Skip to main content

Computational Modeling of Ultrasound Wave Propagation in Bone

  • Chapter
  • First Online:
Computational Medicine in Data Mining and Modeling

Abstract

Simulation of ultrasound wave propagation in bones has attracted the interest of many research groups worldwide during the last two decades. Recently, powerful numerical tools have been developed which make efficient use of memory resources and computation time and render the solution of complicated transient problems for complex and nonhomogeneous geometries feasible even to nonexperts in modeling. The availability of advanced computer-aided engineering tools in combination with high-resolution two-dimensional (2D) and three-dimensional (3D) images of bone at different scales has significantly contributed to the development of more realistic computational models of bone extending thus our understanding of the underlying mechanisms of ultrasound propagation. Computational studies mostly exploit measurements of the propagation velocity and attenuation and more recently of guided waves for characterizing bone status and health in cases of pathologies or traumas. However, accurate and safe conclusions from numerical simulation should be drawn only after careful interpretation of the results and preferably in combination with experimental and clinical findings. In this chapter, we present a comprehensive state of the art of the existing computational studies on ultrasound wave propagation in intact and pathologic bones and discuss interesting directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Doblaré, J. M. Garciá, and M. J. Gómez, “Modelling bone tissue fracture and healing: a review,” Engineering Fracture Mechanics 71, 1809–1840 (2004).

    Article  Google Scholar 

  2. P. Laugier and G. Haïat, “Bone quantitative ultrasound,” Springer Dordrecht Heidelberg London New York: Science+Business Media B.V., 4–5 (2011).

    Google Scholar 

  3. J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Medical Engineering & Physics 20, 92–102 (1998).

    Article  Google Scholar 

  4. A. Ascenzi, P. Baschieri, and A. Benvenuti, “The torsional properties of single selected osteons,” Journal of Biomechanics 27(7), 875–884 (1994).

    Article  Google Scholar 

  5. R. S. Lakes and J. F. C.Yang, “Micropolar elasticity in bone: rotation modulus,” 18th Midwest Mechanics Conference, Developments in Mechanics (1983).

    Google Scholar 

  6. P. Laugier and G. Haïat, “Bone quantitative ultrasound,” Springer Dordrecht Heidelberg London New York: Science+Business Media B.V. (2011).

    Book  Google Scholar 

  7. P. Molero, P. H. F. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, “Assessment of the cortical bone thickness using ultrasonic guided waves: modeling and in vitro study,” 33(2), 254–62 (2007).

    Google Scholar 

  8. P. J. Meunier, C. Roux, S. Ortolani, M. Diaz-Curiel, J. Compston, P. Marquis, C. Cormier, G. Isaia, J. Badurski, J. D. Wark, J. Collette, and J. Y. Reginster, “Effects of long-term strontium ranelate treatment on vertebral fracture risk in postmenopausal women with osteoporosis,” Osteoporosis International 20(10), 1663–1673 (2009).

    Article  Google Scholar 

  9. A. Tatarinov, N. Sarvazyan, and A. Sarvazyan, “Use of multiple acoustic wave modes for assessment of long bones: Model study,” Ultrasonics 43(8), 672–680 (2005).

    Article  Google Scholar 

  10. V. C. Protopappas, M. G. Vavva, D. I. Fotiadis, and K. N. Malizos, “Ultrasonic monitoring of bone fracture healing,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1243–1255 (2008).

    Article  Google Scholar 

  11. J. L. Cunningham, J. Kenwright, and C. J. Kershaw, “Biomechanical measurement of fracture healing,” J. Med. Eng. Technol. 14(3), 92–101 (1990).

    Article  Google Scholar 

  12. Y. Nakatsuchi, A. Tsuchikane, and A. Nomura, “Assessment of fracture healing in the tibia using the impulse response method,” J. Orthop. Trauma 10(1), 50–62 (1996).

    Article  Google Scholar 

  13. G. Nikiforidis, A. Bezerianos, A. Dimarogonas, and C. Sutherland, “Monitoring of fracture healing by lateral and axial vibration analysis,” Journal of Biomechanics 23(4), pp. 323–330 (1990).

    Article  Google Scholar 

  14. Y. Hirasawa, S. Takai, W. C. Kim, N. Takenaka, N. Yoshino, and Y. Watanabe, “Biomechanical monitoring of healing bone based on acoustic emission technology,” Clin. Orthop. Relat. Res. 402, 236–244 (2002).

    Article  Google Scholar 

  15. Y. Watanabe, S. Takai, Y. Arai, N. Yoshino, and Y. Hirasawa, “Prediction of mechanical properties of healing fractures using acoustic emission,” J. Orthop. Res. 19(4), 548–553 (2001).

    Article  Google Scholar 

  16. L. Claes, R. Grass, T. Schmickal, B. Kisse, C. Eggers, H. Gerngross, W. Mutschler, M. Arand, T. Wintermeyer, and A. Wentzensen, “Monitoring and healing analysis of 100 tibial shaft fractures,” Langenbecks Arch. Surg. 387(3–4), 146–152 (2002).

    Article  Google Scholar 

  17. V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos, “Guided ultrasound wave propagation in intact and healing long bones,” Ultrasound in Medicine and Biology 32, 693–708 (2006).

    Article  Google Scholar 

  18. G. Barbieri, C. H. Barbieri, N. Mazzer, and C. A. Pelá, “Ultrasound Propagation Velocity and Broadband Attenuation Can Help Evaluate the Healing Process of an Experimental Fracture,” Journal of Orthopaedic Research 29, 444–451 (2011).

    Article  Google Scholar 

  19. C. B. Machado, W. C. de Albuquerque Pereira, M. Granke, M. Talmant, F. Padilla, and P. Laugier, “Experimental and simulation results on the effect of cortical bone mineralization measurements: A model for fracture healing ultrasound monitoring,” Bone 48, 1202–1209 (2011).

    Article  Google Scholar 

  20. P. J. Gill, G. Kernohan, I. N. Mawhinney, R. A. Mollan, and R. McIlhagger, “Investigation of the mechanical properties of bone using ultrasound,” Proc. Inst. Mech. Eng. 203, 61–63 (1989).

    Article  Google Scholar 

  21. E. Maylia and L. D. Nokes, “The use of ultrasonics in orthopaedics – a review,” Technol. Health Care 7(1), 1–28 (1999).

    Article  Google Scholar 

  22. S. Saha, V. V. Rao, V. Malakanok, and J.A. Albright, “Quantitative measurement of fracture healing by ultrasound,” in Biomed. Engin. I: Recent Developments, Pergamon Press, New York, 247–249 (1982).

    Google Scholar 

  23. K. N. Malizos, A. A. Papachristos, V. C. Protopappas, and D. I. Fotiadis, “Transosseous application of low-intensity ultrasound for the enhancement and monitoring of fracture healing process in a sheep osteotomy model,” Bone 38(4), 530–539 (2006).

    Article  Google Scholar 

  24. V. C. Protopappas, D. A. Baga, D. I. Fotiadis, A. C. Likas, A. A. Papachristos, and K. N. Malizos, “An ultrasound wearable system for the monitoring and acceleration of fracture healing in long bones,” IEEE Trans. Biomed. Eng. 52(9), 1597–1608 (2005).

    Article  Google Scholar 

  25. G. T. Anast, T. Fields, and I. M. Siegel, “Ultrasonic technique for the evaluation of bone fractures,” Am. J. Phys. Med. 37, 157–159 (1958).

    Google Scholar 

  26. E. Bossy, M. Talmant, and P. Laugier, “Three-dimensional simulations of ultrasonic axial transmission velocity measurement on cortical bone models,” The Journal of the Acoustical Society of America 115, 2314–2324 (2004).

    Article  Google Scholar 

  27. C. B. Machado, W. C. de Albuquerque Pereira, M. Talmant, F. Padilla, and P. Laugier, “Computational evaluation of the compositional factors in fracture healing affecting ultrasound axial transmission measurements,” Ultrasound in Medicine & Biology 36, 1314–1326 (2010).

    Article  Google Scholar 

  28. M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “The effect of boundary conditions on guided wave propagation in two dimensional models of healing bone”, Ultrasonics 48, 598–606 (2008).

    Google Scholar 

  29. M. Molero and L. Medina, “Comparison of phase velocity in trabecular bone mimicking-phantoms by time domain numerical (EFIT) and analytical multiple scattering approaches,” Ultrasonics 52, 809–814 (2012).

    Article  Google Scholar 

  30. P. Nicholson, P. Moilanen, T. Kärkkäinen, J. Timonen, and S. Cheng, “Guided ultrasonic waves in long bones: modelling, experiment and application,” Physiological Measurements 23, 755–768 (2002).

    Article  Google Scholar 

  31. E. Bossy, M. Talmant, and P. Laugier, “Effect of bone cortical thickness on velocity measurements using ultrasonic axial transmission: a 2d simulation study,” Journal of the Acoustical Society of America 112, 297–307 (2002).

    Article  Google Scholar 

  32. P. Moilanen, M. Talmant, V. Bousson, P. H. F. Nicholson, S. Cheng, J. Timonen, and P. Laugier, “Ultrasonically determined thickness of long cortical bones: two-dimensional simulations of in vitro experiments,” Journal of the Acoustical Society of America 122, 1818–1826 (2007).

    Article  Google Scholar 

  33. V.-H. Nguyen and S. Naili, “Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method,” International Journal for Numerical Methods in Biomedical Engineering 28, 861–876 (2012).

    Article  MathSciNet  Google Scholar 

  34. D. Rohrbach, G. Grondin, P. Laugier, R. Barkmann, and K. Raum, “Evidence based numerical ultrasound simulations at the human femoral neck,” Biomedizinische Technik, Rostock, conference proceeding (2010).

    Google Scholar 

  35. P. Moilanen, P. H. Nicholson, V. Kilappa, S. Cheng, and J. Timonen, “Measuring guided waves in long bones: modeling and experiments in free and immersed plates, Ultrasound in Medicine and Biology 32, 709–719 (2006).

    Article  Google Scholar 

  36. M. G. Vavva, V. C. Protopappas, L. N. Gergidis, A. Charalambopoulos, D. I. Fotiadis, and D. Polyzos, “Velocity dispersion of guided waves propagating in a free gradient elastic plate: application to cortical bone,” Journal of the Acoustical Society of America 125 (2009).

    Google Scholar 

  37. A. Papacharalampopoulos, M. G. Vavva, V. C. Protopappas, and D. I. Fotiadis, “A numerical study on the propagation of Rayleigh and guided waves in cortical bone according to Mindlin’s Form II gradient elastic theory”, Journal of the Acoustical Society of America 130, 1060–1070 (2011).

    Article  Google Scholar 

  38. M. Ben-Amoz, “A dynamic theory for composite materials,” Journ. Appl. Math. Phys. 27, 83–99 (1976).

    Article  MATH  Google Scholar 

  39. G. M. Luo, J. J. Kaufman, A. Chiabrera, B. Bianco, J. H. Kinney, D. Haupt, J. T. Ryaby, and R. S. Siffert, “Computational methods for ultrasonic bone assessment,” Ultrasound in Medicine and Biology 25, 823–830 (1999).

    Article  Google Scholar 

  40. A. Hosokawa, “Simulation of ultrasound propagation through bovine cancellous bone using elastic and biot’s finite-difference time-domain methods,” Journal of the Acoustical Society of America 118, 1782–1789 (2005).

    Article  Google Scholar 

  41. A. Hosokawa and T. Otani, “Ultrasonic wave propagation in bovine cancellous bone,” Journal of the Acoustical Society of America 101, 558–562 (1997).

    Article  Google Scholar 

  42. A. Hosokawa, “Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time domain methods,” Ultrasonics 44 (Suppl 1), E227–E231 (2006).

    Article  Google Scholar 

  43. A. Hosokawa, “Numerical simulations of change in trabecular structure due to bone remodeling under ultrasound propagation,” Journal of Mechanics in Medicine and Biology 13, (2013).

    Google Scholar 

  44. V.- H. Nguyen, S. Naili, and Sansalone, “Simulation of ultrasonic wave propagation in anisotropic cancellous bone immersed in fluid,” Wave Motion 47, 117–129 (2010).

    Google Scholar 

  45. K. A. Wear, “The dependencies of phase velocity and dispersion on cancellous thickness and spacing in cancellous bone-mimicking phantoms”, Journal of the Acoustical Society of America 118, 1186–1192 (2005).

    Article  Google Scholar 

  46. G. Haiat, A. Lhemery, F. Renaud, F. Padilla, P. Laugier, and S. Naili, “Velocity dispersion in trabecular bone: influence of multiple scattering and of absorption,” J Acoust Soc Am 124(6), 4047–4058 (2008).

    Article  Google Scholar 

  47. R. B. Yang, and A. K. Mal, “Multiple-scattering of elastic waves in a fiber-reinforced composite,” Journal of the Mechanics and Physics of Solids 42, 1945–1968 (1994).

    Article  MATH  Google Scholar 

  48. G. Haïat and S. Naili, “Independent scattering model and velocity dispersion in trabecular bone: comparison with a multiple scattering model,” Biomechanics and Modeling in Mechanobiology 10, 95–108 (2011).

    Article  Google Scholar 

  49. E. Bossy, F. Padilla, F. Peyrin and P. Laugier, “Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography”, Phys. Med. Biol. 50, 5545–5556 (2005).

    Article  Google Scholar 

  50. P. Moilanen, M. Talmant, P. H. F. Nicholson, S. L. Cheng, J. Timonen, and P. Laugier, “Ultrasonically determined thickness of long cortical bones: Three-dimensional simulations of in vitro experiments,” The Journal of the Acoustical Society of America 122(4), 2439–2445 (2007).

    Article  Google Scholar 

  51. P. Moilanen, M. Talmant, V. Kilappa, P. Nicholson, S. L. Cheng, J. Timonen, and P. Laugier, “Modeling the impact of soft tissue on axial transmission measurements of ultrasonic guided waves in human radius”, Journal of the Acoustical Society of America 124, 2364–2373 (2008).

    Article  Google Scholar 

  52. J. Chen, L. Cheng, Z. Su, and L. Qin, “Modeling elastic waves in coupled media: Estimate of soft tissue influence and application to quantitative ultrasound”, Ultrasonics 53, 350–362 (2013).

    Article  Google Scholar 

  53. E. Bossy, F. Padilla, F. Peyrin, and P. Laugier, “Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography,” Physics in Medicine and Biology 50, 5545–5556 (2005).

    Article  Google Scholar 

  54. E. Bossy, P. Laugier, F. Peyrin, and F. Padilla, “Attenuation in trabecular bone: a comparison between numerical simulation and experimental results in human femur,” Journal of the Acoustical Society of America 122, 2469–2475 (2007).

    Article  Google Scholar 

  55. Y. Nagatani, K. Mizuno, T. Saeki, M. Matsukawa, T. Sakaguchi, and H. Hosoi, “Numerical and experimental study on the wave attenuation in bone – fdtd simulation of ultrasound propagation in cancellous bone,” Ultrasonics 48, 607–612 (2008).

    Article  Google Scholar 

  56. A. Hosokawa, “Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation,” IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 55, 1219–1233 (2008).

    Article  Google Scholar 

  57. G. Haiat, F. Padilla, F. Peyrin, and P. Laugier, “Fast wave ultrasonic propagation in trabecular bone: numerical study of the influence of porosity and structural anisotropy,” The Journal of the Acoustical Society of America 123(3), 1694–1705 (2008).

    Article  Google Scholar 

  58. G. Haiat, F. Padilla, M. Svrcekova, Y. Chevalier, D. Pahr, F. Peyrin, P. Laugier, and P. Zysset, “Relationship between ultrasonic parameters and apparent trabecular bone elastic modulus: a numerical approach,” Journal of Biomechanics 42(13), 2033–2039 (2009).

    Google Scholar 

  59. M. G. Vavva, V. C. Protopappas, D. I. Fotiadis, and K. N. Malizos “Ultrasound velocity measurements on healing bones using the external fixation pins: a two-dimensional simulation study,” Journal of the Serbian Society for Computational Mechanics 2(2), 1–15 (2008).

    Google Scholar 

  60. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V.F. Humphrey, “An in vitro study of ultrasound signal loss across simple fractures in cortical bone mimics and bovine cortical bone samples,” Bone (2006).

    Google Scholar 

  61. S. P. Dodd, A. W. Miles, S. Gheduzzi, V. F. Humphrey, and J. L. Cunningham, “Modelling the effects of different fracture geometries and healing stages on ultrasound signal loss across a long bone fracture,” Computer Methods in Biomechanics and Biomedical Engineering 10, 371–375 (2007).

    Article  Google Scholar 

  62. S. P. Dodd, J. L. Cunningham, A. W. Miles, S. Gheduzzi, and V. F. Humphrey, “Ultrasound transmission loss across transverse and oblique bone fractures: an in vitro study,” Ultrasound in Medicine&Biology 34(3), 454–462 (2008).

    Article  Google Scholar 

  63. V. T. Potsika, V. C. Protopappas, M. G. Vavva, K. Raum, D. Rohrbach, D. Polyzos, and D. I. Fotiadis, “Two-dimensional simulations of wave propagation in healing long bones based on scanning acoustic microscopy images,” IEEE International Ultrasonics Symposium, Dresden (2012).

    Google Scholar 

  64. V. T. Potsika, V. C. Protopappas, M. G. Vavva, K. Raum, D. Rohrbach, D. Polyzos, and D. I. Fotiadis, “An iterative effective medium approximation for wave dispersion and attenuation estimations in the healing of long bones,” 5th European Symposium on Ultrasonic Characterization of Bone, Granada (2013).

    Google Scholar 

  65. B. Preininger, S. Checa, F.L. Molnar, P. Fratzl, G.N. Duda, and K. Raum, “Spatial-temporal mapping of bone structural and elastic properties in a sheep model following osteotomy,” Ultrasound in Medicine & Biology 37, 474–483 (2011).

    Article  Google Scholar 

  66. D. G. Aggelis, S. V. Tsinopoulos, and D. Polyzos, “An iterative effective medium approximation for wave dispersion and attenuation predictions in particulate composites, suspensions and emulsions,” Journal of the Acoustical Society of America 9, 3443–3452 (2004).

    Article  Google Scholar 

  67. V. C. Protopappas, I. C. Kourtis, L. C. Kourtis, K. N. Malizos, C. V. Massalas, and D. I. Fotiadis, “Three-dimensional finite element modeling of guided ultrasound wave propagation in intact and healing long bones”, Journal of the Acoustical Society of America 121, 3907–3921 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassiliki T. Potsika .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Potsika, V.T., Vavva, M.G., Protopappas, V.C., Polyzos, D., Fotiadis, D.I. (2013). Computational Modeling of Ultrasound Wave Propagation in Bone. In: Rakocevic, G., Djukic, T., Filipovic, N., Milutinović, V. (eds) Computational Medicine in Data Mining and Modeling. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8785-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8785-2_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8784-5

  • Online ISBN: 978-1-4614-8785-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics