Skip to main content

Control of Breathing

  • Chapter
  • First Online:
High Altitude

Abstract

Upon rapid ascent to high altitude or acute exposure to hypoxia ventilation rises rapidly (the acute hypoxic ventilatory response, initiated by the carotid bodies containing oxygen sensors), followed immediately by a secondary roll-off that partly is caused by the hyperventilation-induced hypocapnia. When the hypoxia is sustained, ventilation starts to rise gradually within the next few hours, that, depending on the species and altitude (degree of hypoxia), may last from hours to months. This phenomenon is known as ventilatory acclimatization to high altitude (VAH). Many studies have shown that this ventilatory adaptation is not due to a gradual acidosis in blood or extracellular brainstem fluid bathing the central chemoreceptors. One of the most remarkable changes is a considerable increase in the ventilatory response to hypoxia that is manifest already after ~4 h and that may continue to augment during the next days–weeks. This adaptive change is thought to underlie VAH and is caused by many plastic morphological and biochemical changes in both the carotid bodies and the central nervous system. An important orchestrator of these plastic changes is the transcription factor, hypoxia inducible factor 1 (HIF-1) that induces the transcription of many genes encoding substances indispensable for the adaptation of the organism to sustained hypoxia. This chapter describes the most important of these and summarizes the state of the art on the mechanisms underlying the plastic changes in carotid bodies and central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. West JB. Rate of ventilatory acclimatization to extreme altitude. Respir Physiol. 1988;743:323–33.

    Google Scholar 

  2. West JB. Improving oxygenation at high altitude, acclimatization and O2 enrichment. High Alt Med Biol. 2003;43:389–98.

    Google Scholar 

  3. Bisgard GE, Forster HV. Ventilatory responses to acute and chronic hypoxia. In: Frely MJ, Blatteis CM, editors. Handbook of physiology, environmental physiology. New York: Oxford University Press; 1996. p. 1207–39.

    Google Scholar 

  4. Smith CA, Dempsey JA, Hornbein TF. Control of breathing at high altitude. In: Hornbein TF, Schoene RB, editors. High altitude. An exploration of human adaptation. New York: Marcel Dekker; 2001. p. 139–73.

    Google Scholar 

  5. Hochachka PW, Rupert JL, Monge C. Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp Biochem Physiol A Mol Integr Physiol. 1999;1241:1–17.

    Google Scholar 

  6. West JB. Respiratory and circulatory control at high altitudes. J Exp Biol. 1982;100:147–57.

    PubMed  CAS  Google Scholar 

  7. Schoene RB. Limits of respiration at high altitude. Clin Chest Med. 2005;263:405–14, vi.

    Google Scholar 

  8. Gonzalez C, Almaraz L, Obeso A, Rigual R. Carotid body chemoreceptors, from natural stimuli to sensory discharges. Physiol Rev. 1994;744:829–98.

    Google Scholar 

  9. Porzionato A, Macchi V, Parenti A, De Caro R. Trophic factors in the carotid body. Int Rev Cell Mol Biol. 2008;269:1–58.

    PubMed  CAS  Google Scholar 

  10. Howard LS, Robbins PA. Alterations in respiratory control during 8 h of isocapnic and poikilocapnic hypoxia in humans. J Appl Physiol. 1995;783: 1098–107.

    Google Scholar 

  11. Ren X, Dorrington KL, Robbins PA. Respiratory control in humans after 8 h of lowered arterial PO2, hemodilution, or carboxyhemoglobinemia. J Appl Physiol. 2001;904:1189–95.

    Google Scholar 

  12. Fatemian M, Robbins PA. Human ventilatory response to CO2 after 8 h of isocapnic or poikilocapnic hypoxia. J Appl Physiol. 1998;855:1922–8.

    Google Scholar 

  13. Fatemian M, Robbins PA. Selected contribution, chemoreflex responses to CO2 before and after an 8-h exposure to hypoxia in humans. J Appl Physiol. 2001;904:1607–14.

    Google Scholar 

  14. Clar C, Dorrington KL, Robbins PA. Ventilatory effects of 8 h of isocapnic hypoxia with and without beta-blockade in humans. J Appl Physiol. 1999; 866:1897–904.

    Google Scholar 

  15. Pedersen ME, Dorrington KL, Robbins PA. Effects of dopamine and domperidone on ventilatory sensitivity to hypoxia after 8 h of isocapnic hypoxia. J Appl Physiol. 1999;861:222–9.

    Google Scholar 

  16. Liu C, Smith TG, Balanos GM, Brooks J, Crosby A, Herigstad M, et al. Lack of involvement of the autonomic nervous system in early ventilatory and pulmonary vascular acclimatization to hypoxia in humans. J Physiol. 2007;579:215–25.

    PubMed  CAS  Google Scholar 

  17. Ren X, Robbins PA. Ventilatory responses to hypercapnia and hypoxia after 6 h passive hyperventilation in humans. J Physiol. 1999;514:885–94.

    PubMed  CAS  Google Scholar 

  18. Donoghue S, Fatemian M, Balanos GM, Crosby A, Liu C, O’Connor D, et al. Ventilatory acclimatization in response to very small changes in PO2 in humans. J Appl Physiol. 2005;985:1587–91.

    Google Scholar 

  19. Tansley JG, Clar C, Pedersen ME, Robbins PA. Human ventilatory response to acute hyperoxia during and after 8 h of both isocapnic and poikilocapnic hypoxia. J Appl Physiol. 1997;822:513–9.

    Google Scholar 

  20. Somogyi RB, Preiss D, Vesely A, Fisher JA, Duffin J. Changes in respiratory control after 5 days at altitude. Respir Physiol Neurobiol. 2005;145:41–52.

    PubMed  Google Scholar 

  21. Ainslie PN, Burgess KR. Cardiorespiratory and cerebrovascular responses to hyperoxic and hypoxic rebreathing, effects of acclimatization to high altitude. Respir Physiol Neurobiol. 2008;161:201–9.

