Skip to main content

Lung Function and Gas Exchange

  • Chapter
  • First Online:
Book cover High Altitude

Abstract

As the first step in the path for oxygen transport to the body, the response of the respiratory system is critical to maintaining an adequate level of function at high altitude. Environmental hypoxia, combined with cold and heavy exercise all contribute to considerable stress to the lung. Acute altitude exposure results in hypoxia, and a rapid and sustained increase in alveolar ventilation, with an associated fall in alveolar and arterial partial pressure of carbon dioxide. In addition cardiac output and pulmonary vascular pressures also increase. These changes along with any occurring as a result of altitude illness have the potential to alter pulmonary function and gas exchange. In addition, acclimatization to hypoxia of hours to days duration results in additional physiological changes overlying the acute changes. This review explores the changes in pulmonary function, as well as changes in pulmonary gas exchange at rest or during exercise that occur within the first hours to weeks of hypoxic exposure following ascent to high altitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agostoni P, Swenson ER, Bussotti M, Revera M, Meriggi P, Faini A, et al. High altitude exposure of three weeks duration increases lung diffusing capacity in humans. J Appl Physiol. 2011;110(6): 1564–71.

    PubMed  Google Scholar 

  2. Allegra L, Cogo A, Legnani D, Diano PL, Fasano V, Negretto GG. High altitude exposure reduces bronchial responsiveness to hypo-osmolar aerosol in lowland asthmatics. Eur Respir J. 1995;8(11): 1842–6.

    PubMed  CAS  Google Scholar 

  3. Anholm JD, Milne EN, Stark P, Bourne JC, Friedman P. Radiographic evidence of interstitial pulmonary edema after exercise at altitude. J Appl Physiol. 1999;86(2):503–9.

    PubMed  CAS  Google Scholar 

  4. Arai TJ, Henderson AC, Dubowitz DJ, Levin DL, Friedman PJ, Buxton RB, et al. Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans. J Appl Physiol. 2009;106(4): 1057–64.

    PubMed  CAS  Google Scholar 

  5. Babcock MA, Johnson BD, Pegelow DF, Suman OE, Griffin D, Dempsey JA. Hypoxic effects on exercise-induced diaphragmatic fatigue in normal healthy humans. J Appl Physiol. 1995;78(1):82–92.

    PubMed  CAS  Google Scholar 

  6. Bartsch P, Maggiorini M, Mairbaurl H, Vock P, Swenson ER. Pulmonary extravascular fluid accumulation in climbers. Lancet. 2002;360(9332):571. author reply -2.

    PubMed  Google Scholar 

  7. Basu CK, Selvamurthy W, Bhaumick G, Gautam RK, Sawhney RC. Respiratory changes during initial days of acclimatization to increasing altitudes. Aviat Space Environ Med. 1996;67(1):40–5.

    PubMed  CAS  Google Scholar 

  8. Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci U S A. 2007;104 Suppl 1:8655–60.

    PubMed  CAS  Google Scholar 

  9. Bebout DE, Storey D, Roca J, Hogan MC, Poole DC, Gonzales-Camerena R, et al. Effects of altitude acclimatization on pulmonary gas exchange during exercise. J Appl Physiol. 1989;67(6):2286–95.

    PubMed  CAS  Google Scholar 

  10. Bencowitz HZ, Wagner PD, West JB. Effect of change in P50 on exercise tolerance at high altitude: a theoretical study. J Appl Physiol. 1982;53:1487.

    PubMed  CAS  Google Scholar 

  11. Bigham AW, Kiyamu M, Leon-Velarde F, Parra EJ, Rivera-Ch M, Shriver MD, et al. Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol. 2008;9(2):167–78.

    PubMed  CAS  Google Scholar 

  12. Bouverot P, Farner DS, Heinrich B, Johansen K, Langer H, Neuweiler G, et al. Adaptation to altitude-hypoxia in vertebrates. Berlin: Springer; 1985.

    Google Scholar 

  13. Brutsaert TD, Araoz M, Soria R, Spielvogel H, Haas JD. Higher arterial oxygen saturation during submaximal exercise in Bolivian Aymara compared to European sojourners and Europeans born and raised at high altitude. Am J Phys Anthropol. 2000; 113(2):169–81.

    PubMed  CAS  Google Scholar 

  14. Brutsaert TD, Parra EJ, Shriver MD, Gamboa A, Palacios JA, Rivera M, et al. Spanish genetic admixture is associated with larger V(O2) max decrement from sea level to 4338 m in Peruvian Quechua. J Appl Physiol. 2003;95(2):519–28.

    PubMed  Google Scholar 

  15. Brutsaert TD, Roach R, Wagner PD, Hackett PH. Genetic and environmental adaptation in high altitude natives: conceptual, methodological and statistical concerns. Hypoxia: from genes to the bedside. New York: Kluwer Academic/Plenum Publishers; 2001. p. 133.

    Google Scholar 

  16. Brutsaert TD, Soria R, Caceres E, Spielvogel H, Haas JD. Effect of developmental and ancestral high altitude exposure on chest morphology and pulmonary function in Andean and European/North American natives. Am J Hum Biol. 1999;11(3):383–95.

    PubMed  Google Scholar 

  17. Capen R, Latham L, Wagner WJ. Diffusing capacity of the lung during hypoxia: role of capillary recruitment. J Appl Physiol. 1981;50(1):165–71.

    PubMed  CAS  Google Scholar 

  18. Capen R, Wagner WJ. Intrapulmonary blood flow redistribution during hypoxia increases gas exchange surface area. J Appl Physiol. 1982;52(6):1575–80.

    PubMed  CAS  Google Scholar 

  19. Cerny FC, Dempsey JA, Reddan WG. Pulmonary gas exchange in nonnative residents of high altitude. J Clin Invest. 1973;52(12):2993–9.

    PubMed  CAS  Google Scholar 

  20. Christopherson SK, Hlastala MP. Pulmonary gas exchange during altered density gas breathing. J Appl Physiol. 1982;52(1):221–5.

    PubMed  CAS  Google Scholar 

  21. Cibella F, Cuttitta G, Romano S, Grassi B, Bonsignore G, Milic-Emili J. Respiratory energetics during exercise at high altitude. J Appl Physiol. 1999;86(6):1785–92.

    PubMed  CAS  Google Scholar 

  22. Coates G, Gray G, Mansell A, Nahmias C, Powles A, Sutton J, et al. Changes in lung volume, lung density, and distribution of ventilation during hypobaric decompression. J Appl Physiol. 1979;46(4):752–5.

    PubMed  CAS  Google Scholar 

  23. Cogo A, Basnyat B, Legnani D, Allegra L. Bronchial asthma and airway hyperresponsiveness at high altitude. Respiration. 1997;64(6):444–9.

    PubMed  CAS  Google Scholar 

  24. Cotes JE. Ventilatory capacity at altitude and its relation to mask design. Proc R Soc Lond B Biol Sci. 1954;143(910):32–9.

    PubMed  CAS  Google Scholar 

  25. Crapo RO, Jensen RL, Hegewald M, Tashkin DP. Arterial blood gas reference values for sea level and an altitude of 1,400 meters. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1525–31.

    PubMed  CAS  Google Scholar 

  26. Cremona G, Asnaghi R, Baderna P, Brunetto A, Brutsaert T, Cavallaro C, et al. Pulmonary extravascular fluid accumulation in recreational climbers: a prospective study. Lancet. 2002;359(9303):303–9.

    PubMed  Google Scholar 

  27. Cruz JC. Mechanics of breathing in high altitude and sea level subjects. Respir Physiol. 1973;17(2):146–61.

    PubMed  CAS  Google Scholar 

  28. Dagg KD, Thomson LJ, Clayton RA, Ramsay SG, Thomson NC. Effect of acute alterations in inspired oxygen tension on methacholine induced bronchoconstriction in patients with asthma. Thorax. 1997;52(5):453–7.

    PubMed  CAS  Google Scholar 

  29. Deboeck G, Moraine JJ, Naeije R. Respiratory muscle strength may explain hypoxia-induced decrease in vital capacity. Med Sci Sports Exerc. 2005;37(5):754–8.

    PubMed  Google Scholar 

  30. DeGraff Jr AC, Grover RF, Johnson Jr RL, Hammond Jr JW, Miller JM. Diffusing capacity of the lung in Caucasians native to 3,100 m. J Appl Physiol. 1970;29(1):71–6.

    PubMed  Google Scholar 

  31. Dehnert C, Luks AM, Schendler G, Menold E, Berger MM, Mairbaurl H, et al. No evidence for interstitial lung oedema by extensive pulmonary function testing at 4,559 m. Eur Respir J. 2010; 35(4):812–20.

    PubMed  CAS  Google Scholar 

  32. Dehnert C, Risse F, Ley S, Kuder TA, Buhmann R, Puderbach M, et al. Magnetic resonance imaging of uneven pulmonary perfusion in hypoxia in humans. Am J Respir Crit Care Med. 2006;174(10):1132–8.

    PubMed  Google Scholar 

  33. Dempsey JA, Reddan WG, Birnbaum ML, Forster HV, Thoden JS, Grover RF, et al. Effects of acute through life-long hypoxic exposure on exercise pulmonary gas exchange. Respir Physiol. 1971;13(1): 62–89.

    PubMed  CAS  Google Scholar 

  34. Dempsey JA, Wagner PD. Exercise-induced arterial hypoxemia. J Appl Physiol. 1999;87(6):1997–2006.

    PubMed  CAS  Google Scholar 

  35. Denjean A, Roux C, Herve P, Bonniot JP, Comoy E, Duroux P, et al. Mild isocapnic hypoxia enhances the bronchial response to methacholine in asthmatic subjects. Am Rev Respir Dis. 1988;138(4):789–93.

    PubMed  CAS  Google Scholar 

  36. Droma T, McCullough RG, McCullough RE, Zhuang JG, Cymerman A, Sun SF, et al. Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m). Am J Phys Anthropol. 1991;86(3):341–51.

    PubMed  CAS  Google Scholar 

  37. Eldridge MW, Dempsey JA, Haverkamp HC, Lovering AT, Hokanson JS. Exercise-induced intrapulmonary arteriovenous shunting in healthy humans. J Appl Physiol. 2004;97(3):797–805.

    PubMed  Google Scholar 

  38. Fasano V, Paolucci E, Pomidori L, Cogo A. High-altitude exposure reduces inspiratory muscle strength. Int J Sports Med. 2007;28(5):426–30.

    PubMed  CAS  Google Scholar 

  39. Finkelstein S, Tomashefski JF, Shillito FH. Pulmonary mechanics at altitude in normal and obstructive lung disease patients. Aerosp Med. 1965;36:880–4.

    PubMed  CAS  Google Scholar 

  40. Forte Jr VA, Leith DE, Muza SR, Fulco CS, Cymerman A. Ventilatory capacities at sea level and high altitude. Aviat Space Environ Med. 1997;68(6):488–93.

    PubMed  Google Scholar 

  41. Gale GE, Torre BJ, Moon RE, Saltzman HA, Wagner PD. Ventilation-perfusion inequality in normal humans during exercise at sea level and simulated altitude. J Appl Physiol. 1985;58(3):978–88.

    PubMed  CAS  Google Scholar 

  42. Gautier H, Peslin R, Grassino A, Milic-Emili J, Hannhart B, Powell E, et al. Mechanical properties of the lungs during acclimatization to altitude. J Appl Physiol. 1982;52(6):1407–15.

    PubMed  CAS  Google Scholar 

  43. Ge RL, Matsuzawa Y, Takeoka M, Kubo K, Sekiguchi M, Kobayashi T. Low pulmonary diffusing capacity in subjects with acute mountain sickness. Chest. 1997;111(1):58–64.

    PubMed  CAS  Google Scholar 

  44. Goldstein RS, Zamel N, Rebuck AS. Absence of effects of hypoxia on small airway function in humans. J Appl Physiol. 1979;47(2):251–6.

    PubMed  CAS  Google Scholar 

  45. Gray BA, Blalock JM. Interpretation of the alveolar-arterial oxygen difference in patients with hypercapnia. Am Rev Respir Dis. 1991;143(1):4–8.

    PubMed  CAS  Google Scholar 

  46. Gray GW, Rennie ID, Houston CS, Bryan AC. Phase IV volume of the single-breath nitrogen washout curve on exposure to altitude. J Appl Physiol. 1973;35(2):227–30.

    PubMed  CAS  Google Scholar 

  47. Grocott MP, Martin DS, Levett DZ, McMorrow R, Windsor J, Montgomery HE. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med. 2009;360(2):140–9.

    PubMed  CAS  Google Scholar 

  48. Gudjonsdottir M, Appendini L, Baderna P, Purro A, Patessio A, Vilianis G, et al. Diaphragm fatigue during exercise at high altitude: the role of hypoxia and workload. Eur Respir J. 2001;17(4):674–80.

    PubMed  CAS  Google Scholar 

  49. Guleria JS, Pande JN, Sethi PK, Roy SB. Pulmonary diffusing capacity at high altitude. J Appl Physiol. 1971;31(4):536–43.

    PubMed  CAS  Google Scholar 

  50. Hackett PH, Rennie D. The incidence, importance, and prophylaxis of acute mountain sickness. Lancet. 1976;2(7996):1149–55.

    PubMed  CAS  Google Scholar 

  51. Hammond MD, Gale GE, Kapitan KS, Ries A, Wagner PD. Pulmonary gas exchange in humans during normobaric hypoxic exercise. J Appl Physiol. 1986;61(5):1749–57.

    PubMed  CAS  Google Scholar 

  52. Hammond MD, Hempleman SC. Oxygen diffusing capacity estimates derived from measured VA/Q distributions in man. Respir Physiol. 1987;69:129–47.

    PubMed  CAS  Google Scholar 

  53. Honigman B, Theis MK, Koziol-McLain J, Roach R, Yip R, Houston C, et al. Acute mountain sickness in a general tourist population at moderate altitudes. Ann Intern Med. 1993;118(8):587–92.

    PubMed  CAS  Google Scholar 

  54. Hopkins SR. Exercise induced arterial hypoxemia: the role of ventilation-perfusion inequality and pulmonary diffusion limitation. Adv Exp Med Biol. 2006;588:17–30.

    PubMed  Google Scholar 

  55. Hopkins SR, Garg J, Bolar DS, Balouch J, Levin DL. Pulmonary blood flow heterogeneity during hypoxia and high-altitude pulmonary edema. Am J Respir Crit Care Med. 2005;171(1):83–7.

    PubMed  Google Scholar 

  56. Hopkins SR, Gavin TP, Siafakas NM, Haseler LJ, Olfert IM, Wagner H, et al. Effect of prolonged, heavy exercise on pulmonary gas exchange in athletes. J Appl Physiol. 1998;85(4):1523–32.

    PubMed  CAS  Google Scholar 

  57. Hopkins SR, McKenzie DC, Schoene RB, Glenny R, Robertson HT. Pulmonary gas exchange during exercise in athletes I: ventilation-perfusion mismatch and diffusion limitation. J Appl Physiol. 1994;77(2):912–7.

    PubMed  CAS  Google Scholar 

  58. Hopkins SR, Olfert IM, Wagner PD. Point: exercise-induced intrapulmonary shunting is imaginary. J Appl Physiol. 2009;107(3):993–4.

    PubMed  Google Scholar 

  59. Hsia CC, Carbayo JJ, Yan X, Bellotto DJ. Enhanced alveolar growth and remodeling in Guinea pigs raised at high altitude. Respir Physiol Neurobiol. 2005;147(1):105–15.

    PubMed  Google Scholar 

  60. Hsia CC, Johnson Jr RL, McDonough P, Dane DM, Hurst MD, Fehmel JL, et al. Residence at 3,800-m altitude for 5 mo in growing dogs enhances lung diffusing capacity for oxygen that persists at least 2.5 years. J Appl Physiol. 2007;102(4):1448–55.

    PubMed  Google Scholar 

  61. Hughson RL, Yamamoto Y, McCullough RE, Sutton JR, Reeves JT. Sympathetic and parasympathetic indicators of heart rate control at altitude studied by spectral analysis. J Appl Physiol. 1994;77(6): 2537–42.

    PubMed  CAS  Google Scholar 

  62. Jaeger JJ, Sylvester JT, Cymerman A, Berberich JJ, Denniston JC, Maher JT. Evidence for increased intrathoracic fluid volume in man at high altitude. J Appl Physiol. 1979;47(4):670–6.

    PubMed  CAS  Google Scholar 

  63. Johnson Jr RL, Cassidy SS, Grover RF, Schutte JE, Epstein RH. Functional capacities of lungs and thorax in beagles after prolonged residence at 3,100 m. J Appl Physiol. 1985;59(6):1773–82.

    PubMed  Google Scholar 

  64. Jonk AM, van den Berg IP, Olfert IM, Wray DW, Arai T, Hopkins SR, et al. Effect of acetazolamide on pulmonary and muscle gas exchange during normoxic and hypoxic exercise. J Physiol. 2007;579(Pt 3):909–21.

    PubMed  CAS  Google Scholar 

  65. Kreuzer F, Van Lookeren CP. Resting pulmonary diffusing capacity for CO and O2 at high altitude. J Appl Physiol. 1965;20(3):519–24.

    PubMed  CAS  Google Scholar 

  66. Kronenberg RS, Safar P, Lee J, Wright F, Noble W, Wahrenbrock E, et al. Pulmonary artery pressure and alveolar gas exchange in man during acclimatization to 12,470 ft. J Clin Invest. 1971;50(4):827–37.

    PubMed  CAS  Google Scholar 

  67. Lefrancois R, Gautier H, Pasquis P. Mecanique ventilatoire chez l’homme a haute altitude. CR Soc Biol. 1969;163:2037–42.

    Google Scholar 

  68. Lenfant C, Torrance J, English E, Finch CA, Reynafarje C, Ramos J, et al. Effect of altitude on oxygen binding by hemoglobin and on organic phosphate levels. J Clin Invest. 1968;47(12):2652–6.

    PubMed  CAS  Google Scholar 

  69. Lenfant C, Torrance JD, Reynafarje C. Shift of the O2-Hb dissociation curve at altitude: mechanism and effect. J Appl Physiol. 1971;30(5):625–31.

    PubMed  CAS  Google Scholar 

  70. Loeppky JA, Icenogle M, Scotto P, Robergs R, Hinghofer-Szalkay H, Roach RC. Ventilation during simulated altitude, normobaric hypoxia and normoxic hypobaria. Respir Physiol. 1997;107(3):231–9.

    PubMed  CAS  Google Scholar 

  71. Loeppky JA, Roach RC, Maes D, Hinghofer-Szalkay H, Roessler A, Gates L, et al. Role of hypobaria in fluid balance response to hypoxia. High Alt Med Biol. 2005;6(1):60–71.

    PubMed  CAS  Google Scholar 

  72. Lovering AT, Eldridge MW, Stickland MK. Counterpoint: exercise-induced intrapulmonary shunting is real. J Appl Physiol. 2009;107(3):994–7 [Research Support, Non-U.S. Gov’t].

    PubMed  Google Scholar 

  73. Lovering AT, Romer LM, Haverkamp HC, Pegelow DF, Hokanson JS, Eldridge MW. Intrapulmonary shunting and pulmonary gas exchange during normoxic and hypoxic exercise in healthy humans. J Appl Physiol. 2008;104(5):1418–25.

    PubMed  Google Scholar 

  74. Lundby C, Calbet JA, van Hall G, Saltin B, Sander M. Pulmonary gas exchange at maximal exercise in Danish lowlanders during 8 wk of acclimatization to 4,100 m and in high-altitude Aymara natives. Am J Physiol Regul Integr Comp Physiol. 2004;287(5): R1202–8.

    PubMed  CAS  Google Scholar 

  75. Mairbaurl H, Schobersberger W, Oelz O, Bartsch P, Eckardt KU, Bauer C. Unchanged in vivo P50 at high altitude despite decreased erythrocyte age and elevated 2,3-diphosphoglycerate. J Appl Physiol. 1990;68(3):1186–94.

    PubMed  CAS  Google Scholar 

  76. Mansell A, Powles A, Sutton J. Changes in pulmonary PV characteristics of human subjects at an altitude of 5,366 m. J Appl Physiol. 1980;49(1):79–83.

    PubMed  CAS  Google Scholar 

  77. Mason NP, Barry PW, Pollard AJ, Collier DJ, Taub NA, Miller MR, et al. Serial changes in spirometry during an ascent to 5,300 m in the Nepalese Himalayas. High Alt Med Biol. 2000;1(3):185–95.

    PubMed  CAS  Google Scholar 

  78. Mazzeo RS, Wolfel EE, Butterfield GE, Reeves JT. Sympathetic response during 21 days at high altitude (4,300 m) as determined by urinary and arterial catecholamines. Metabolism. 1994;43(10):1226–32.

    PubMed  CAS  Google Scholar 

  79. McDonough P, Dane DM, Hsia CC, Yilmaz C, Johnson Jr RL. Long-term enhancement of pulmonary gas exchange after high-altitude residence during maturation. J Appl Physiol. 2006;100(2):474–81.

    PubMed  Google Scholar 

  80. Milic-Emili J, Kayser B, Gautier H. Mechanics of breathing. In: Hornbein TF, Schoene RB, editors. High altitude: an exploration of human adaptation. New York: Marcel Dekker; 2001.

    Google Scholar 

  81. Mognoni P, Saibene F, Veicsteinas A. Ventilatory work during exercise at high altitude. Int J Sports Med. 1982;3(1):33–6.

    PubMed  CAS  Google Scholar 

  82. Newhouse MT, Becklake MR, Macklem PT, McGregor M. Effect of alterations in end-tidal Co2 tension on flow resistance. J Appl Physiol. 1964;19:745–9.

    PubMed  CAS  Google Scholar 

  83. Paiva M, Engel LA. Pulmonary interdependence of gas transport. J Appl Physiol. 1979;47(2):296–305.

    PubMed  CAS  Google Scholar 

  84. Peacock AJ, Jones PL. Gas exchange at extreme altitude: results from the British 40th Anniversary Everest Expedition. Eur Respir J. 1997;10(7):1439–44.

    PubMed  CAS  Google Scholar 

  85. Pellegrino R, Pompilio P, Quaranta M, Aliverti A, Kayser B, Miserocchi G, et al. Airway responses to methacholine and exercise at high altitude in healthy lowlanders. J Appl Physiol. 2010;108(2):256–65.

    PubMed  CAS  Google Scholar 

  86. Petit JM, Milic-Emili G, Troquet J. Travail dynamique pulmonaire et altitude. Rev Med Aeronaut. 1963;2:276–9.

    PubMed  CAS  Google Scholar 

  87. Piiper J. Apparent increase of the O2 diffusing capacity with increased O2 uptake in inhomogeneous lungs: theory. Respir Physiol. 1969;6(2): 209–18.

    PubMed  CAS  Google Scholar 

  88. Podolsky A, Eldridge MW, Richardson RS, Knight DR, Johnson EC, Hopkins SR, et al. Exercise-induced VA/Q inequality in subjects with prior high-altitude pulmonary edema. J Appl Physiol. 1996; 81(2):922–32.

    PubMed  CAS  Google Scholar 

  89. Pollard AJ, Mason NP, Barry PW, Pollard RC, Collier DJ, Fraser RS, et al. Effect of altitude on spirometric parameters and the performance of peak flow meters. Thorax. 1996;51(2):175–8.

    PubMed  CAS  Google Scholar 

  90. Pugh LG. Muscular exercise on Mount Everest. J Physiol. 1958;141(2):233–61.

    PubMed  CAS  Google Scholar 

  91. Pugh LG, Gill MB, Lahiri S, Milledge JS, Ward MP, West JB. Muscular exercise at great altitudes. J Appl Physiol. 1964;19:431–40.

    PubMed  CAS  Google Scholar 

  92. Rahn H, Hammond D. Vital capacity at reduced barometric pressure. J Appl Physiol. 1952;4(9): 715–24.

    PubMed  CAS  Google Scholar 

  93. Rahn H, Otis AB. Man’s respiratory response during and after acclimatization to high altitude. Am J Physiol. 1946;157:445–559.

    Google Scholar 

  94. Raymond L, Severinghaus JW. Static pulmonary compliance of man during altitude hypoxia. J Appl Physiol. 1971;31(5):785–7.

    PubMed  CAS  Google Scholar 

  95. Reyes A, Roca J, Rodriguez-Roisin R, Torres A, Ussetti P, Wagner PD. Effect of almitrine on ventilation-perfusion distribution in adult respiratory distress syndrome. Am Rev Respir Dis. 1988;137(5): 1062–7.

    PubMed  CAS  Google Scholar 

  96. Richalet JP, Gratadour P, Robach P, Pham I, Dechaux M, Joncquiert-Latarjet A, et al. Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med. 2005;171(3): 275–81.

    PubMed  Google Scholar 

  97. Roach RC, Loeppky JA, Icenogle MV. Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia. J Appl Physiol. 1996;81(5):1908–10.

    PubMed  CAS  Google Scholar 

  98. Saunders NA, Betts MF, Pengelly LD, Rebuck AS. Changes in lung mechanics induced by acute isocapnic hypoxia. J Appl Physiol. 1977;42(3):413–9.

    PubMed  CAS  Google Scholar 

  99. Savourey G, Launay JC, Besnard Y, Guinet A, Travers S. Normo- and hypobaric hypoxia: are there any physiological differences? Eur J Appl Physiol. 2003;89(2):122–6.

    PubMed  Google Scholar 

  100. Schaffartzik W, Poole DC, Derion T, Tsukimoto K, Hogan MC, Arcos JP, et al. VA/Q distribution during heavy exercise and recovery in humans: implications for pulmonary edema. J Appl Physiol. 1992;72(5): 1657–67.

    PubMed  CAS  Google Scholar 

  101. Senn O, Clarenbach CF, Fischler M, Thalmann R, Brunner-La Rocca H, Egger P, et al. Do changes in lung function predict high-altitude pulmonary edema at an early stage? Med Sci Sports Exerc. 2006;38(9):1565–70.

    PubMed  Google Scholar 

  102. Sharma S, Brown B. Spirometry and respiratory muscle function during ascent to higher altitudes. Lung. 2007;185(2):113–21.

    PubMed  Google Scholar 

  103. Singh I, Kapila CC, Khanna PK, Nanda RB, Rao BD. High-altitude pulmonary oedema. Lancet. 1965; 191:229–34.

    Google Scholar 

  104. Snyder EM, Beck KC, Hulsebus ML, Breen JF, Hoffman EA, Johnson BD. Short-term hypoxic exposure at rest and during exercise reduces lung water in healthy humans. J Appl Physiol. 2006; 101(6):1623–32.

    PubMed  Google Scholar 

  105. Steinacker JM, Tobias P, Menhold E, Reissnecker S, Hohenhaus E, Liu Y, et al. Lung diffusing capacity and exercise in subjects with previous high altitude pulmonary oedema. Eur Respir J. 1998;11(3): 643–50.

    PubMed  CAS  Google Scholar 

  106. Stickland MK, Lovering AT. Exercise-induced intrapulmonary arteriovenous shunting and pulmonary gas exchange. Exerc Sport Sci Rev. 2006;34(3): 99–106.

    PubMed  Google Scholar 

  107. Stickland MK, Welsh RC, Haykowsky MJ, Petersen SR, Anderson WD, Taylor DA, et al. Intra-pulmonary shunt and pulmonary gas exchange during exercise in humans. J Physiol. 2004;561(Pt 1):321–9.

    PubMed  CAS  Google Scholar 

  108. Sutton JR, Reeves JT, Wagner PD, Groves BM, Cymerman A, Malconian MK, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol. 1988; 64(4):1309–21.

    PubMed  CAS  Google Scholar 

  109. Swenson ER. Carbonic anhydrase inhibitors and hypoxic pulmonary vasoconstriction. Respir Physiol Neurobiol. 2006;151(2–3):209–16.

    PubMed  CAS  Google Scholar 

  110. Swenson ER. Most climbers do not develop subclinical interstitial pulmonary edema. High Alt Med Biol. 2011;12(2):125–8.

    PubMed  Google Scholar 

  111. Swenson ER, Maggiorini M, Mongovin S, Gibbs JS, Greve I, Mairbaurl H, et al. Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor. JAMA. 2002;287(17):2228–35.

    PubMed  Google Scholar 

  112. Tenney SM. Functional differences in mammalian hemoglobin affinity for oxygen. In: Sutton JR, Houston CS, Coates MD, editors. Hypoxia and the brain. Burlington: Queen City Printers; 1995. p. 57–68.

    Google Scholar 

  113. Tenney SM, Rahn H, Stroud RC, Mithoefer JC. Adoption to high altitude: changes in lung volumes during the first seven days at Mt. Evans, Colorado. J Appl Physiol. 1953;5(10):607–13.

    PubMed  CAS  Google Scholar 

  114. Thoden JS, Dempsey JA, Reddan WG, Birnbaum ML, Forster HV, Grover RF, et al. Ventilatory work during steady-state response to exercise. Fed Proc. 1969;28(3):1316–21.

    PubMed  CAS  Google Scholar 

  115. Torre-Bueno JR, Wagner PD, Saltzman HA, Gale GE, Moon RE. Diffusion limitation in normal humans during exercise at sea level and simulated altitude. J Appl Physiol. 1985;58(3):989–95.

    PubMed  CAS  Google Scholar 

  116. van den Elshout FJ, van Herwaarden CL, Folgering HT. Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax. 1991;46(1):28–32.

    PubMed  Google Scholar 

  117. Vengust M, Staempfli H, Viel L, Heigenhauser G. Effects of chronic acetazolamide administration on fluid flux from the pulmonary vasculature at rest and during exercise in horses. Equine Vet J Suppl. 2006;36:508–15.

    PubMed  Google Scholar 

  118. Vogiatzis I, Zakynthinos S, Boushel R, Athanasopoulos D, Guenette JA, Wagner H, et al. The contribution of intrapulmonary shunts to the alveolar-to-arterial oxygen difference during exercise is very small. J Physiol. 2008;586(9):2381–91.

    PubMed  CAS  Google Scholar 

  119. Wagner PD. A theoretical analysis of factors determining VO2 MAX at sea level and altitude. Respir Physiol. 1996;106(3):329–43.

    PubMed  CAS  Google Scholar 

  120. Wagner PD. Insensitivity of VO2max to hemoglobin-P50 as sea level and altitude. Respir Physiol. 1997;107(3):205–12.

    PubMed  CAS  Google Scholar 

  121. Wagner PD. Gas exchange. In: Hornbein TF, Schoene R, editors. High altitude an exploration of human adaptation. New York: Marcel Dekker; 2001. p. 199–234.

    Google Scholar 

  122. Wagner PD, Araoz M, Boushel R, Calbet JA, Jessen B, Radegran G, et al. Pulmonary gas exchange and acid-base state at 5,260 m in high-altitude Bolivians and acclimatized lowlanders. J Appl Physiol. 2002;92(4):1393–400.

    PubMed  Google Scholar 

  123. Wagner PD, Gale GE, Moon RE, Torre BJ, Stolp BW, Saltzman HA. Pulmonary gas exchange in humans exercising at sea level and simulated altitude. J Appl Physiol. 1986;61(1):260–70.

    PubMed  CAS  Google Scholar 

  124. Wagner PD, Sutton JR, Reeves JT, Cymerman A, Groves BM, Malconian MK. Operation Everest II: pulmonary gas exchange during a simulated ascent of Mt. Everest. J Appl Physiol. 1987;63(6): 2348–59.

    PubMed  CAS  Google Scholar 

  125. Wagner PD, Wagner HE, Groves BM, Cymerman A, Houston CS. Hemoglobin P(50) during a simulated ascent of Mt. Everest, Operation Everest II. High Alt Med Biol. 2007;8(1):32–42.

    PubMed  CAS  Google Scholar 

  126. Weber RE. Hemoglobin adaptations to hypoxia and altitude-the phylogenetic perspective. In: Sutton JR, Houston CS, Coates MD, editors. Hypoxia and the brain. Burlington: Queen City Printers; 1995. p. 31–44.

    Google Scholar 

  127. Weber RE. High-altitude adaptations in vertebrate hemoglobins. Respir Physiol Neurobiol. 2007; 158(2–3): 132–42.

    PubMed  CAS  Google Scholar 

  128. Weiskopf RB, Severinghaus JW. Diffusing capacity of the lung for CO in man during acute acclimation to 14,246 ft. J Appl Physiol. 1972;32(3):285–9.

    PubMed  CAS  Google Scholar 

  129. Weitz CA, Garruto RM. A comparative analysis of arterial oxygen saturation among Tibetans and Han born and raised at high altitude. High Alt Med Biol. 2007;8(1):13–26.

    PubMed  Google Scholar 

  130. Welsh CH, Wagner PD, Reeves JT, Lynch D, Cink TM, Armstrong J, et al. Operation Everest. II: spirometric and radiographic changes in acclimatized humans at simulated high altitudes. Am Rev Respir Dis. 1993;147(5):1239–44.

    PubMed  CAS  Google Scholar 

  131. West J. Respiratory physiology-the essentials. 5th ed. Baltimore: Williams & Wilkins; 1995. p. 39–43.

    Google Scholar 

  132. West JB. Diffusing capacity of the lung for carbon monoxide at high altitude. J Appl Physiol. 1962;17: 421–6.

    PubMed  CAS  Google Scholar 

  133. West JB. Prediction of barometric pressures at high altitude with the use of model atmospheres. J Appl Physiol. 1996;81(4):1850.

    PubMed  CAS  Google Scholar 

  134. West JB. Barometric pressures on Mt. Everest: new data and physiological significance. J Appl Physiol. 1999;86(3):1062–6.

    PubMed  CAS  Google Scholar 

  135. West JB, Hackett PH, Maret KH, Milledge JS, Peters Jr RH, Pizzo CJ, et al. Pulmonary gas exchange on the summit of Mount Everest. J Appl Physiol. 1983;55(3):678–87.

    PubMed  CAS  Google Scholar 

  136. West JB, Lahiri S, Maret KH, Peters Jr RM, Pizzo CJ. Barometric pressures at extreme altitudes on Mt. Everest: physiological significance. J Appl Physiol. 1983;54(5):1188–94.

    PubMed  CAS  Google Scholar 

  137. Winslow RM, Monge CC, Statham NJ, Gibson CG, Charache S, Whittembury J, et al. Variability of oxygen affinity of blood: human subjects native to high altitude. J Appl Physiol. 1981;51(6):1411–6.

    PubMed  CAS  Google Scholar 

  138. Wood LD, Bryan AC, Bau SK, Weng TR, Levison H. Effect of increased gas density on pulmonary gas exchange in man. J Appl Physiol. 1976;41(2): 206–10.

    PubMed  CAS  Google Scholar 

  139. Wu T, Li S, Ward MP. Tibetans at extreme altitude. Wilderness Environ Med. 2005;16(1):47–54.

    PubMed  Google Scholar 

  140. Yilmaz C, Dane DM, Hsia CC. Alveolar diffusion-perfusion interactions during high-altitude residence in Guinea pigs. J Appl Physiol. 2007;102(6):2179–85.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrew M. Luks M.D. or Susan R. Hopkins M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luks, A.M., Hopkins, S.R. (2014). Lung Function and Gas Exchange. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics