Skip to main content

Pulmonary Circulation

  • Chapter
  • First Online:
High Altitude

Abstract

Increased pulmonary vascular resistance (PVR) and pulmonary artery pressure (Ppa) upon ascent to high altitude universally occur in humans and other mammals, although the magnitude can vary almost five-fold among individuals, across species, and with time at altitude from years to many generations. The mechanisms that lead to hypoxic pulmonary hypertension are numerous and have differing contributions to the pressure measured at any one time. The first and best characterized response is acute hypoxic pulmonary vasoconstriction (HPV). Its physiologic relevance or advantage, if any, in healthy humans moving to altitude remains uncertain, but when it is very excessive it can lead within days to high altitude pulmonary edema (HAPE). Sustained very high Ppa over weeks and months can lead to congestive right heart failure of high altitude also known as subacute mountain sickness (SMS) or “cor pulmonale or acute right heart failure of high altitude”. With longer durations of high pressure in the pulmonary circulation there can be within days sufficient remodelling of the vasculature to protect the pulmonary capillaries, hence avoid HAPE, and within weeks compensatory changes in the right heart to overcome the higher pulmonary vascular resistance and thus avoid SMS. This condition of high altitude pulmonary hypertension (HAPH) is now recognized as a maladaptation to long-term residency at high altitude in some but not all high altitude populations. In this chapter, we will discuss the different aspects of the pulmonary circulation at altitude from the normal physiological response to environmental hypoxia to its contribution to the pathophysiology of high altitude related diseases and review in depth the work of the last decade in these areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grover RF, Wagner WW, McMurtry IF, Reeves JT. Pulmonary circulation. In: Handbook of physiology: the cardiovascular system. Peripheral circulation and organ blood flow. Sect. 2, vol III, pt. 1, chapter 4. Besthesda, MD; 1985. p. 103–36.

    Google Scholar 

  2. Sommer N, Dietrich A, Schermuly RT, et al. Regulation of hypoxic pulmonary vasoconstriction: basic mechanisms. Eur Respir J. 2008;32:1639–51.

    PubMed  CAS  Google Scholar 

  3. Wagner Jr WW, Latham LP, Capen RL. Capillary recruitment during airway hypoxia: role of pulmonary artery pressure. J Appl Physiol. 1979;47:383–7.

    PubMed  Google Scholar 

  4. Naeije R, Brimioulle S. Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure. Crit Care. 2001;5:67–71.

    PubMed  CAS  Google Scholar 

  5. Morin FC, Egan EA. Pulmonary hemodynamics in fetal lambs during development at normal and increased oxygen tension. J Appl Physiol. 1992;73:213–8.

    PubMed  Google Scholar 

  6. Maggiorini M. High altitude-induced pulmonary oedema. Cardiovasc Res. 2006;72:41–50.

    PubMed  CAS  Google Scholar 

  7. Dehnert C, Berger MM, Mairbaurl H, Bartsch P. High altitude pulmonary edema: a pressure-induced leak. Respir Physiol Neurobiol. 2007;158:266–73.

    PubMed  Google Scholar 

  8. Sui GJ, Liu Y, Cheng XS, et al. Subacute infantile mountain sickness. J Pathol. 1988;155:161–70.

    PubMed  CAS  Google Scholar 

  9. Anand IS, Malhotra RM, Chandrashekhar Y, et al. Adult subacute mountain sickness—a syndrome of congestive heart failure in man at very high altitude. Lancet. 1990;335:561–5.

    PubMed  CAS  Google Scholar 

  10. Hecht HH, Kuida H, Lange RL, et al. Brisket disease. Am J Med. 1962;32:171–83.

    PubMed  CAS  Google Scholar 

  11. Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev. 2012;92:367–520.

    PubMed  CAS  Google Scholar 

  12. Hakim TS, Michel RP, Minami H, Chang HK. Site of pulmonary hypoxic vasoconstriction studied with arterial and venous occlusion. J Appl Physiol. 1983;54:1298–302.

    PubMed  CAS  Google Scholar 

  13. Audi SH, Dawson CA, Rickaby DA, Linehan JH. Localization of the sites of pulmonary vasomotion by use of arterial and venous occlusion. J Appl Physiol. 1991;70:2126–36.

    PubMed  CAS  Google Scholar 

  14. Wang L, Yin J, Nickles HT, Ranke H, et al. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest. 2012;122:4218–30.

    PubMed  CAS  Google Scholar 

  15. Conhaim RL, Burt Olson Jr E, Vidruk EH, et al. Acute hypoxia does not alter inter-alveolar perfusion distribution in unanesthetized rats. Respir Physiol Neurobiol. 2008;160:277–83.

    PubMed  Google Scholar 

  16. Watson KE, Dovi WF, Conhaim RL. Evidence for active control of perfusion within lung microvessels. J Appl Physiol. 2012;112:48–53.