    PubMed  Google Scholar 

  22. Schoene RB, Roach RC, Hackett PH, Sutton JR, Cymerman A, Houston CS. Operation Everest II, ventilatory adaptation during gradual decompression to extreme altitude. Med Sci Sports Exerc. 1990; 226:804–10.

    Google Scholar 

  23. Yilmaz C, Hogg DC, Ravikumar P, Hsia CC. Ventilatory acclimatization in awake guinea pigs raised at high altitude. Respir Physiol Neurobiol. 2005;145:235–42.

    PubMed  Google Scholar 

  24. Huey KA, Brown IP, Jordan MC, Powell FL. Changes in dopamine D2-receptor modulation of the hypoxic ventilatory response with chronic hypoxia. Respir Physiol. 2000;123:177–87.

    PubMed  CAS  Google Scholar 

  25. Huey KA, Low MJ, Kelly MA, Juarez R, Szewczak JM, Powell FL. Ventilatory responses to acute and chronic hypoxia in mice, effects of dopamine D2 receptors. J Appl Physiol. 2000;89:1142–50.

    PubMed  CAS  Google Scholar 

  26. Villafuerte FC, Cardenas-Alayza R, Macarlupu JL, Monge C, Leon-Velarde F. Ventilatory response to acute hypoxia in transgenic mice over-expressing erythropoietin, effect of acclimation to 3-week hypobaric hypoxia. Respir Physiol Neurobiol. 2007;158:243–50.

    PubMed  CAS  Google Scholar 

  27. Wach RA, Bee D, Barer GR. Dopamine and ventilatory effects of hypoxia and almitrine in chronically hypoxic rats. J Appl Physiol. 1989;671:186–92.

    Google Scholar 

  28. Bee D, Pallot DJ. Acute hypoxic ventilation, carotid body cell division, and dopamine content during early hypoxia in rats. J Appl Physiol. 1995;795: 1504–11.

    Google Scholar 

  29. Gamboa J, Macarlupu JL, Rivera-Chira M, Monge C, Leon-Velarde F. Effect of domperidone on ventilation and polycythemia after 5 weeks of chronic hypoxia in rats. Respir Physiol Neurobiol. 2003;1351:1–8.

    Google Scholar 

  30. Olson Jr EB, Dempsey JA. Rat as a model for humanlike ventilatory adaptation to chronic hypoxia. J Appl Physiol. 1978;445:763–9.

    Google Scholar 

  31. Aaron EA, Powell FL. Effect of chronic hypoxia on hypoxic ventilatory response in awake rats. J Appl Physiol. 1993;744:1635–40.

    Google Scholar 

  32. Vizek M, Pickett CK, Weil JV. Increased carotid body hypoxic sensitivity during acclimatization to hypobaric hypoxia. J Appl Physiol. 1987;636: 2403–10.

    Google Scholar 

  33. Chen J, He L, Dinger B, Stensaas L, Fidone S. Role of endothelin and endothelin A-type receptor in adaptation of the carotid body to chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2002;2826: L1314–23.

    Google Scholar 

  34. Liu X, He L, Stensaas L, Dinger B, Fidone S. Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am J Physiol Lung Cell Mol Physiol. 2009;2962:L158–66.

    Google Scholar 

  35. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353:2042–55.

    PubMed  CAS  Google Scholar 

  36. Lopez-Barneo J, Ortega-Saenz P, Pardal R, Pascual A, Piruat JI. Carotid body oxygen sensing. Eur Respir J. 2008;325:1386–98.

    Google Scholar 

  37. Evans AM. AMP-activated protein kinase underpins hypoxic pulmonary vasoconstriction and carotid body excitation by hypoxia in mammals. Exp Physiol. 2006;915:821–7.

    Google Scholar 

  38. Wyatt CN, Mustard KJ, Pearson SA, Dallas ML, Atkinson L, Kumar P, et al. AMP-activated protein kinase mediates carotid body excitation by hypoxia. J Biol Chem. 2007;282:8092–8.

    PubMed  CAS  Google Scholar 

  39. Prabhakar NR. Novel partners and mechanisms in oxygen sensing. Exp Physiol. 2006;915:801.

    Google Scholar 

  40. Teppema LJ, Dahan A. The ventilatory response to hypoxia in mammals, mechanisms, measurement, and analysis. Physiol Rev. 2010;902:675–754.

    Google Scholar 

  41. Wang ZZ, Dinger B, Fidone SJ, Stensaas LJ. Changes in tyrosine hydroxylase and substance P immunoreactivity in the cat carotid body following chronic hypoxia and denervation. Neuroscience. 1998;834:1273–81.

    Google Scholar 

  42. Bisgard GE. Carotid body mechanisms in acclimatization to hypoxia. Respir Physiol. 2000;1212–3: 237–46.

    Google Scholar 

  43. Powell FL, Fu Z. HIF-1 and ventilatory acclimatization to chronic hypoxia. Respir Physiol Neurobiol. 2008;164:282–7.

    PubMed  CAS  Google Scholar 

  44. Tatsumi K, Pickett CK, Weil JV. Possible role of dopamine in ventilatory acclimatization to high altitude. Respir Physiol. 1995;991:63–73.

    Google Scholar 

  45. Huey KA, Powell FL. Time-dependent changes in dopamine D2-receptor mRNA in the arterial chemoreflex pathway with chronic hypoxia. Brain Res Mol Brain Res. 2000;752:264–70.

    Google Scholar 

  46. Gonzalez-Guerrero PR, Rigual R, Gonzalez C. Effects of chronic hypoxia on opioid peptide and catecholamine levels and on the release of dopamine in the rabbit carotid body. J Neurochem. 1993;605:1769–76.

    Google Scholar 

  47. Janssen PL, Dwinell MR, Pizarro J, Bisgard GE. Intracarotid dopamine infusion does not prevent acclimatization to hypoxia. Respir Physiol. 1998;1111:33–43.

    Google Scholar 

  48. Janssen PL, O’Halloran KD, Pizarro J, Dwinell MR, Bisgard GE. Carotid body dopaminergic mechanisms are functional after acclimatization to hypoxia in goats. Respir Physiol. 1998;1111:25–32.

    Google Scholar 

  49. Cao H, Kuo YR, Prabhakar NR. Absence of chemoreceptor inhibition by alpha-2 adrenergic receptor agonist in cats exposed to low PO2. FASEB J. 1991;5:A1118.

    Google Scholar 

  50. Prabhakar NR, Kou YR. Inhibitory sympathetic action on the carotid body responses to sustained hypoxia. Respir Physiol. 1994;951:67–79.

    Google Scholar 

  51. Wang ZY, Bisgard GE. Chronic hypoxia-induced morphological and neurochemical changes in the carotid body. Microsc Res Tech. 2002;593:168–77.

    Google Scholar 

  52. Bartsch P, Gibbs JS. Effect of altitude on the heart and the lungs. Circulation. 2007;116:2191–202.

    PubMed  Google Scholar 

  53. Moore LG, Cymerman A, Huang SY, McCullough RE, McCullough RG, Rock PB, et al. Propranolol blocks metabolic rate increase but not ventilatory acclimatization to 4300 m. Respir Physiol. 1987; 702:195–204.

    Google Scholar 

  54. Tamisier R, Hunt BE, Gilmartin GS, Curley M, Anand A, Weiss JW. Hemodynamics and muscle sympathetic nerve activity after 8 h of sustained hypoxia in healthy humans. Am J Physiol Heart Circ Physiol. 2007;2935:H3027–35.

    Google Scholar 

  55. Hansen J, Sander M. Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol. 2003;546(Pt 3):921–9.

    PubMed  CAS  Google Scholar 

  56. He L, Dinger B, Fidone S. Effect of chronic hypoxia on cholinergic chemotransmission in rat carotid body. J Appl Physiol. 2005;982:614–9.

    Google Scholar 

  57. Jackson A, Nurse CA. Role of acetylcholine receptors and dopamine transporter in regulation of extracellular dopamine in rat carotid body cultures grown in chronic hypoxia or nicotine. J Neurochem. 1998; 702:653–62.

    Google Scholar 

  58. He L, Chen J, Dinger B, Stensaas L, Fidone S. Effect of chronic hypoxia on purinergic synaptic transmission in rat carotid body. J Appl Physiol. 2006;1001: 157–62.

    Google Scholar 

  59. Ye JS, Tipoe GL, Fung PC, Fung ML. Augmentation of hypoxia-induced nitric oxide generation in the rat carotid body adapted to chronic hypoxia, an involvement of constitutive and inducible nitric oxide synthases. Pflugers Arch. 2002;4441–2:178–85.

    Google Scholar 

  60. He L, Chen J, Liu X, Dinger B, Fidone S. Enhanced nitric oxide-mediated chemoreceptor inhibition and altered cyclic GMP signaling in rat carotid body following chronic hypoxia. Am J Physiol Lung Cell Mol Physiol. 2007;2936:L1463–8.

    Google Scholar 

  61. Kline DD, Overholt JL, Prabhakar NR. Mutant mice deficient in NOS-1 exhibit attenuated long-term facilitation and short-term potentiation in breathing. J Physiol. 2002;539(Pt 1):309–15.

    PubMed  CAS  Google Scholar 

  62. Kline DD, Yang T, Premkumar DR, Thomas AJ, Prabhakar NR. Blunted respiratory responses to hypoxia in mutant mice deficient in nitric oxide synthase-3. J Appl Physiol. 2000;884:1496–508.

    Google Scholar 

  63. McQueen DS, Dashwood MR, Cobb VJ, Bond SM, Marr CG, Spyer KM. Endothelins and rat carotid body, autoradiographic and functional pharmacological studies. J Auton Nerv Syst. 1995;532–3:115–25.

    Google Scholar 

  64. Rey S, Iturriaga R. Endothelins and nitric oxide, vasoactive modulators of carotid body chemoreception. Curr Neurovasc Res. 2004;15:465–73.

    Google Scholar 

  65. Chen Y, Tipoe GL, Liong E, Leung S, Lam SY, Iwase R, et al. Chronic hypoxia enhances endothelin-1-induced intracellular calcium elevation in rat carotid body chemoreceptors and up-regulates ETA receptor expression. Pflugers Arch. 2002;4434:565–73.

    Google Scholar 

  66. Chen J, He L, Liu X, Dinger B, Stensaas L, Fidone S. Effect of the endothelin receptor antagonist bosentan on chronic hypoxia-induced morphological and physiological changes in rat carotid body. Am J Physiol Lung Cell Mol Physiol. 2007;2925: L1257–62.

    Google Scholar 

  67. Talbot NP, Balanos GM, Robbins PA, Dorrington KL. Intravenous endothelin-1 and ventilatory sensitivity to hypoxia in humans. Adv Exp Med Biol. 2008;605:57–62.

    PubMed  CAS  Google Scholar 

  68. Leung PS, Fung ML, Tam MS. Renin-angiotensin system in the carotid body. Int J Biochem Cell Biol. 2003;356:847–54.

    Google Scholar 

  69. Lam SY, Fung ML, Leung PS. Regulation of the angiotensin-converting enzyme activity by a time-course hypoxia in the carotid body. J Appl Physiol. 2004;962:809–13.

    Google Scholar 

  70. Fung ML, Lam SY, Wong TP, Tjong YW, Leung PS. Carotid body AT4 receptor expression and its upregulation in chronic hypoxia. Open Cardiovasc Med J. 2007;1:1–7.

    PubMed  Google Scholar 

  71. Ding Y, Li YL, Zimmerman MC, Davisson RL, Schultz HD. Role of CuZn superoxide dismutase on carotid body function in heart failure rabbits. Cardiovasc Res. 2009;814:678–85.

    Google Scholar 

  72. Potter EK, McCloskey DI. Respiratory stimulation by angiotensin II. Respir Physiol. 1979;363:367–73.

    Google Scholar 

  73. Ohtake PJ, Jennings DB. Angiotensin II stimulates respiration in awake dogs and antagonizes baroreceptor inhibition. Respir Physiol. 1993;912–3:335–51.

    Google Scholar 

  74. Woods DR, Montgomery HE. Angiotensin-converting enzyme and genetics at high altitude. High Alt Med Biol. 2001;22:201–10.

    Google Scholar 

  75. Milledge JS, Catley DM, Blume FD, West JB. Renin, angiotensin-converting enzyme, and aldosterone in humans on Mount Everest. J Appl Physiol. 1983;554:1109–12.

    Google Scholar 

  76. Tsianos G, Eleftheriou KI, Hawe E, Woolrich L, Watt M, Watt I, et al. Performance at altitude and angiotensin I-converting enzyme genotype. Eur J Appl Physiol. 2005;935–6:630–3.

    Google Scholar 

  77. Hochachka PW, Beatty CL, Burelle Y, Trump ME, McKenzie DC, Matheson GO. The lactate paradox in human high-altitude physiological performance. News Physiol Sci. 2002;17:122–6.

    PubMed  CAS  Google Scholar 

  78. Strohl KP. Lessons in hypoxic adaptation from high-altitude populations. Sleep Breath. 2008;122: 115–21.

    Google Scholar 

  79. Bigham AW, Kiyamu M, Leon-Velarde F, Parra EJ, Rivera-Ch M, Shriver MD, et al. Angiotensin-converting enzyme genotype and arterial oxygen saturation at high altitude in Peruvian Quechua. High Alt Med Biol. 2008;92:167–78.

    Google Scholar 

  80. Patel S, Woods DR, Macleod NJ, Brown A, Patel KR, Montgomery HE, et al. Angiotensin-converting enzyme genotype and the ventilatory response to exertional hypoxia. Eur Respir J. 2003;225:755–60.

    Google Scholar 

  81. Wang X, Wang BR, Duan XL, Zhang P, Ding YQ, Jia Y, et al. Strong expression of interleukin-1 receptor type I in the rat carotid body. J Histochem Cytochem. 2002;5012:1677–84.

    Google Scholar 

  82. Wang X, Zhang XJ, Xu Z, Li X, Li GL, Ju G, et al. Morphological evidence for existence of IL-6 receptor alpha in the glomus cells of rat carotid body. Anat Rec A Discov Mol Cell Evol Biol. 2006;2883: 292–6.

    Google Scholar 

  83. Lam SY, Tipoe GL, Liong EC, Fung ML. Chronic hypoxia upregulates the expression and function of proinflammatory cytokines in the rat carotid body. Histochem Cell Biol. 2008;1303:549–59.

    Google Scholar 

  84. Hagobian TA, Jacobs KA, Subudhi AW, Fattor JA, Rock PB, Muza SR, et al. Cytokine responses at high altitude, effects of exercise and antioxidants at 4300 m. Med Sci Sports Exerc. 2006;382:276–85.

    Google Scholar 

  85. Carpenter E, Bee D, Peers C. Ionic currents in carotid body type I cells isolated from normoxic and chronically hypoxic adult rats. Brain Res. 1998; 8111–2:79–87.

    Google Scholar 

  86. Stea A, Jackson A, Nurse CA. Hypoxia and N6, O2′-dibutyryladenosine 3′,5′-cyclic monophosphate, but not nerve growth factor, induce Na+ channels and hypertrophy in chromaffin-like arterial chemoreceptors. Proc Natl Acad Sci U S A. 1992;8920: 9469–73.

    Google Scholar 

  87. Stea A, Jackson A, Macintyre L, Nurse CA. Long-term modulation of inward currents in O2 chemoreceptors by chronic hypoxia and cyclic AMP in vitro. J Neurosci. 1995;153(Pt 2):2192–202.

    Google Scholar 

  88. Chen J, He L, Dinger B, Stensaas L, Fidone S. Chronic hypoxia upregulates connexin43 expression in rat carotid body and petrosal ganglion. J Appl Physiol. 2002;924:1480–6.

    Google Scholar 

  89. Kaab S, Miguel-Velado E, Lopez-Lopez JR, Perez-Garcia MT. Down regulation of Kv3.4 channels by chronic hypoxia increases acute oxygen sensitivity in rabbit carotid body. J Physiol. 2005;566(Pt 2): 395–408.

    PubMed  Google Scholar 

  90. Caceres AI, Obeso A, Gonzalez C, Rocher A. Molecular identification and functional role of voltage-gated sodium channels in rat carotid body chemoreceptor cells. Regulation of expression by chronic hypoxia in vivo. J Neurochem. 2007;1021: 231–45.

    Google Scholar 

  91. Semenza GL, Shimoda LA, Prabhakar NR. Regulation of gene expression by HIF-1. Novartis Found Symp. 2006;272:2–8.

    PubMed  CAS  Google Scholar 

  92. Rocha S. Gene regulation under low oxygen, holding your breath for transcription. Trends Biochem Sci. 2007;32:389–97.

    PubMed  CAS  Google Scholar 

  93. Chandel NS, Budinger GR. The cellular basis for diverse responses to oxygen. Free Radic Biol Med. 2007;422:165–74.

    Google Scholar 

  94. Semenza GL. Life with oxygen. Science. 2007; 318(5847):62–4.

    PubMed  CAS  Google Scholar 

  95. Tipoe GL, Fung ML. Expression of HIF-1alpha, VEGF and VEGF receptors in the carotid body of chronically hypoxic rat. Respir Physiol Neurobiol. 2003;1382–3:143–54.

    Google Scholar 

  96. Lam SY, Tipoe GL, Liong EC, Fung ML. Differential expressions and roles of hypoxia-inducible factor-1alpha, -2alpha and -3alpha in the rat carotid body during chronic and intermittent hypoxia. Histol Histopathol. 2008;233:271–80.

    Google Scholar 

  97. Chavez JC, Agani F, Pichiule P, LaManna JC. Expression of hypoxia-inducible factor-1alpha in the brain of rats during chronic hypoxia. J Appl Physiol. 2000;895:1937–42.

    Google Scholar 

  98. Ward ME, Toporsian M, Scott JA, Teoh H, Govindaraju V, Quan A, et al. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J Clin Invest. 2005;11511:3128–39.

    Google Scholar 

  99. Prabhakar NR, Pieramici SF, Premkumar DR, Kumar GK, Kalaria RN. Activation of nitric oxide synthase gene expression by hypoxia in central and peripheral neurons. Brain Res Mol Brain Res. 1996;431–2:341–6.

    Google Scholar 

  100. Pascual O, Denavit-Saubie M, Dumas S, Kietzmann T, Ghilini G, Mallet J, et al. Selective cardiorespiratory and catecholaminergic areas express the hypoxia-inducible factor-1alpha HIF-1alpha under in vivo hypoxia in rat brainstem. Eur J Neurosci. 2001;1412:1981–91.

    Google Scholar 

  101. Yu AY, Shimoda LA, Iyer NV, Huso DL, Sun X, McWilliams R, et al. Impaired physiological responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1alpha. J Clin Invest. 1999;1035:691–6.

    Google Scholar 

  102. Kline DD, Peng YJ, Manalo DJ, Semenza GL, Prabhakar NR. Defective carotid body function and impaired ventilatory responses to chronic hypoxia in mice partially deficient for hypoxia-inducible factor 1 alpha. Proc Natl Acad Sci U S A. 2002;992: 821–6.

    Google Scholar 

  103. Smith TG, Brooks JT, Balanos GM, Lappin TR, Layton DM, Leedham DL, et al. Mutation of von Hippel-Lindau tumour suppressor and human cardiopulmonary physiology. PLoS Med. 2006; 37:e290.

    Google Scholar 

  104. Smith TG, Balanos GM, Croft QP, Talbot NP, Dorrington KL, Ratcliffe PJ, et al. The increase in pulmonary arterial pressure caused by hypoxia depends on iron status. J Physiol. 2008;586: 5999–6005.

    PubMed  CAS  Google Scholar 

  105. Nanduri J, Yuan G, Kumar GK, Semenza GL, Prabhakar NR. Transcriptional responses to intermittent hypoxia. Respir Physiol Neurobiol. 2008; 164:277–81.

    PubMed  CAS  Google Scholar 

  106. Kenneth NS, Rocha S. Regulation of gene expression by hypoxia. Biochem J. 2008;4141:19–29.

    Google Scholar 

  107. Malik MT, Peng YJ, Kline DD, Adhikary G, Prabhakar NR. Impaired ventilatory acclimatization to hypoxia in mice lacking the immediate early gene fos B. Respir Physiol Neurobiol. 2005;1451:23–31.

    Google Scholar 

  108. Prabhakar NR, Semenza GL. Gaseous messengers in oxygen sensing. J Mol Med (Berl). 2012;903: 265–72.

    Google Scholar 

  109. Peers C, Wyatt CN, Evans AM. Mechanisms for acute oxygen sensing in the carotid body. Respir Physiol Neurobiol. 2010;1743:292–8.

    Google Scholar 

  110. Mu J, Brozinick Jr JT, Valladares O, Bucan M, Birnbaum MJ. A role for AMP-activated protein kinase in contraction- and hypoxia-regulated glucose transport in skeletal muscle. Mol Cell. 2001; 75:1085–94.

    Google Scholar 

  111. Fujii N, Jessen N, Goodyear LJ. AMP-activated protein kinase and the regulation of glucose transport. Am J Physiol Endocrinol Metab. 2006;2915: E867–77.

    Google Scholar 

  112. Fisher JS, Nolte LA, Kawanaka K, Han DH, Jones TE, Holloszy JO. Glucose transport rate and glycogen synthase activity both limit skeletal muscle glycogen accumulation. Am J Physiol Endocrinol Metab. 2002;2826:E1214–21.

    Google Scholar 

  113. Gamboa JL, Garcia-Cazarin ML, Andrade FH. Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Regul Integr Comp Physiol. 2011;3001:R85–91.

    Google Scholar 

  114. Peng YJ, Nanduri J, Raghuraman G, Souvannakitti D, Gadalla MM, Kumar GK, et al. H2S mediates O2 sensing in the carotid body. Proc Natl Acad Sci U S A. 2010;10723:10719–24.

    Google Scholar 

  115. Haouzi P, Bell H, Van de Louw A. Hypoxia-induced arterial chemoreceptor stimulation and hydrogen sulfide, too much or too little? Respir Physiol Neurobiol. 2011;1792–3:97–102.

    Google Scholar 

  116. Kusakabe T, Hirakawa H, Oikawa S, Matsuda H, Kawakami T, Takenaka T, et al. Morphological changes in the rat carotid body 1, 2, 4, and 8 weeks after the termination of chronically hypocapnic hypoxia. Histol Histopathol. 2004;194:1133–40.

    Google Scholar 

  117. Kusakabe T, Matsuda H, Hayashida Y. Hypoxic adaptation of the rat carotid body. Histol Histopathol. 2005;203:987–97.

    Google Scholar 

  118. Clarke JA, Daly MB, Marshall JM, Ead HW, Hennessy EM. Quantitative studies of the vasculature of the carotid body in the chronically hypoxic rat. Braz J Med Biol Res. 2000;333:331–40.

    Google Scholar 

  119. Laidler P, Kay JM. A quantitative morphological study of the carotid bodies of rats living at a simulated altitude of 4300 metres. J Pathol. 1975;1173: 183–91.

    Google Scholar 

  120. Heath D, Edwards C, Winson M, Smith P. Effects on the right ventricle, pulmonary vasculature, and carotid bodies of the rat of exposure to, and recovery from, simulated high altitude. Thorax. 1973;281:24–8.

    Google Scholar 

  121. McGregor KH, Gil J, Lahiri S. A morphometric study of the carotid body in chronically hypoxic rats. J Appl Physiol. 1984;575:1430–8.

    Google Scholar 

  122. Pequignot JM, Hellstrom S, Johansson C. Intact and sympathectomized carotid bodies of long-term hypoxic rats, a morphometric ultrastructural study. J Neurocytol. 1984;133:481–93.

    Google Scholar 

  123. Wang ZY, Olson Jr EB, Bjorling DE, Mitchell GS, Bisgard GE. Sustained hypoxia-induced proliferation of carotid body type I cells in rats. J Appl Physiol. 2008;1043:803–8.

    Google Scholar 

  124. Pardal R, Ortega-Saenz P, Duran R, Lopez-Barneo J. Glia-like stem cells sustain physiologic neurogenesis in the adult mammalian carotid body. Cell. 2007;1312:364–77.

    Google Scholar 

  125. Arias-Stella J, Bustos F. Chronic hypoxia and chemodectomas in bovines at high altitudes. Arch Pathol Lab Med. 1976;10012:636–9.

    Google Scholar 

  126. Arias-Stella J, Valcarcel J. Chief cell hyperplasia in the human carotid body at high altitudes, physiologic and pathologic significance. Hum Pathol. 1976;74:361–73.

    Google Scholar 

  127. Edwards C, Heath D, Harris P, Castillo Y, Kruger H, Arias-Stella J. The carotid body in animals at high altitude. J Pathol. 1971;1044:231–8.

    Google Scholar 

  128. Heath D, Smith P, Fitch R, Harris P. Comparative pathology of the enlarged carotid body. J Comp Pathol. 1985;952:259–71.

    Google Scholar 

  129. Smith P, Heath D, Fitch R, Hurst G, Moore D, Weitzenblum E. Effects on the rabbit carotid body of stimulation by almitrine, natural high altitude, and experimental normobaric hypoxia. J Pathol. 1986; 1492:143–53.

    Google Scholar 

  130. Saldana MJ, Salem LE, Travezan R. High altitude hypoxia and chemodectomas. Hum Pathol. 1973; 42:251–63.

    Google Scholar 

  131. Monge C, Leon-Velarde F. Physiological adaptation to high altitude, oxygen transport in mammals and birds. Physiol Rev. 1991;714:1135–72.

    Google Scholar 

  132. Dwinell MR, Powell FL. Chronic hypoxia enhances the phrenic nerve response to arterial chemoreceptor stimulation in anesthetized rats. J Appl Physiol. 1999;872:817–23.

    Google Scholar 

  133. Dempsey JA, Forster HV. Mediation of ventilatory adaptations. Physiol Rev. 1982;621:262–346.

    Google Scholar 

  134. Powell FL, Huey KA, Dwinell MR. Central nervous system mechanisms of ventilatory acclimatization to hypoxia. Respir Physiol. 2000;1212–3:223–36.

    Google Scholar 

  135. Engwall MJ, Bisgard GE. Ventilatory responses to chemoreceptor stimulation after hypoxic acclimatization in awake goats. J Appl Physiol. 1990;694: 1236–43.

    Google Scholar 

  136. Huey KA, Szewczak JM, Powell FL. Dopaminergic mechanisms of neural plasticity in respiratory control, transgenic approaches. Respir Physiol Neurobiol. 2003;1352–3:133–44.

    Google Scholar 

  137. Schmitt P, Soulier V, Pequignot JM, Pujol JF, Avit-Saubie M. Ventilatory acclimatization to chronic hypoxia, relationship to noradrenaline metabolism in the rat solitary complex. J Physiol. 1994;477(Pt 2):331–7.

    PubMed  CAS  Google Scholar 

  138. Olson LG, Saunders NA. Effect of a dopamine antagonist on ventilation during sustained hypoxia in mice. J Appl Physiol. 1987;623:1222–6.

    Google Scholar 

  139. Gozal D, Gozal E, Simakajornboon N. Signaling pathways of the acute hypoxic ventilatory response in the nucleus tractus solitarius. Respir Physiol. 2000;1212–3:209–21.

    Google Scholar 

  140. Reeves SR, Carter ES, Guo SZ, Gozal D. Calcium/calmodulin-dependent kinase II mediates critical components of the hypoxic ventilatory response within the nucleus of the solitary tract in adult rats. Am J Physiol Regul Integr Comp Physiol. 2005; 2893:R871–6.

    Google Scholar 

  141. Reeves SR, Gozal E, Guo SZ, Sachleben Jr LR, Brittian KR, Lipton AJ, et al. Effect of long-term intermittent and sustained hypoxia on hypoxic ventilatory and metabolic responses in the adult rat. J Appl Physiol. 2003;955:1767–74.

    Google Scholar 

  142. El Hasnaoui-Saadani R, Alayza RC, Launay T, Pichon A, Quidu P, Beaudry M, et al. Brain stem NO modulates ventilatory acclimatization to hypoxia in mice. J Appl Physiol. 2007;1035:1506–12.

    Google Scholar 

  143. Reid SG, Powell FL. Effects of chronic hypoxia on MK-801-induced changes in the acute hypoxic ventilatory response. J Appl Physiol. 2005;996: 2108–14.

    Google Scholar 

  144. Gozal D, Simakajornboon N, Czapla MA, Xue YD, Gozal E, Vlasic V, et al. Brainstem activation of platelet-derived growth factor-beta receptor modulates the late phase of the hypoxic ventilatory response. J Neurochem. 2000;741:310–9.

    Google Scholar 

  145. Alea OA, Czapla MA, Lasky JA, Simakajornboon N, Gozal E, Gozal D. PDGF-beta receptor expression and ventilatory acclimatization to hypoxia in the rat. Am J Physiol Regul Integr Comp Physiol. 2000;2795:R1625–33.

    Google Scholar 

  146. Tsunekawa S, Ohi Y, Ishii Y, Sasahara M, Haji A. Hypoxic ventilatory response in platelet-derived growth factor receptor-beta-knockout mice. J Pharmacol Sci. 2009;110:270–5.

    PubMed  CAS  Google Scholar 

  147. Ogawa H, Mizusawa A, Kikuchi Y, Hida W, Miki H, Shirato K. Nitric oxide as a retrograde messenger in the nucleus tractus solitarii of rats during hypoxia. J Physiol. 1995;486(Pt 2):495–504.

    PubMed  CAS  Google Scholar 

  148. Schwenke DO, Pearson JT, Kangawa K, Shirai M. Does central nitric oxide chronically modulate the acute hypoxic ventilatory response in conscious rats? Acta Physiol (Oxf). 1864;2006:309–18.

    Google Scholar 

  149. Soliz J, Joseph V, Soulage C, Becskei C, Vogel J, Pequignot JM, et al. Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol. 2005;568(Pt 2):559–71.

    PubMed  CAS  Google Scholar 

  150. Soliz J, Thomsen JJ, Soulage C, Lundby C, Gassmann M. Sex-dependent regulation of hypoxic ventilation in mice and humans is mediated by erythropoietin. Am J Physiol Regul Integr Comp Physiol. 2009;2966:R1837–46.

    Google Scholar 

  151. Soliz J, Gassmann M, Joseph V. Soluble erythropoietin receptor is present in the mouse brain and is required for the ventilatory acclimatization to hypoxia. J Physiol. 2007;583(Pt 1):329–36.

    PubMed  CAS  Google Scholar 

  152. Robach P, Fulla Y, Westerterp KR, Richalet JP. Comparative response of EPO and soluble transferrin receptor at high altitude. Med Sci Sports Exerc. 2004;36:1493–8.

    PubMed  CAS  Google Scholar 

  153. Brugniaux JV, Pialoux V, Foster GE, Duggan CTC, Eliasziw M, Hanly PJ, et al. Effects of intermittent hypoxia on erythropoietin, soluble erythropoietin receptor and ventilation in humans. Eur Respir J. 2011;374:880–7.

    Google Scholar 

  154. Nolan PC, Waldrop TG. In vitro responses of VLM neurons to hypoxia after normobaric hypoxic acclimatization. Respir Physiol. 1996;1051–2:23–33.

    Google Scholar 

  155. Mazza E, Thakkar-Varia S, Tozzi CA, Neubauer JA. Expression of heme oxygenase in the oxygen-sensing regions of the rostral ventrolateral medulla. J Appl Physiol. 2001;911:379–85.

    Google Scholar 

  156. Zhang W, Carreno FR, Cunningham JT, Mifflin SW. Chronic sustained and intermittent hypoxia reduce the function of ATP-sensitive potassium channels in the nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol. 2008;295: R1555–62.

    PubMed  CAS  Google Scholar 

  157. Cragg PA, Drysdale DB. Interaction of hypoxia and hypercapnia on ventilation, tidal volume and respiratory frequency in the anaesthetized rat. J Physiol. 1983;341:477–93.

    PubMed  CAS  Google Scholar 

  158. Day TA, Wilson RJ. Brainstem PCO2 modulates phrenic responses to specific carotid body hypoxia in an in situ dual perfused rat preparation. J Physiol. 2007;578(Pt 3):843–57.

    PubMed  CAS  Google Scholar 

  159. Herigstad M, Fatemian M, Robbins PA. Respiratory control during air-breathing exercise in humans following an 8 h exposure to hypoxia. Respir Physiol Neurobiol. 2008;1623:169–75.

    Google Scholar 

  160. Mathew L, Gopinath PM, Purkayastha SS, Sen GJ, Nayar HS. Chemoreceptor sensitivity in adaptation to high altitude. Aviat Space Environ Med. 1983; 542:121–6.

    Google Scholar 

  161. Fan JL, Burgess KR, Basnyat R, Thomas KN, Peebles KC, Lucas SJ, et al. Influence of high altitude on cerebrovascular and ventilatory responsiveness to CO2. J Physiol. 2010;588(Pt 3):539–49.

    PubMed  CAS  Google Scholar 

  162. Blain GM, Smith CA, Henderson KS, Dempsey JA. Contribution of the carotid body chemoreceptors to eupneic ventilation in the intact, unanesthetized dog. J Appl Physiol. 2009;1065:1564–73.

    Google Scholar 

  163. Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, et al. Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci. 2004;712:1360–9.

    Google Scholar 

  164. Rosin DL, Chang DA, Guyenet PG. Afferent and efferent connections of the rat retrotrapezoid nucleus. J Comp Neurol. 2006;4991:64–89.

    Google Scholar 

  165. Takakura AC, Moreira TS, Colombari E, West GH, Stornetta RL, Guyenet PG. Peripheral chemoreceptor inputs to retrotrapezoid nucleus RTN. CO2-sensitive neurons in rats. J Physiol. 2006;572(Pt 2):503–23.

    PubMed  CAS  Google Scholar 

  166. Musch TI, Dempsey JA, Smith CA, Mitchell GS, Bateman NT. Metabolic acids and [H+] regulation in brain tissue during acclimatization to chronic hypoxia. J Appl Physiol. 1983;555:1486–95.

    Google Scholar 

  167. Goldberg SV, Schoene RB, Haynor D, Trimble B, Swenson ER, Morrison JB, et al. Brain tissue pH and ventilatory acclimatization to high altitude. J Appl Physiol. 1992;721:58–63.

    Google Scholar 

  168. Javaheri S, Corbett W, Wagner K, Adams JM. Quantitative cerebrospinal fluid acid-base balance in acute respiratory alkalosis. Am J Respir Crit Care Med. 1994;1501:78–82.

    Google Scholar 

  169. Severinghaus JW, Mitchell RA, Richardson BW, Singer MM. Respiratory control at high altitude suggesting active transport regulation of CSF pH. J Appl Physiol. 1963;18:1155–66.

    PubMed  CAS  Google Scholar 

  170. Monti-Bloch L, Abudara V, Eyzaguirre C. Electrical communication between glomus cells of the rat carotid body. Brain Res. 1993;6221–2:119–31.

    Google Scholar 

  171. Lee LY, Morton RF, Lundberg JM. Pulmonary chemoreflexes elicited by intravenous injection of lactic acid in anesthetized rats. J Appl Physiol. 1996;816: 2349–57.

    Google Scholar 

  172. Gargaglioni LH, Bicego KC, Steiner AA, Branco LG. Lactate as a modulator of hypoxia-induced hyperventilation. Respir Physiol Neurobiol. 2003; 1381:37–44.

    Google Scholar 

  173. Neubauer JA, Simone A, Edelman NH. Role of brain lactic acidosis in hypoxic depression of respiration. J Appl Physiol. 1988;653:1324–31.

    Google Scholar 

  174. Aaron EA, Forster HV, Lowry TF, Korducki MJ, Ohtake PJ. Effect of dichloroacetate on PaCO2 responses to hypoxia in awake goats. J Appl Physiol. 1996;801:176–81.

    Google Scholar 

  175. Hardarson T, Skarphedinsson JO, Sveinsson T. Importance of the lactate anion in control of breathing. J Appl Physiol. 1998;842:411–6.

    Google Scholar 

  176. Schoene RB. Control of ventilation in climbers to extreme altitude. J Appl Physiol. 1982;534:886–90.

    Google Scholar 

  177. Ogawa T, Hayashi K, Ichinose M, Nishiyasu T. Relationship between resting ventilatory chemosensitivity and maximal oxygen uptake in moderate hypobaric hypoxia. J Appl Physiol. 2007;1034: 1221–6.

    Google Scholar 

  178. Milledge JS. The ventilatory response to hypoxia, how much is good for a mountaineer? Postgrad Med J. 1987;63737:169–72.

    Google Scholar 

  179. Milledge JS, Beeley JM, Broome J, Luff N, Pelling M, Smith D. Acute mountain sickness susceptibility, fitness and hypoxic ventilatory response. Eur Respir J. 1991;48:1000–3.

    Google Scholar 

  180. Dempsey JA, Smith CA, Przybylowski T, Chenuel B, Xie A, Nakayama H, et al. The ventilatory responsiveness to CO2 below eupnoea as a determinant of ventilatory stability in sleep. J Physiol. 2004;560(Pt 1):1–11.

    PubMed  CAS  Google Scholar 

  181. Bailey DM, Ainslie PN, Jackson SK, Richardson RS, Ghatei M. Evidence against redox regulation of energy homoeostasis in humans at high altitude. Clin Sci (Lond). 2004;1076:589–600.

    Google Scholar 

  182. Bartsch P, Bailey DM, Berger MM, Knauth M, Baumgartner RW. Acute mountain sickness, controversies and advances. High Alt Med Biol. 2004;52: 110–24.

    Google Scholar 

  183. Vij AG, Dutta R, Satija NK. Acclimatization to oxidative stress at high altitude. High Alt Med Biol. 2005;64:301–10.

    Google Scholar 

  184. Magalhaes J, Ascensao A, Marques F, Soares JM, Ferreira R, Neuparth MJ, et al. Effect of a high-altitude expedition to a Himalayan peak Pumori, 7,161 m on plasma and erythrocyte antioxidant profile. Eur J Appl Physiol. 2005;935–6:726–32.

    Google Scholar 

  185. Pokorski M, Marczak M. Ascorbic acid enhances hypoxic ventilatory reactivity in elderly subjects. J Int Med Res. 2003;315:448–57.

    Google Scholar 

  186. Hildebrandt W, Alexander S, Bartsch P, Droge W. Effect of N-acetyl-cysteine on the hypoxic ventilatory response and erythropoietin production, linkage between plasma thiol redox state and O2 chemosensitivity. Blood. 2002;995:1552–5.

    Google Scholar 

  187. Teppema LJ, Bijl H, Romberg RR, Dahan A. Antioxidants reverse depression of the hypoxic ventilatory response by acetazolamide in man. J Physiol. 2006;572(Pt 3):849–56.

    PubMed  CAS  Google Scholar 

  188. Teppema LJ, Nieuwenhuijs D, Sarton E, Romberg R, Olievier CN, Ward DS, et al. Antioxidants prevent depression of the acute hypoxic ventilatory response by subanaesthetic halothane in men. J Physiol. 2002;544(Pt 3):931–8.

    PubMed  CAS  Google Scholar 

  189. Teppema LJ, Romberg RR, Dahan A. Antioxidants reverse reduction of the human hypoxic ventilatory response by subanesthetic isoflurane. Anesthesiology. 2005;1024:747–53.

    Google Scholar 

  190. Gonzalez C, Sanz-Alfayate G, Agapito MT, Gomez-Nino A, Rocher A, Obeso A. Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol. 2002;1321:17–41.

    Google Scholar 

  191. Gonzalez C, Agapito MT, Rocher A, Gonzalez-Martin MC, Vega-Agapito V, Gomez-Nino A, et al. Chemoreception in the context of the general biology of ROS. Respir Physiol Neurobiol. 2007;1571: 30–44.

    Google Scholar 

  192. Vats P, Singh VK, Singh SN, Singh SB. Glutathione metabolism under high-altitude stress and effect of antioxidant supplementation. Aviat Space Environ Med. 2008;7912:1106–11.

    Google Scholar 

  193. Subudhi AW, Jacobs KA, Hagobian TA, Fattor JA, Muza SR, Fulco CS, et al. Changes in ventilatory threshold at high altitude, effect of antioxidants. Med Sci Sports Exerc. 2006;388:1425–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc J. Teppema Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Teppema, L.J., Berendsen, R.R. (2014). Control of Breathing. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics