  • Demosthenes Polyzos
  • Dimitrios I. Fotiadis
Chapter

Abstract

Simulation of ultrasound wave propagation in bones has attracted the interest of many research groups worldwide during the last two decades. Recently, powerful numerical tools have been developed which make efficient use of memory resources and computation time and render the solution of complicated transient problems for complex and nonhomogeneous geometries feasible even to nonexperts in modeling. The availability of advanced computer-aided engineering tools in combination with high-resolution two-dimensional (2D) and three-dimensional (3D) images of bone at different scales has significantly contributed to the development of more realistic computational models of bone extending thus our understanding of the underlying mechanisms of ultrasound propagation. Computational studies mostly exploit measurements of the propagation velocity and attenuation and more recently of guided waves for characterizing bone status and health in cases of pathologies or traumas. However, accurate and safe conclusions from numerical simulation should be drawn only after careful interpretation of the results and preferably in combination with experimental and clinical findings. In this chapter, we present a comprehensive state of the art of the existing computational studies on ultrasound wave propagation in intact and pathologic bones and discuss interesting directions for future research.

Keywords

Permeability Porosity Anisotropy Attenuation EDTA 

References

  1. 1.
    M. Doblaré, J. M. Garciá, and M. J. Gómez, “Modelling bone tissue fracture and healing: a review,” Engineering Fracture Mechanics 71, 1809–1840 (2004).CrossRefGoogle Scholar
  2. 2.
    P. Laugier and G. Haïat, “Bone quantitative ultrasound,” Springer Dordrecht Heidelberg London New York: Science+Business Media B.V., 4–5 (2011).Google Scholar
  3. 3.
    J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Medical Engineering & Physics 20, 92–102 (1998).CrossRefGoogle Scholar
  4. 4.
    A. Ascenzi, P. Baschieri, and A. Benvenuti, “The torsional properties of single selected osteons,” Journal of Biomechanics 27(7), 875–884 (1994).CrossRefGoogle Scholar
  5. 5.
    R. S. Lakes and J. F. C.Yang, “Micropolar elasticity in bone: rotation modulus,” 18th Midwest Mechanics Conference, Developments in Mechanics (1983).Google Scholar
  6. 6.
    P. Laugier and G. Haïat, “Bone quantitative ultrasound,” Springer Dordrecht Heidelberg London New York: Science+Business Media B.V. (2011).CrossRefGoogle Scholar
  7. 7.
    P. Molero, P. H. F. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, “Assessment of the cortical bone thickness using ultrasonic guided waves: modeling and in vitro study,” 33(2), 254–62 (2007).Google Scholar
  8. 8.
    P. J. Meunier, C. Roux, S. Ortolani, M. Diaz-Curiel, J. Compston, P. Marquis, C. Cormier, G. Isaia, J. Badurski, J. D. Wark, J. Collette, and J. Y. Reginster, “Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis,” Osteoporosis International 20(10), 1663–1673 (2009).CrossRefGoogle Scholar
  9. 9.
    A. Tatarinov, N. Sarvazyan, and A. Sarvazyan, “Use of multiple acoustic wave modes for assessment of long bones: Model study,” Ultrasonics 43(8), 672–680 (2005).CrossRefGoogle Scholar
  10. 10.
    V. C. Protopappas, M. G. Vavva, D. I. Fotiadis, and K. N. Malizos, “Ultrasonic monitoring of bone fracture healing,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1243–1255 (2008).CrossRefGoogle Scholar
  11. 11.
    J. L. Cunningham, J. Kenwright, and C. J. Kershaw, “Biomechanical measurement of fracture healing,” J. Med. Eng. Technol. 14(3), 92–101 (1990).CrossRefGoogle Scholar
  12. 12.
    Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, “Assessment of fracture healing in the tibia using the impulse response method,” J. Orthop. Trauma 10(1), 50–62 (1996).CrossRefGoogle Scholar
  13. 13.
    G. Nikiforidis, A. Bezerianos, A. Dimarogonas, and C. Sutherland, “Monitoring of fracture healing by lateral and axial vibration analysis,” Journal of Biomechanics 23(4), pp. 323–330 (1990).CrossRefGoogle Scholar
  14. 14.
    Y. Hirasawa, S. Takai, W. C. Kim, N. Takenaka, N. Yoshino, and Y. Watanabe, “Biomechanical monitoring of healing bone based on acoustic emission technology,” Clin. Orthop. Relat. Res. 402, 236–244 (2002).CrossRefGoogle Scholar
  15. 15.
    Y. Watanabe, S. Takai, Y. Arai, N. Yoshino, and Y. Hirasawa, “Prediction of mechanical properties of healing fractures using acoustic emission,” J. Orthop. Res. 19(4), 548–553 (2001).CrossRefGoogle Scholar
  16. 16.
    L. Claes, R. Grass, T. Schmickal, B. Kisse, C. Eggers, H. Gerngross, W. Mutschler, M. Arand, T. Wintermeyer, and A. Wentzensen, “Monitoring and healing analysis of 100 tibial shaft fractures,” Langenbecks Arch. Surg. 387(3–4), 146–152 (2002).CrossRefGoogle Scholar
  17. 17.
    V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, “Guided ultrasound wave propagation in intact and healing long bones,” Ultrasound in Medicine and Biology 32, 693–708 (2006).CrossRefGoogle Scholar
  18. 18.
    G. Barbieri, C. H. Barbieri, N. Mazzer, and C. A. Pelá, “Ultrasound Propagation Velocity and Broadband Attenuation Can Help Evaluate the Healing Process of an Experimental Fracture,” Journal of Orthopaedic Research 29, 444–451 (2011).CrossRefGoogle Scholar
  19. 19.
    C. B. Machado, W. C. de Albuquerque Pereira, M. Granke, M. Talmant, F. Padilla, and P. Laugier, “Experimental and simulation results on the effect of cortical bone mineralization measurements: A model for fracture healing ultrasound monitoring,” Bone 48, 1202–1209 (2011).CrossRefGoogle Scholar
  20. 20.
    P. J. Gill, G. Kernohan, I. N. Mawhinney, R. A. Mollan, and R. McIlhagger, “Investigation of the mechanical properties of bone using ultrasound,” Proc. Inst. Mech. Eng. 203, 61–63 (1989).CrossRefGoogle Scholar
  21. 21.
    E. Maylia and L. D. Nokes, “The use of ultrasonics in orthopaedics – a review,” Technol. Health Care 7(1), 1–28 (1999).CrossRefGoogle Scholar
  22. 22.
    S. Saha, V. V. Rao, V. Malakanok, and J.A. Albright, “Quantitative measurement of fracture healing by ultrasound,” in Biomed. Engin. I: Recent Developments, Pergamon Press, New York, 247–249 (1982).Google Scholar
  23. 23.
    K. N. Malizos, A. A. Papachristos, V. C. Protopappas, and D. I. Fotiadis, “Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model,” Bone 38(4), 530–539 (2006).CrossRefGoogle Scholar
  24. 24.
    V. C. Protopappas, D. A. Baga, D. I. Fotiadis, A. C. Likas, A. A. Papachristos, and K. N. Malizos, “An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones,” IEEE Trans. Biomed. Eng. 52(9), 1597–1608 (2005).CrossRefGoogle Scholar
  25. 25.
    G. T. Anast, T. Fields, and I. M. Siegel, “Ultrasonic technique for the evaluation of bone fractures,” Am. J. Phys. Med. 37, 157–159 (1958).Google Scholar
  26. 26.
    E. Bossy, M. Talmant, and P. Laugier, “Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models,” The Journal of the Acoustical Society of America 115, 2314–2324 (2004).CrossRefGoogle Scholar
  27. 27.
    C. B. Machado, W. C. de Albuquerque Pereira, M. Talmant, F. Padilla, and P. Laugier, “Computational evaluation of the compositional factors in fracture healing affecting ultrasound axial transmission measurements,” Ultrasound in Medicine & Biology 36, 1314–1326 (2010).CrossRefGoogle Scholar
  28. 28.
    M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “The effect of boundary conditions on guided wave propagation in two dimensional models of healing bone”, Ultrasonics 48, 598–606 (2008).Google Scholar
  29. 29.
    M. Molero and L. Medina, “Comparison of phase velocity in trabecular bone mimicking-phantoms by time domain numerical (EFIT) and analytical multiple scattering approaches,” Ultrasonics 52, 809–814 (2012).CrossRefGoogle Scholar
  30. 30.
    P. Nicholson, P. Moilanen, T. Kärkkäinen, J. Timonen, and S. Cheng, “Guided ultrasonic waves in long bones: modelling, experiment and application,” Physiological Measurements 23, 755–768 (2002).CrossRefGoogle Scholar
  31. 31.
    E. Bossy, M. Talmant, and P. Laugier, “Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2d simulation study,” Journal of the Acoustical Society of America 112, 297–307 (2002).CrossRefGoogle Scholar
  32. 32.
    P. Moilanen, M. Talmant, V. Bousson, P. H. F. Nicholson, S. Cheng, J. Timonen, and P. Laugier, “Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments,” Journal of the Acoustical Society of America 122, 1818–1826 (2007).CrossRefGoogle Scholar
  33. 33.
    V.-H. Nguyen and S. Naili, “Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method,” International Journal for Numerical Methods in Biomedical Engineering 28, 861–876 (2012).MathSciNetCrossRefGoogle Scholar
  34. 34.
    D. Rohrbach, G. Grondin, P. Laugier, R. Barkmann, and K. Raum, “Evidence based numerical ultrasound simulations at the human femoral neck,” Biomedizinische Technik, Rostock, conference proceeding (2010).Google Scholar
  35. 35.
    P. Moilanen, P. H. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, “Measuring guided waves in long bones: modeling and experiments in free and immersed plates, Ultrasound in Medicine and Biology 32, 709–719 (2006).CrossRefGoogle Scholar
  36. 36.
    M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone,” Journal of the Acoustical Society of America 125 (2009).Google Scholar
  37. 37.
    A. Papacharalampopoulos, M. G. Vavva, V. C. Protopappas, and D. I. Fotiadis, “A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin’s Form II gradient elastic theory”, Journal of the Acoustical Society of America 130, 1060–1070 (2011).CrossRefGoogle Scholar
  38. 38.
    M. Ben-Amoz, “A dynamic theory for composite materials,” Journ. Appl. Math. Phys. 27, 83–99 (1976).CrossRefMATHGoogle Scholar
  39. 39.
    G. M. Luo, J. J. Kaufman, A. Chiabrera, B. Bianco, J. H. Kinney, D. Haupt, J. T. Ryaby, and R. S. Siffert, “Computational methods for ultrasonic bone assessment,” Ultrasound in Medicine and Biology 25, 823–830 (1999).CrossRefGoogle Scholar
  40. 40.
    A. Hosokawa, “Simulation of ultrasound propagation through bovine cancellous bone using elastic and biot’s finite-difference time-domain methods,” Journal of the Acoustical Society of America 118, 1782–1789 (2005).CrossRefGoogle Scholar
  41. 41.
    A. Hosokawa and T. Otani, “Ultrasonic wave propagation in bovine cancellous bone,” Journal of the Acoustical Society of America 101, 558–562 (1997).CrossRefGoogle Scholar
  42. 42.
    A. Hosokawa, “Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time domain methods,” Ultrasonics 44 (Suppl 1), E227–E231 (2006).CrossRefGoogle Scholar
  43. 43.
    A. Hosokawa, “Numerical simulations of change in trabecular structure due to bone remodeling under ultrasound propagation,” Journal of Mechanics in Medicine and Biology 13, (2013).Google Scholar
  44. 44.
    V.- H. Nguyen, S. Naili, and Sansalone, “Simulation of ultrasonic wave propagation in anisotropic cancellous bone immersed in fluid,” Wave Motion 47, 117–129 (2010).Google Scholar
  45. 45.
    K. A. Wear, “The dependencies of phase velocity and dispersion on cancellous thickness and spacing in cancellous bone-mimicking phantoms”, Journal of the Acoustical Society of America 118, 1186–1192 (2005).CrossRefGoogle Scholar
  46. 46.
    G. Haiat, A. Lhemery, F. Renaud, F. Padilla, P. Laugier, and S. Naili, “Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption,” J Acoust Soc Am 124(6), 4047–4058 (2008).CrossRefGoogle Scholar
  47. 47.
    R. B. Yang, and A. K. Mal, “Multiple-scattering of elastic waves in a fiber-reinforced composite,” Journal of the Mechanics and Physics of Solids 42, 1945–1968 (1994).CrossRefMATHGoogle Scholar
  48. 48.
    G. Haïat and S. Naili, “Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model,” Biomechanics and Modeling in Mechanobiology 10, 95–108 (2011).CrossRefGoogle Scholar
  49. 49.
    E. Bossy, F. Padilla, F. Peyrin and P. Laugier, “Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography”, Phys. Med. Biol. 50, 5545–5556 (2005).CrossRefGoogle Scholar
  50. 50.
    P. Moilanen, M. Talmant, P. H. F. Nicholson, S. L. Cheng, J. Timonen, and P. Laugier, “Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments,” The Journal of the Acoustical Society of America 122(4), 2439–2445 (2007).CrossRefGoogle Scholar
  51. 51.
    P. Moilanen, M. Talmant, V. Kilappa, P. Nicholson, S. L. Cheng, J. Timonen, and P. Laugier, “Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius”, Journal of the Acoustical Society of America 124, 2364–2373 (2008).CrossRefGoogle Scholar
  52. 52.
    J. Chen, L. Cheng, Z. Su, and L. Qin, “Modeling elastic waves in coupled media: Estimate of soft tissue influence and application to quantitative ultrasound”, Ultrasonics 53, 350–362 (2013).CrossRefGoogle Scholar
  53. 53.
    E. Bossy, F. Padilla, F. Peyrin, and P. Laugier, “Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography,” Physics in Medicine and Biology 50, 5545–5556 (2005).CrossRefGoogle Scholar
  54. 54.
    E. Bossy, P. Laugier, F. Peyrin, and F. Padilla, “Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur,” Journal of the Acoustical Society of America 122, 2469–2475 (2007).CrossRefGoogle Scholar
  55. 55.
    Y. Nagatani, K. Mizuno, T. Saeki, M. Matsukawa, T. Sakaguchi, and H. Hosoi, “Numerical and experimental study on the wave attenuation in bone – fdtd simulation of ultrasound propagation in cancellous bone,” Ultrasonics 48, 607–612 (2008).CrossRefGoogle Scholar
  56. 56.
    A. Hosokawa, “Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1219–1233 (2008).CrossRefGoogle Scholar
  57. 57.
    G. Haiat, F. Padilla, F. Peyrin, and P. Laugier, “Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy,” The Journal of the Acoustical Society of America 123(3), 1694–1705 (2008).CrossRefGoogle Scholar
  58. 58.
    G. Haiat, F. Padilla, M. Svrcekova, Y. Chevalier, D. Pahr, F. Peyrin, P. Laugier, and P. Zysset, “Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach,” Journal of Biomechanics 42(13), 2033–2039 (2009).Google Scholar
  59. 59.
    M. G. Vavva, V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos “Ultrasound velocity measurements on healing bones using the external fixation pins: a two-dimensional simulation study,” Journal of the Serbian Society for Computational Mechanics 2(2), 1–15 (2008).Google Scholar
  60. 60.
    S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V.F. Humphrey, “An in vitro study of ultrasound signal loss across simple fractures in cortical bone mimics and bovine cortical bone samples,” Bone (2006).Google Scholar
  61. 61.
    S. P. Dodd, A. W. Miles, S. Gheduzzi, V. F. Humphrey, and J. L. Cunningham, “Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture,” Computer Methods in Biomechanics and Biomedical Engineering 10, 371–375 (2007).CrossRefGoogle Scholar
  62. 62.
    S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, “Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study,” Ultrasound in Medicine&Biology 34(3), 454–462 (2008).CrossRefGoogle Scholar
  63. 63.
    V. T. Potsika, V. C. Protopappas, M. G. Vavva, K. Raum, D. Rohrbach, D. Polyzos, and D. I. Fotiadis, “Two-dimensional simulations of wave propagation in healing long bones based on scanning acoustic microscopy images,” IEEE International Ultrasonics Symposium, Dresden (2012).Google Scholar
  64. 64.
    V. T. Potsika, V. C. Protopappas, M. G. Vavva, K. Raum, D. Rohrbach, D. Polyzos, and D. I. Fotiadis, “An iterative effective medium approximation for wave dispersion and attenuation estimations in the healing of long bones,” 5th European Symposium on Ultrasonic Characterization of Bone, Granada (2013).Google Scholar
  65. 65.
    B. Preininger, S. Checa, F.L. Molnar, P. Fratzl, G.N. Duda, and K. Raum, “Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy,” Ultrasound in Medicine & Biology 37, 474–483 (2011).CrossRefGoogle Scholar
  66. 66.
    D. G. Aggelis, S. V. Tsinopoulos, and D. Polyzos, “An iterative effective medium approximation for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions,” Journal of the Acoustical Society of America 9, 3443–3452 (2004).CrossRefGoogle Scholar
  67. 67.
    V. C. Protopappas, I. C. Kourtis, L. C. Kourtis, K. N. Malizos, C. V. Massalas, and D. I. Fotiadis, “Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones”, Journal of the Acoustical Society of America 121, 3907–3921 (2007).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Vassiliki T. Potsika
    • 1
  • Maria G. Vavva
    • 2
  • Vasilios C. Protopappas
    • 1
  • Demosthenes Polyzos
    • 2
  • Dimitrios I. Fotiadis
    • 1
  1. 1.Unit of Medical Technology and Intelligent Information Systems, Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  2. 2.Department of Mechanical Engineering and AeronauticsUniversity of PatrasPatrasGreece

Personalised recommendations