    PubMed  CAS  Google Scholar 

  17. Morrell NW, Nijran KS, Biggs T, Seed WA. Magnitude and time course of acute hypoxic pulmonary vasoconstriction in man. Respir Physiol. 1995;100:271–81.

    PubMed  CAS  Google Scholar 

  18. Deem S, Hedges RG, Kerr ME, Swenson ER. Acetazolamide reduces hypoxic pulmonary vasoconstriction in isolated perfused rabbit lungs. Respir Physiol. 2000;123:109–19.

    PubMed  CAS  Google Scholar 

  19. Talbot NP, Balanos GM, Dorrington KL, Robbins PA. Two temporal components within the human pulmonary vascular response to approximately 2 h of isocapnic hypoxia. J Appl Physiol. 2005;98:1125–39.

    PubMed  Google Scholar 

  20. Aaronson PI, Robertson TP, Ward JP. Endothelium-derived mediators and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2002;132:107–20.

    PubMed  CAS  Google Scholar 

  21. Weigand L, Shimoda LA, Sylvester JT. Enhancement of myofilament calcium sensitivity by acute hypoxia in rat distal pulmonary arteries. Am J Physiol. 2011;301:L380–738.

    CAS  Google Scholar 

  22. Weir EK, Olschewski A. Role of ion channels in acute and chronic responses of the pulmonary vasculature to hypoxia. Cardiovasc Res. 2006;71:630–41.

    PubMed  CAS  Google Scholar 

  23. Schumacker PT. Lung cell hypoxia: role of mitochondrial reactive oxygen species signaling in triggering responses. Proc Am Thorac Soc. 2011;8:477–784.

    PubMed  CAS  Google Scholar 

  24. Bailey DM, Dehnert C, Luks AM, et al. High-altitude pulmonary hypertension is associated with a free radical-mediated reduction in pulmonary nitric oxide bioavailability. J Physiol. 2010;588:4837–47.

    PubMed  CAS  Google Scholar 

  25. Irwin DC, McCord JM, Nozik-Grayck E, et al. A potential role for reactive oxygen species and the HIF-1alpha-VEGF pathway in hypoxia-induced pulmonary vascular leak. Free Radic Biol Med. 2009;47:55–61.

    PubMed  CAS  Google Scholar 

  26. Zhang F, Kaide JI, Yang L, et al. CO modulates pulmonary vascular response to acute hypoxia: relation to endothelin. Am J Physiol. 2004;286:H137–44.

    CAS  Google Scholar 

  27. Motterlini R, Foresti R, Bassi R, et al. Endothelial heme oxygenase-1 induction by hypoxia. Modulation by inducible nitric-oxide synthase and S-nitrosothiols. J Biol Chem. 2000;275:13613–20.

    PubMed  CAS  Google Scholar 

  28. Madden JA, Ahlf SB, Dantuma MW, et al. Precursors and inhibitors of hydrogen sulfide synthesis affect acute hypoxic pulmonary vasoconstriction in the intact lung. J Appl Physiol. 2012;112:411–8.

    PubMed  CAS  Google Scholar 

  29. Skovgaard N, Gouliaev A, Aalling M, Simonsen U. The role of endogenous H2S in cardiovascular physiology. Curr Pharm Biotechnol. 2011;12:1385–93.

    PubMed  CAS  Google Scholar 

  30. Evans AM, Hardie DG, Peers C, Mahmoud A. Hypoxic pulmonary vasoconstriction: mechanisms of oxygen-sensing. Curr Opin Anaesthesiol. 2011;24:13–20.

    PubMed  Google Scholar 

  31. Palareti G, Coccheri S, Poggi M, et al. Changes in the rheologic properties of blood after a high altitude expedition. Angiology. 1984;35:451–8.

    PubMed  CAS  Google Scholar 

  32. Hakim TS, Macek AS. Role of erythrocyte deformability in the acute hypoxic pressor response in the pulmonary vasculature. Respir Physiol. 1988;72:95–107.

    PubMed  CAS  Google Scholar 

  33. Kaniewski WS, Hakim TS, Freedman JC. Cellular deformability of normoxic and hypoxic mammalian red blood cells. Biorheology. 1994;31:91–101.

    PubMed  CAS  Google Scholar 

  34. Manier G, Guenard H, Castaing Y, Varene N, Vargas E. Pulmonary gas exchange in Andean natives with excessive polycythemia—effect of hemodilution. J Appl Physiol. 1988;65:2107–17.

    PubMed  CAS  Google Scholar 

  35. Kerbaul F, Van der Linden P, Pierre S, et al. Prevention of hemodilution-induced inhibition of hypoxic pulmonary vasoconstriction by N-acetylcysteine in dogs. Anesth Analg. 2004;99:547–51.

    PubMed  CAS  Google Scholar 

  36. Deem S, Swenson ER, Alberts MK, et al. Red-blood-cell augmentation of hypoxic pulmonary vasoconstriction: hematocrit dependence and the importance of nitric oxide. Am J Respir Crit Care Med. 1998;157:1181–6.

    PubMed  CAS  Google Scholar 

  37. Kiefmann R, Rifkind JM, Nagababu E, Bhattacharya J. Red blood cells induce hypoxic lung inflammation. Blood. 2008;111:5205–14.

    PubMed  CAS  Google Scholar 

  38. Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992;258:1898–902.

    PubMed  CAS  Google Scholar 

  39. Crawford JH, Isbell TS, Huang Z, et al. Hypoxia, red blood cells, and nitrite regulate NO-dependent hypoxic vasodilation. Blood. 2006;107:566–74.

    PubMed  CAS  Google Scholar 

  40. Sprague RS, Olearczyk JJ, Spence DM, et al. Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol. 2003;285:H693–700.

    CAS  Google Scholar 

  41. Kummer W. Pulmonary vascular innervation and its role in responses to hypoxia: size matters! Proc Am Thorac Soc. 2011;8:471–6.

    PubMed  CAS  Google Scholar 

  42. McMahon TJ, Hood JS, Kadowitz PJ. Pulmonary vasodilator response to vagal stimulation is blocked by N omega-nitro-L-arginine methyl ester in the cat. Circ Res. 1992;70:364–9.

    PubMed  CAS  Google Scholar 

  43. Naeije R, Lejeune P, Leeman M, et al. Pulmonary vascular responses to surgical chemodenervation and chemical sympathectomy in dogs. J Appl Physiol. 1989;66:42–50.

    PubMed  CAS  Google Scholar 

  44. Levitzky MG, Newell JC, Dutton RE. Effect of chemoreceptor denervation on the pulmonary vascular response to atelectasis. Respir Physiol. 1978;35: 43–51.

    PubMed  CAS  Google Scholar 

  45. Chapleau MW, Wilson LB, Gregory TJ, Levitzky MG. Chemoreceptor stimulation interferes with regional hypoxic pulmonary vasoconstriction. Respir Physiol. 1988;71:185–200.

    PubMed  CAS  Google Scholar 

  46. Wilson LB, Levitzky MG. Chemoreflex blunting of hypoxic pulmonary vasoconstriction is vagally mediated. J Appl Physiol. 1989;66:782–91.

    PubMed  CAS  Google Scholar 

  47. Marshall JM. Peripheral chemoreceptors and cardiovascular regulation. Physiol Rev. 1994;74:543–94.

    PubMed  CAS  Google Scholar 

  48. Lejeune P, Vachiery JL, Leeman M, et al. Absence of parasympathetic control of pulmonary vascular pressure-flow plots in hyperoxic and hypoxic dogs. Respir Physiol. 1989;78(2):123–33. PubMed PMID: 2609023. Epub 1989/11/01. eng.

    PubMed  CAS  Google Scholar 

  49. Lodato RF, Michael JR, Murray PA. Absence of neural modulation of hypoxic pulmonary vasoconstriction in conscious dogs. J Appl Physiol. 1988; 65(4):1481–7.

    PubMed  CAS  Google Scholar 

  50. Liu C, Smith TG, Balanos GM, et al. Lack of involvement of the autonomic nervous system in early ventilatory and pulmonary vascular acclimatization to hypoxia in humans. J Physiol. 2007;579:215–25.

    PubMed  CAS  Google Scholar 

  51. Alberts TJ, Swenson ER. Peripheral chemoreceptor responsivness and hypoxic pulmonary asoconstriction in humans. Am J Respir Crit Care Med. 2007;183:A5033.

    Google Scholar 

  52. Bartsch P, Mairbaurl H, Maggiorini M, Swenson ER. Physiological aspects of high-altitude pulmonary edema. J Appl Physiol. 2005;98:1101–10.

    PubMed  Google Scholar 

  53. Duplain H, Vollenweider L, Delabays A, et al. Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation. 1999;99:1713–8.

    PubMed  CAS  Google Scholar 

  54. Koyama S, Kobayashi T, Kubo K, et al. The increased sympathoadrenal activity in patients with high altitude pulmonary edema is centrally mediated. Jpn J Med. 1988;27:10–6.

    PubMed  CAS  Google Scholar 

  55. Hohenhaus E, Paul A, McCullough RE, et al. Ventilatory and pulmonary vascular response to hypoxia and susceptibility to high altitude pulmonary oedema. Eur Respir J. 1995;8:1825–33.

    PubMed  CAS  Google Scholar 

  56. Selland MA, Stelzner TJ, Stevens T, et al. Pulmonary function and hypoxic ventilatory response in subjects susceptible to high-altitude pulmonary edema. Chest. 1993;103:111–6.

    PubMed  CAS  Google Scholar 

  57. Lahm T, Albrecht M, Fisher AJ, et al. 17beta-Estradiol attenuates hypoxic pulmonary hypertension via estrogen receptor-mediated effects. Am J Respir Crit Care Med. 2012;185:965–80.

    PubMed  CAS  Google Scholar 

  58. Cargill RI, Lipworth BJ. Atrial natriuretic peptide and brain natriuretic peptide in cor pulmonale. Hemodynamic and endocrine effects. Chest. 1996;110:1220–5.

    PubMed  CAS  Google Scholar 

  59. Cargill RI, Lipworth BJ. Acute effects of hypoxaemia and angiotensin II in the human pulmonary vascular bed. Pulm Pharmacol. 1994;7:305–10.

    PubMed  CAS  Google Scholar 

  60. Thomas T, Marshall JM. The role of adenosine in hypoxic pulmonary vasoconstriction in the anaesthetized rat. Exp Physiol. 1993;78:541–3.

    PubMed  CAS  Google Scholar 

  61. Herget J, Frydrychova M, Kawikova I, McMurtry IF. Thyroxine treatment increases the hypoxic pulmonary vasoconstriction in isolated lungs from thyroidectomized rats. Bull Eur Physiopathol Respir. 1987;23:217–21.

    PubMed  CAS  Google Scholar 

  62. Stobdan T, Karar J, Pasha MA. High altitude adaptation: genetic perspectives. High Alt Med Biol. 2008;9:140–7.

    PubMed  CAS  Google Scholar 

  63. Leon-Velarde F, Mejia O. Gene expression in chronic high altitude diseases. High Alt Med Biol. 2008;9:130–9.

    PubMed  CAS  Google Scholar 

  64. Fred HL, Schmith AM, Bates T, Hecht HH. Acute pulmonary edema of altitude. Circulation. 1962;25: 929–37.

    Google Scholar 

  65. Scoggin CH, Hyers TM, Reeves JT, Grover RF. High altitude pulmonary edema in the children and young adults of Leadville, Colorado. N Engl J Med. 1977;297:1269–71.

    PubMed  CAS  Google Scholar 

  66. Lorenzo VF, Yang Y, Simonson TS, et al. Genetic adaptation to extreme hypoxia: study of high-altitude pulmonary edema in a three-generation Han Chinese family. Blood Cells Mol Dis. 2009;43:221–5.

    PubMed  Google Scholar 

  67. Balanos GM, Talbot NP, Dorrington KL, Robbins PA. Human pulmonary vascular response to 4 h of hypercapnia and hypocapnia measured using Doppler echocardiography. J Appl Physiol. 2003;94:1543–51.

    PubMed  Google Scholar 

  68. Tsai BM, Wang M, Pitcher JM, et al. Hypoxic pulmonary vasoconstriction and pulmonary artery tissue cytokine expression are mediated by protein kinase C. Am J Physiol. 2004;287:L1215–9.

    CAS  Google Scholar 

  69. Petersen B, Austen KF, Bloch KD, et al. Cysteinyl leukotrienes impair hypoxic pulmonary vasoconstriction in endotoxemic mice. Anesthesiology. 2011;115: 804–11.

    PubMed  CAS  Google Scholar 

  70. Johnson D, Hurst T, Wilson T, et al. NG-monomethyl-L-arginine does not restore loss of hypoxic pulmonary vasoconstriction induced by TNF-alpha. J Appl Physiol. 1993;75:618–25.

    PubMed  CAS  Google Scholar 

  71. Savale L, Tu L, Rideau D, Izziki M, Maitre B, Adnot S, et al. Impact of interleukin-6 on hypoxia-induced pulmonary hypertension and lung inflammation in mice. Respir Res. 2009;10:6–10.

    PubMed  Google Scholar 

  72. Petersen B, Bloch KD, Ichinose F, et al. Activation of Toll-like receptor 2 impairs hypoxic pulmonary vasoconstriction in mice. Am J Physiol. 2008;294: L300–8.

    CAS  Google Scholar 

  73. De Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: the role of nitric oxide in sepsis. Expert Rev Respir Med. 2009;3:511–21.

    PubMed  Google Scholar 

  74. Smith TG, Balanos GM, Croft QP, et al. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. J Physiol. 2008;586: 5999–6005.

    PubMed  CAS  Google Scholar 

  75. Smith TG, Talbot NP, Privat C, et al. Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. JAMA. 2009;302:1444–50.

    PubMed  CAS  Google Scholar 

  76. Knowles HJ, Raval RR, Harris AL, Ratcliffe PJ. Effect of ascorbate on the activity of hypoxia-inducible factor in cancer cells. Cancer Res. 2003;63:1764–8.

    PubMed  CAS  Google Scholar 

  77. Engebretsen BJ, Irwin D, Valdez ME. e tal. Acute hypobaric hypoxia (5486 m) induces greater pulmonary HIF-1 activation in hilltop compared to madison rats. High Alt Med Biol. 2007;8:312–21.

    PubMed  CAS  Google Scholar 

  78. Shimoda LA, Manalo DJ, Sham JS, et al. Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol. 2001;281:L202–8.

    CAS  Google Scholar 

  79. Yu AY, Shimoda LA, Iyer NV, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest. 1999;103:691–6.

    PubMed  CAS  Google Scholar 

  80. Kline DD, Peng YJ, Manalo DJ, et al. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci. 2002;99:821–6.

    PubMed  CAS  Google Scholar 

  81. Abud EM, Maylor J, Undem C, et al. Digoxin inhibits development of hypoxic pulmonary hypertension in mice. Proc Natl Acad Sci. 2012;109:1239–44.

    PubMed  CAS  Google Scholar 

  82. Janssen C, Lheureux O, Beloka S, et al. Digoxin increases peripheral chemosensitivity and the ventilatory response to exercise in normal subjects. Clin Exp Pharmacol Physiol. 2010;37:303–8.

    PubMed  CAS  Google Scholar 

  83. Zhang H, Qian DZ, Tan YS, et al. Digoxin and other cardiac glycosides inhibit HIF-1alpha synthesis and block tumor growth. Proc Natl Acad Sci. 2008;105:19579–86.

    PubMed  CAS  Google Scholar 

  84. Groves BM, Reeves JT, Sutton JR, et al. Operation Everest II: elevated high altitude pulmonary resistance unresponsive to oxygen. J Appl Physiol. 1987;63:521–30.

    PubMed  CAS  Google Scholar 

  85. Penaloza D, Arias-Stella J. The heart and pulmonary circulation at high altitudes: healthy highlanders and chronic mountain sickness. Circulation. 2007;115: 1132–46.

    PubMed  Google Scholar 

  86. Stenmark KR, Fagan KA, Frid MG. Hypoxia-induced pulmonary vascular remodeling: cellular and molecular mechanisms. Circ Res. 2006;99: 675–91.

    PubMed  CAS  Google Scholar 

  87. Stenmark KR, Davie NJ, Reeves JT, Frid MG. Hypoxia, leukocytes, and the pulmonary circulation. J Appl Physiol. 2005;98:715–21.

    PubMed  Google Scholar 

  88. Li M, Riddle SR, Frid MG, et al. Emergence of fibroblasts with a proinflammatory epigenetically altered phenotype in severe hypoxic pulmonary hypertension. J Immunol. 2012;187:2711–22.

    Google Scholar 

  89. Hartney T, Birari R, Venkataraman S, et al. Xanthine oxidase-derived ROS upregulate Egr-1 via ERK1/2 in PA smooth muscle cells; model to test impact of extracellular ROS in chronic hypoxia. PLoS One. 2011;6:e27531.

    PubMed  CAS  Google Scholar 

  90. Nozik-Grayck E, Stenmark KR. Role of reactive oxygen species in chronic hypoxia-induced pulmonary hypertension and vascular remodeling. Adv Exp Med Biol. 2007;618:101–12.

    PubMed  Google Scholar 

  91. Cavasin MA, Demos-Davies K, Horn TR, et al. Selective class I histone deacetylase inhibition suppresses hypoxia-induced cardiopulmonary remodeling through an antiproliferative mechanism. Circ Res. 2012;110:739–48.

    PubMed  CAS  Google Scholar 

  92. de Frutos S, Spangler R, Alo D, et al. NFATc3 mediates chronic hypoxia-induced pulmonary arterial remodeling with alpha-actin up-regulation. J Biol Chem. 2007;282:15081–9.

    PubMed  Google Scholar 

  93. de Frutos S, Caldwell E, Nitta CH, et al. NFATc3 contributes to intermittent hypoxia-induced arterial remodeling in mice. Am J Physiol. 2010;299: H356–63.

    Google Scholar 

  94. Eltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2012;364:656–65.

    Google Scholar 

  95. Chan YC, Banerjee J, Choi SY, Sen CK. miR-210: the master hypoxamir. Microcirculation. 2012;19:215–23.

    PubMed  CAS  Google Scholar 

  96. Guo L, Qiu Z, Wei L, et al. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C. Hypertension. 2012;59: 1006–13.

    PubMed  CAS  Google Scholar 

  97. Sarkar J, Gou D, Turaka P, et al. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol. 2010;299:L861–71.

    CAS  Google Scholar 

  98. Pullamsetti SS, Doebele C, Fischer A, et al. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med. 2012;185:409–19.

    PubMed  CAS  Google Scholar 

  99. Chen F, Zhang W, Liang Y, et al. Transcriptome and network changes in climbers at extreme altitudes. PLoS One. 2012;7:e31645.

    PubMed  CAS  Google Scholar 

  100. Brusselmans K, Compernolle V, Tjwa M, et al. Heterozygous deficiency of hypoxia-inducible factor-2alpha protects mice against pulmonary hypertension and right ventricular dysfunction during prolonged hypoxia. J Clin Invest. 2003;111: 1519–27.

    PubMed  CAS  Google Scholar 

  101. Formenti F, Beer PA, Croft QP, et al. Cardiopulmonary function in two human disorders of the hypoxia-inducible factor (HIF) pathway: von Hippel-Lindau disease and HIF-2alpha gain-of-function mutation. FASEB J. 2012;25:2001–11.

    Google Scholar 

  102. Kronenberg RG, Safar P, Wright F, et al. Pulmonary artery pressure and alveolar gas exchange in men during acclimatization to 12,470 ft. J Clin Invest. 1971;50:827–37.

    PubMed  CAS  Google Scholar 

  103. Vogel JHK, Goss GE, Mori M, Brammell HL. Pulmonary circulation in normal man with acute exposure to high altitude (14.260 feet). Circulation. 1966;43(suppl III):3–233.

    Google Scholar 

  104. Maggiorini M, Mélot C, Pierre S, et al. High altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001;103:2078–83.

    PubMed  CAS  Google Scholar 

  105. Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol. 1993;74(1):312–8.

    PubMed  CAS  Google Scholar 

  106. Hultgren HN, Kelly J, Miller H. Pulmonary circulation in acclimatized mean at high altitude. J Appl Physiol. 1965;20(2):233–8.

    Google Scholar 

  107. Vogel J, Weaver W, Rose R, et al. Pulmonary hypertension on exertion in normal man living at 10,150 feet (Leadville Colorado). Med Thorac. 1962;19:461–77.

    PubMed  CAS  Google Scholar 

  108. Gupta ML, Rao KS, Anand IS, et al. Lack of smooth muscle in the small pulmonary arteries of the native Ladakhi. Is the Himalayan highlander adapted? Am Rev Respir Dis. 1992;145:1201–14.

    PubMed  CAS  Google Scholar 

  109. Wagenvoort CA, Wagenvoort N. Hypoxic pulmonary vascular lesions in man at high altitude and in patients with chronic respiratory disease. Pathol Microbiol. 1973;39:276–82.

    CAS  Google Scholar 

  110. Leon-Velarde F, Maggiorini M, Reeves JT, et al. Consensus statement on chronic and subacute high altitude diseases. High Alt Med Biol. 2005;6:147–57.

    PubMed  Google Scholar 

  111. Antezana G, Leguia G, Guzman A. Hemodynamic study of high altitude pulmonary edema (12’000 ft). In: Brendel W, Zink R, editors. High altitude physiology and medicine. New York: Springer; 1982. p. 232–41.

    Google Scholar 

  112. Hultgren NH, Lopez CE, Lundberg E, Miller H. Physiologic studies of pulmonary edema at high altitude. Circulation. 1964;29:393–408.

    PubMed  CAS  Google Scholar 

  113. Kobayashi T, Koyama S, Kubo K, et al. Clinical features of patients with high altitude pulmonary edema in Japan. Chest. 1987;92:814–21.

    PubMed  CAS  Google Scholar 

  114. Koitzumi T, Kawashima A, Kubo K, et al. Radiographic and hemodynamic changes during recovery from high altitude pulmonary edema. Intern Med. 1994;33:525–8.

    Google Scholar 

  115. Roy BS, Guleria JS, Khanna PK, et al. Haemodynamic studies in high altitude pulmonary edema. Br Heart J. 1969;31:52–8.

    PubMed  CAS  Google Scholar 

  116. Penaloza D, Sime F. Circulatory dynamics during high altitude pulmonary edema. Am J Cardiol. 1969;23:368–78.

    Google Scholar 

  117. Anand IS, Wu T. Syndromes of subacute mountain sickness. High Alt Med Biol. 2004;5:156–70.

    PubMed  Google Scholar 

  118. Sobin SS, Tremer HM, Hardy JD, Chiodi HP. Changes in arteriole in acute and chronic hypoxic pulmonary hypertension and recovery in rat. J Appl Physiol. 1983;55:1445–55.

    PubMed  CAS  Google Scholar 

  119. Rabinovitch M, Gamble W, Miettinen O, Reid L. Age and sex influence on pulmonary hypertension of chronic hypoxia and on recovery. Am J Physiol. 1981;240:H62–72.

    PubMed  CAS  Google Scholar 

  120. Rabinovitch M, Konstam MA, Gamble WJ, et al. Changes in pulmonary blood flow affect vascular response to chronic hypoxia in rats. Circ Res. 1983;52:432–41.

    PubMed  CAS  Google Scholar 

  121. Berg JT, Breen EC, Fu Z, et al. Alveolar hypoxia increases gene expression of extracellular matrix proteins and platelet-derived growth factor-B in lung parenchyma. Am J Respir Crit Care Med. 1998;158:1920–8.

    PubMed  CAS  Google Scholar 

  122. Ge RL, Helun G. Current concept of chronic mountain sickness: pulmonary hypertension-related high-altitude heart disease. Wilderness Environ Med. 2001;12:190–4.

    PubMed  CAS  Google Scholar 

  123. Pei SX, Chen XJ, Si Ren BZ, et al. Chronic mountain sickness in Tibet. Q J Med. 1989;71:555–74.

    PubMed  CAS  Google Scholar 

  124. Anand IS, Chandrashekhar Y, Rao SK, et al. Body fluid compartments, renal blood flow, and hormones at 6,000 m in normal subjects. J Appl Physiol. 1993;74:1234–9.

    PubMed  CAS  Google Scholar 

  125. Wu T. A Tibetan with chronic mountain sickness followed by high altitude pulmonary edema on reentry. High Alt Med Biol. 2004;5:190–4.

    PubMed  Google Scholar 

  126. Hultgren HN, Marticorena EA. High altitude pulmonary edema. Epidemiologic observations in Peru. Chest. 1978;74:372–6.

    PubMed  CAS  Google Scholar 

  127. Fasules JW, Wiggins JW, Wolfe RR. Increased lung vasoreactivity in children from Leadville, Colorado, after recovery from high altitude. Circulation. 1985;72:957–62.

    PubMed  CAS  Google Scholar 

  128. Wu TY. Chronic mountain sickness on the Qinghai-Tibetan plateau. Chin Med J. 2005;118: 161–8.

    PubMed  Google Scholar 

  129. Gamboa R, Marticorena E. Pulmonary arterial pressure in newborn infants in high altitude. Arch Inst Biol Andina. 1971;4:55–66.

    PubMed  CAS  Google Scholar 

  130. Sime F, Banchero N, Penaloza D, et al. Pulmonary hypertension in children born and living at high altitudes. Am J Cardiol. 1963;11:143–9.

    PubMed  CAS  Google Scholar 

  131. Ge RL, Ma RY, Bao HH, et al. Changes of cardiac structure and function in pediatric patients with high altitude pulmonary hypertension in Tibet. High Alt Med Biol. 2009;10:247–52.

    PubMed  Google Scholar 

  132. Arias-Stella J, Saldaña M. The terminal portion of the pulmonary arterial tree in people native to high altitude. Circulation. 1963;28:915–25.

    PubMed  CAS  Google Scholar 

  133. Gamboa R, Marticorena E. The ductus arteriosus in the newborn infant at high altitude. Vasa. 1972;1: 192–5.

    PubMed  CAS  Google Scholar 

  134. Hultgren H. Chronic mountain sickness. In: Hultgren H, editor. High altitude medicine. San Francisco, CA: Hultgren Publication; 1997. p. 348–67.

    Google Scholar 

  135. Maignan M, Rivera-Ch M, Privat C, Leon-Velarde F, et al. Pulmonary pressure and cardiac function in chronic mountain sickness patients. Chest. 2009;135: 499–504.

    PubMed  Google Scholar 

  136. Aldashev AA, Sarybaev AS, Sydykov AS, et al. Characterization of high-altitude pulmonary hypertension in the Kyrgyz: association with angiotensin-converting enzyme genotype. Am J Respir Crit Care Med. 2002;166:1396–402.

    PubMed  Google Scholar 

  137. Kojonazarov BK, Imanov BZ, Amatov TA, et al. Noninvasive and invasive evaluation of pulmonary arterial pressure in highlanders. Eur Respir J. 2007; 29:352–6.

    PubMed  CAS  Google Scholar 

  138. Hoffman JI. Pulmonary vascular resistance and viscosity: the forgotten factor. Pediatr Cardiol. 2011;32: 557–61.

    PubMed  Google Scholar 

  139. Winslow RM, Monge CC, Brown EG, et al. Effects of hemodilution on O2 transport in high-altitude polycythemia. J Appl Physiol. 1985;59:1495–502.

    PubMed  CAS  Google Scholar 

  140. Groepenhoff H, Overbeek MJ, Mule M, et al. Exercise pathophysiology in patients with chronic mountain sickness. Chest. 2012;142:877–84.

    PubMed  CAS  Google Scholar 

  141. Vargas E, Spielvogel H. Chronic mountain sickness, optimal hemoglobin, and heart disease. High Alt Med Biol. 2006;7:138–49.

    PubMed  Google Scholar 

  142. Maggiorini M, Leon-Velarde F. High-altitude pulmonary hypertension: a pathophysiological entity to different diseases. Eur Respir J. 2003;22:1019–25.

    PubMed  CAS  Google Scholar 

  143. Grunig E, Weissmann S, Ehlken N, et al. Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation. 2009;119: 1747–57.

    PubMed  Google Scholar 

  144. Wu T, Kayser B. High altitude adaptation in Tibetans. High Alt Med Biol. 2006;7:193–208.

    PubMed  Google Scholar 

  145. Beall CM, Decker MJ, Brittenham GM, et al. An Ethiopian pattern of human adaptation to high-altitude hypoxia. Proc Natl Acad Sci U S A. 2002;99:17215–8.

    PubMed  CAS  Google Scholar 

  146. Beall CM, Laskowski D, Strohl KP, et al. Pulmonary nitric oxide in mountain dwellers. Nature. 2001;414:411–2.

    PubMed  CAS  Google Scholar 

  147. Ahsan A, Norboo T, Baig MA, Qadar Pasha MA. Simultaneous selection of the wild-type genotypes of the G894T and 4B/4A polymorphisms of NOS3 associate with high-altitude adaptation. Ann Hum Genet. 2005;69:260–7.

    PubMed  CAS  Google Scholar 

  148. Droma Y, Hanaoka M, Basnyat B, et al. Genetic contribution of the endothelial nitric oxide synthase gene to high altitude adaptation in sherpas. High Alt Med Biol. 2006;7:209–20.

    PubMed  CAS  Google Scholar 

  149. Mejia OM, Prchal JT, Leon-Velarde F, et al. Genetic association analysis of chronic mountain sickness in an Andean high-altitude population. Haematologica. 2005;90:13–9.

    PubMed  CAS  Google Scholar 

  150. Mortimer H, Patel S, Peacock AJ. The genetic basis of high-altitude pulmonary oedema. Pharmacol Ther. 2004;101:183–92.

    PubMed  CAS  Google Scholar 

  151. Bushuev VI, Miasnikova GY, Sergueeva AI, et al. Endothelin-1, vascular endothelial growth factor and systolic pulmonary artery pressure in patients with Chuvash polycythemia. Haematologica. 2006;91: 744–9.

    PubMed  CAS  Google Scholar 

  152. Hotta J, Hanaoka M, Droma Y, et al. Polymorphisms of renin-angiotensin system genes with high-altitude pulmonary edema in Japanese subjects. Chest. 2004;126:825–30.

    PubMed  CAS  Google Scholar 

  153. Rupert JL, Koehle MS. Evidence for a genetic basis for altitude-related illness. High Alt Med Biol. 2006;7:150–67.

    PubMed  CAS  Google Scholar 

  154. van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2alpha. High Alt Med Biol. 2011;12:157–67.

    PubMed  Google Scholar 

  155. Penaloza D, Sime F. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness). Am J Med. 1971;50:728–43.

    PubMed  CAS  Google Scholar 

  156. Das BB, Wolfe RR, Chan KC, et al. High-altitude pulmonary edema in children with underlying cardiopulmonary disorders and pulmonary hypertension living at altitude. Arch Pediatr Adolesc Med. 2004;158:1170–6.

    PubMed  Google Scholar 

  157. Antezana AM, Antezana G, Aparicio O, et al. Pulmonary hypertension in high-altitude chronic hypoxia: response to nifedipine. Eur Respir J. 1998;12:1181–5.

    PubMed  CAS  Google Scholar 

  158. Aldashev AA, Kojonazarov BK, Amatov TA, et al. Phosphodiesterase type 5 and high altitude pulmonary hypertension. Thorax. 2005;60:683–7.

    PubMed  CAS  Google Scholar 

  159. Maggiorini M, Brunner-La Rocca HP, Peth S, et al. Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema: a randomized trial. Ann Intern Med. 2006;145:497–506.

    PubMed  Google Scholar 

  160. Ghofrani HA, Grimminger F. Soluble guanylate cyclase stimulation: an emerging option in pulmonary hypertension therapy. Eur Respir Rev. 2009;18:35–41.

    PubMed  CAS  Google Scholar 

  161. Kojonazarov B, Myrzaakhmatova A, Sooronbaev T, et al. Effects of fasudil in patients with high-altitude pulmonary hypertension. Eur Respir J. 2012;39: 496–8.

    PubMed  CAS  Google Scholar 

  162. Swenson ER, Teppema LJ. Prevention of acute mountain sickness by acetazolamide: as yet an unfinished story. J Appl Physiol. 2007;102:1305–7.

    PubMed  Google Scholar 

  163. Swenson ER. Carbonic anhydrase inhibitors and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2006;151:209–16.

    PubMed  CAS  Google Scholar 

  164. Teppema LJ, Balanos GM, Steinback CD, et al. Effects of acetazolamide on ventilatory, cerebrovascular, and pulmonary vascular responses to hypoxia. Am J Respir Crit Care Med. 2007;175:277–81.

    PubMed  CAS  Google Scholar 

  165. Rivera-Ch M, Huicho L, Bouchet P, et al. Effect of acetazolamide on ventilatory response in subjects with chronic mountain sickness. Respir Physiol Neurobiol. 2008;162:184–9.

    PubMed  CAS  Google Scholar 

  166. Richalet JP, Rivera-Ch M, Maignan M, et al. Acetazolamide for Monge’s disease: efficiency and tolerance of 6-month treatment. Am J Respir Crit Care Med. 2008;177:1370–6.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marco Maggiorini M.D. or Peter Bärtsch M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Maggiorini, M., Bärtsch, P., Swenson, E.R. (2014). Pulmonary Circulation. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_5

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics