Skip to main content

High Altitude and Common Medical Conditions

  • Chapter
  • First Online:
High Altitude

Abstract

Increasing numbers of people are traveling to high altitude for work or pleasure. Given the prevalence of medical conditions in the general population, it is likely that many of these travelers will have one or more underlying medical problems. Unsure of how they will tolerate high altitude, these patients often seek input from their primary care physicians or travel clinical providers to determine if it is safe for them to make such a sojourn and, if so, what precautions should be taken during their trip to avoid problems that might lead to unplanned interruption of their trip. Clinicians faced with these concerns must address whether the underlying medical condition could be adversely affected by the hypoxic environment or alters the traveler’s risk for developing high-altitude illness. This chapter provides information to guide clinicians in answering these questions as they pertain to patients with a wide variety of medical problems including pulmonary diseases such as chronic obstructive pulmonary disease, asthma, and obstructive sleep apnea; cardiac problems including coronary artery diseases, cardiomyopathy, and adult congenital heart diseases; as well as gastrointestinal, endocrine, hematologic, neurologic, and renal disorders. For each disorder we consider the primary challenges faced by those patients at altitude and provide recommendations for pretravel assessment as well as risk mitigation during the trip. The chapter concludes by considering medication use at high altitude and, in particular, whether medications used for treatment of underlying disorders have the potential for adverse interactions with medications used in the prophylaxis and treatment of acute altitude illness and whether the dose and choice of altitude illness medication needs to be altered depending on the patients underlying health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hackett P. High altitude and common medical conditions. In: Hornbein TF, Schoene RB, editors. High altitude: an exploration of human adaptation. New York: Marcel Dekker; 2001. p. 839–85.

    Google Scholar 

  2. Bartsch P, Saltin B. General introduction to altitude adaptation and mountain sickness. Scand J Med Sci Sports. 2008;18 Suppl 1:1–10. Epub 2008/09/09.

    PubMed  Google Scholar 

  3. Barer GR, et al. Stimulus–response curves for the pulmonary vascular bed to hypoxia and hypercapnia. J Physiol. 1970;211(1):139–55.

    PubMed  CAS  Google Scholar 

  4. Luks AM, Swenson ER. Pulse oximetry at high altitude. High Alt Med Biol. 2011;12(2):109–19. Epub 2011/07/02.

    PubMed  Google Scholar 

  5. Luks AM, Swenson ER. Travel to high altitude with pre-existing lung disease. Eur Respir J. 2007;29(4):770–92.

    PubMed  CAS  Google Scholar 

  6. Graham WG, Houston CS. Short-term adaptation to moderate altitude. Patients with chronic obstructive pulmonary disease. JAMA. 1978;240(14):1491–4.

    PubMed  CAS  Google Scholar 

  7. Akero A, et al. Hypoxaemia in chronic obstructive pulmonary disease patients during a commercial flight. Eur Respir J. 2005;25(4):725–30.

    PubMed  CAS  Google Scholar 

  8. Christensen CC, et al. Development of severe hypoxaemia in chronic obstructive pulmonary disease patients at 2,438 m (8,000 ft) altitude. Eur Respir J. 2000;15(4):635–9.

    PubMed  CAS  Google Scholar 

  9. Seccombe LM, et al. Effect of simulated commercial flight on oxygenation in patients with interstitial lung disease and chronic obstructive pulmonary disease. Thorax. 2004;59(11):966–70.

    PubMed  CAS  Google Scholar 

  10. Berg BW, et al. Oxygen supplementation during air travel in patients with chronic obstructive lung disease. Chest. 1992;101(3):638–41.

    PubMed  CAS  Google Scholar 

  11. Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1995;152:S112–S3.

    Google Scholar 

  12. Aerospace Medical Association Medical Guidelines Task Force. Medical Guidelines for Airline Travel, 2nd ed. Aviat Space Environ Med. 2003;74(5 Suppl):A1–19.

    Google Scholar 

  13. Gong Jr H, et al. Hypoxia-altitude simulation test. Evaluation of patients with chronic airway obstruction. Am Rev Respir Dis. 1984;130(6):980–6.

    PubMed  Google Scholar 

  14. Dillard TA, et al. Hypoxemia during air travel in patients with chronic obstructive pulmonary disease. Ann Intern Med. 1989;111(5):362–7.

    PubMed  CAS  Google Scholar 

  15. Akero A, et al. Pulse oximetry in the preflight evaluation of patients with chronic obstructive pulmonary disease. Aviat Space Environ Med. 2008;79(5):518–24.

    PubMed  Google Scholar 

  16. Luks AM. Do lung disease patients need supplemental oxygen at high altitude? High Alt Med Biol. 2009;10(4):321–7.

    PubMed  Google Scholar 

  17. Finkelstein S, et al. Pulmonary mechanics at altitude in normal and obstructive lung disease patients. Aerosp Med. 1965;36:880–4.

    PubMed  CAS  Google Scholar 

  18. Dillard TA, et al. Lung function during moderate hypobaric hypoxia in normal subjects and patients with chronic obstructive pulmonary disease. Aviat Space Environ Med. 1998;69(10):979–85.

    PubMed  CAS  Google Scholar 

  19. Astin TW, Penman RW. Airway obstruction due to hypoxemia in patients with chronic lung disease. Am Rev Respir Dis. 1967;95(4):567–75.

    PubMed  CAS  Google Scholar 

  20. Libby DM, et al. Relief of hypoxia-related bronchoconstriction by breathing 30 per cent oxygen. Am Rev Respir Dis. 1981;123(2):171–5.

    PubMed  CAS  Google Scholar 

  21. Tomashefski JF, et al. Effects of altitude on emphysematous blebs and bullae. Aerosp Med. 1966; 37(11):1158–62.

    PubMed  CAS  Google Scholar 

  22. Yanda RL, Herschensohn HL. Changes in lung volumes of emphysema patients upon short exposures to simulated altitude of 18,000 feet. Aerosp Med. 1964;35:1201–3.

    PubMed  CAS  Google Scholar 

  23. Christensen CC, et al. Effect of hypobaric hypoxia on blood gases in patients with restrictive lung disease. Eur Respir J. 2002;20(2):300–5.

    PubMed  CAS  Google Scholar 

  24. Burtscher M, et al. Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol. 2004;5(3):335–40.

    PubMed  Google Scholar 

  25. Roach RC, et al. Arterial oxygen saturation for prediction of acute mountain sickness. Aviat Space Environ Med. 1998;69(12):1182–5.

    PubMed  CAS  Google Scholar 

  26. Honigman B, et al. Acute mountain sickness in a general tourist population at moderate altitudes. Ann Intern Med. 1993;118(8):587–92.

    PubMed  CAS  Google Scholar 

  27. Roach RC, et al. How well do older persons tolerate moderate altitude? West J Med. 1995;162(1):32–6.

    PubMed  CAS  Google Scholar 

  28. Spieksma FT, et al. High altitude and house-dust mites. Br Med J. 1971;1(740):82–4.

    PubMed  CAS  Google Scholar 

  29. Boner AL, et al. Influence of allergen avoidance at high altitude on serum markers of eosinophil activation in children with allergic asthma. Clin Exp Allergy. 1993;23(12):1021–6.

    PubMed  CAS  Google Scholar 

  30. van Velzen E, et al. Effect of allergen avoidance at high altitude on direct and indirect bronchial hyperresponsiveness and markers of inflammation in children with allergic asthma. Thorax. 1996;51(6):582–4.

    PubMed  Google Scholar 

  31. Valletta EA, et al. Peak expiratory flow variation and bronchial hyperresponsiveness in asthmatic children during periods of antigen avoidance and reexposure. Allergy. 1995;50(4):366–9.

    PubMed  CAS  Google Scholar 

  32. Denjean A, et al. Mild isocapnic hypoxia enhances the bronchial response to methacholine in asthmatic subjects. Am Rev Respir Dis. 1988;138(4):789–93.

    PubMed  CAS  Google Scholar 

  33. van den Elshout FJ, et al. Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax. 1991;46(1):28–32.

    PubMed  Google Scholar 

  34. Kaminsky DA, et al. Peripheral airways responsiveness to cool, dry air in normal and asthmatic individuals. Am J Respir Crit Care Med. 1995;152(6 Pt 1):1784–90.

    PubMed  CAS  Google Scholar 

  35. Larsson K, et al. High prevalence of asthma in cross country skiers. BMJ. 1993;307(6915):1326–9.

    PubMed  CAS  Google Scholar 

  36. Pohjantahti H, et al. Exercise-induced bronchospasm among healthy elite cross country skiers and non-athletic students. Scand J Med Sci Sports. 2005;15(5):324–8.

    PubMed  CAS  Google Scholar 

  37. Durand F, et al. Undiagnosed exercise-induced bronchoconstriction in ski-mountaineers. Int J Sports Med. 2005;26(3):233–7.

    PubMed  CAS  Google Scholar 

  38. Golan Y, et al. Asthma in adventure travelers: a prospective study evaluating the occurrence and risk factors for acute exacerbations. Arch Intern Med. 2002;162(21):2421–6.

    PubMed  Google Scholar 

  39. Louie D, Pare PD. Physiological changes at altitude in nonasthmatic and asthmatic subjects. Can Respir J. 2004;11(3):197–9.

    PubMed  Google Scholar 

  40. Cogo A, et al. Bronchial asthma and airway hyperresponsiveness at high altitude. Respiration. 1997;64(6):444–9.

    PubMed  CAS  Google Scholar 

  41. Allegra L, et al. High altitude exposure reduces bronchial responsiveness to hypo-osmolar aerosol in lowland asthmatics. Eur Respir J. 1995;8(11):1842–6.

    PubMed  CAS  Google Scholar 

  42. Stokes S, et al. Bronchial asthma on Mount Kilimanjaro is not a disadvantage. Thorax. 2008;63(10):936–7.

    PubMed  CAS  Google Scholar 

  43. Huismans HK, et al. Asthma in patients climbing to high and extreme altitudes in the Tibetan Everest region. J Asthma. 2010;47(6):614–9. Epub 2010/07/17.

    PubMed  Google Scholar 

  44. Fischer R, et al. Lung function in adults with cystic fibrosis at altitude: impact on air travel. Eur Respir J. 2005;25(4):718–24.

    PubMed  CAS  Google Scholar 

  45. Thews O, et al. Respiratory function and blood gas variables in cystic fibrosis patients during reduced environmental pressure. Eur J Appl Physiol. 2004;92(4–5):493–7.

    PubMed  Google Scholar 

  46. Rose DM, et al. Blood gas-analyses in patients with cystic fibrosis to estimate hypoxemia during exposure to high altitudes in a hypobaric-chamber. Eur J Med Res. 2000;5(1):9–12.

    PubMed  CAS  Google Scholar 

  47. Ryujin DT, et al. Oxygen saturation in adult cystic fibrosis patients during exercise at high altitude. Pediatr Pulmonol. 2001;32(6):437–41.

    PubMed  CAS  Google Scholar 

  48. Oades PJ, et al. Prediction of hypoxaemia at high altitude in children with cystic fibrosis. BMJ. 1994;308(6920):15–8.

    PubMed  CAS  Google Scholar 

  49. Kamin W, et al. Predicting hypoxia in cystic fibrosis patients during exposure to high altitudes. J Cyst Fibros. 2006;5:223–8.

    PubMed  Google Scholar 

  50. Speechly-Dick ME, et al. Exacerbations of cystic fibrosis after holidays at high altitude–a cautionary tale. Respir Med. 1992;86(1):55–6.

    PubMed  CAS  Google Scholar 

  51. Swenson ER, et al. Pathogenesis of high-altitude pulmonary edema: inflammation is not an etiologic factor. JAMA. 2002;287(17):2228–35.

    PubMed  Google Scholar 

  52. Maggiorini M, et al. High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation. 2001;103(16):2078–83.

    PubMed  CAS  Google Scholar 

  53. Hackett PH, et al. High-altitude pulmonary edema in persons without the right pulmonary artery. N Engl J Med. 1980;302(19):1070–3.

    PubMed  CAS  Google Scholar 

  54. Rios B, et al. High-altitude pulmonary edema with absent right pulmonary artery. Pediatrics. 1985;75(2):314–7.

    PubMed  CAS  Google Scholar 

  55. Torrington KG. Recurrent high-altitude illness associated with right pulmonary artery occlusion from granulomatous mediastinitis. Chest. 1989;96(6):1422–4.

    PubMed  CAS  Google Scholar 

  56. Nakagawa S, et al. High-altitude pulmonary edema with pulmonary thromboembolism. Chest. 1993;103(3):948–50.

    PubMed  CAS  Google Scholar 

  57. Naeije R, et al. High-altitude pulmonary edema with primary pulmonary hypertension. Chest. 1996;110(1):286–9.

    PubMed  CAS  Google Scholar 

  58. Durmowicz AG. Pulmonary edema in 6 children with Down syndrome during travel to moderate altitudes. Pediatrics. 2001;108(2):443–7.

    PubMed  CAS  Google Scholar 

  59. Das BB, et al. High-altitude pulmonary edema in children with underlying cardiopulmonary disorders and pulmonary hypertension living at altitude. Arch Pediatr Adolesc Med. 2004;158(12):1170–6.

    PubMed  Google Scholar 

  60. Wu T. A Tibetan with chronic mountain sickness followed by high altitude pulmonary edema on reentry. High Alt Med Biol. 2004;5(2):190–4.

    PubMed  Google Scholar 

  61. Grunig E, et al. Stress Doppler echocardiography in relatives of patients with idiopathic and familial pulmonary arterial hypertension: results of a multicenter European analysis of pulmonary artery pressure response to exercise and hypoxia. Circulation. 2009;119(13):1747–57. Epub 2009/03/25.

    PubMed  Google Scholar 

  62. Rhodes CJ, et al. Iron deficiency in pulmonary arterial hypertension: a potential therapeutic target. Eur Respir J. 2011;38(6):1453–60. Epub 2011/04/12.

    PubMed  CAS  Google Scholar 

  63. Smith TG, et al. Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials. JAMA. 2009;302(13):1444–50.

    PubMed  CAS  Google Scholar 

  64. Toff NJ. Hazards of air travel for the obese: Miss Pickwick and the Boeing 747. J R Coll Physicians Lond. 1993;27(4):375–6.

    PubMed  CAS  Google Scholar 

  65. Noble JS, Davidson JA. Cor pulmonale presenting in a patient with congenital kyphoscoliosis following intercontinental air travel. Anaesthesia. 1999;54(4):361–3.

    PubMed  CAS  Google Scholar 

  66. American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211–77.

    Google Scholar 

  67. Smith G, et al. Safety of maximal cardiopulmonary exercise testing in pediatric patients with pulmonary hypertension. Chest. 2009;135(5):1209–14.

    PubMed  Google Scholar 

  68. Burgess KR, et al. Effect of simulated altitude during sleep on moderate-severity OSA. Respirology. 2006;11(1):62–9.

    PubMed  Google Scholar 

  69. Burgess KR, et al. Central and obstructive sleep apnoea during ascent to high altitude. Respirology. 2004;9(2):222–9.

    PubMed  Google Scholar 

  70. Nussbaumer-Ochsner Y, et al. Patients with obstructive sleep apnea syndrome benefit from acetazolamide during an altitude sojourn: a randomized, placebo-controlled, double-blind trial. Chest. 2012;141(1):131–8. Epub 2011/06/11.

    PubMed  CAS  Google Scholar 

  71. Nussbaumer-Ochsner Y, et al. Exacerbation of sleep apnoea by frequent central events in patients with the obstructive sleep apnoea syndrome at altitude: a randomised trial. Thorax. 2010;65(5):429–35.

    PubMed  Google Scholar 

  72. Fromm Jr RE, et al. CPAP machine performance and altitude. Chest. 1995;108(6):1577–80.

    PubMed  Google Scholar 

  73. Serebrovskaya T, et al. Hypoxic ventilatory responses and gas exchange in patient with Parkinson’s disease. Respiration. 1998;65(1):28–33.

    PubMed  CAS  Google Scholar 

  74. Carroll JE, et al. Ventilatory response in myotonic dystrophy. Neurology. 1977;27(12):1125–8.

    PubMed  CAS  Google Scholar 

  75. Sandham JD, et al. Acute supine respiratory failure due to bilateral diaphragmatic paralysis. Chest. 1977;72(1):96–8.

    PubMed  CAS  Google Scholar 

  76. Lovering AT, et al. Excessive gas exchange impairment during exercise in a subject with a history of bronchopulmonary dysplasia and high altitude pulmonary edema. High Alt Med Biol. 2007;8(1):62–7.

    PubMed  Google Scholar 

  77. Yaron M, et al. Evaluation of diagnostic criteria and incidence of acute mountain sickness in preverbal children. Wilderness Environ Med. 2002;13(1):21–6.

    PubMed  Google Scholar 

  78. Yaron M, Niermeyer S. Travel to high altitude with young children: an approach for clinicians. High Alt Med Biol. 2008;9(4):265–9.

    PubMed  Google Scholar 

  79. Bartsch P, Gibbs JS. The effect of altitude on the heart and lungs. Circulation. 2007;116:2131–202.

    Google Scholar 

  80. Dehnert C, Bartsch P. Can patients with coronary heart disease go to high altitude? High Alt Med Biol. 2010;11(3):183–8.

    PubMed  Google Scholar 

  81. Burchell HB, et al. The stress and the electrocardiogram in the induced hypoxemia test for coronary insufficiency. Am Heart J. 1948;36(3):373–89.

    PubMed  CAS  Google Scholar 

  82. Alexander J. Coronary heart disease at altitude. Tex Heart Inst J. 1994;21:261–6.

    PubMed  CAS  Google Scholar 

  83. Khanna PK, et al. Exercise in an hypoxic environment as a screening test for ischaemic heart disease. Aviat Space Environ Med. 1976;47(10):1114–7.

    PubMed  CAS  Google Scholar 

  84. Levine BD, et al. Effect of high-altitude exposure in the elderly: the Tenth Mountain Division study. Circulation. 1997;96(4):1224–32.

    PubMed  CAS  Google Scholar 

  85. Wyss CA, et al. Influence of altitude exposure on coronary flow reserve. Circulation. 2003;108(10):1202–7.

    PubMed  Google Scholar 

  86. Schmid JP, et al. Safety and exercise tolerance of acute high altitude exposure (3454 m) among patients with coronary artery disease. Heart. 2006;92(7):921–5.

    PubMed  CAS  Google Scholar 

  87. Lassvik C, Areskog NH. Angina pectoris during inhalation of cold air. Reactions to exercise. Br Heart J. 1980;43(6):661–7.

    PubMed  CAS  Google Scholar 

  88. Burtscher M. Risk of cardiovascular events during mountain activities. Adv Exp Med Biol. 2007;618:1–11.

    PubMed  Google Scholar 

  89. Burtscher M, et al. Sudden cardiac death during mountain hiking and downhill skiing. N Engl J Med. 1993;329(23):1738–9.

    PubMed  CAS  Google Scholar 

  90. Palatini P, et al. Effects of low altitude exposure on 24-hour blood pressure and adrenergic activity. Am J Cardiol. 1989;64(19):1379–82.

    PubMed  CAS  Google Scholar 

  91. Savonitto S, et al. Effects of acute exposure to altitude (3,460 m) on blood pressure response to dynamic and isometric exercise in men with systemic hypertension. Am J Cardiol. 1992;70(18):1493–7.

    PubMed  CAS  Google Scholar 

  92. Wu TY, et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt Med Biol. 2007;8(2):88–107.

    PubMed  Google Scholar 

  93. Luks AM. Should travelers with hypertension adjust their medications when traveling to high altitude? High Alt Med Biol. 2009;10(1):11–5.

    PubMed  CAS  Google Scholar 

  94. Woods DR, et al. High altitude arrhythmias. Cardiology. 2008;111(4):239–46.

    PubMed  CAS  Google Scholar 

  95. Weilenmann D, et al. Influence of acute exposure to high altitude and hypoxemia on ventricular stimulation thresholds in pacemaker patients. Pacing Clin Electrophysiol. 2000;23(4 Pt 1):512–5.

    PubMed  CAS  Google Scholar 

  96. Kobza R, et al. Leisure-time activities of patients with ICDs: findings of a survey with respect to sports activity, high altitude stays, and driving patterns. Pacing Clin Electrophysiol. 2008;31(7):845–9.

    PubMed  Google Scholar 

  97. Erdmann J, et al. Effects of exposure to altitude on men with coronary artery disease and impaired left ventricular function. Am J Cardiol. 1998;81(3):266–70.

    PubMed  CAS  Google Scholar 

  98. Agostoni P, et al. Effects of simulated altitude-induced hypoxia on exercise capacity in patients with chronic heart failure. Am J Med. 2000;109(6):450–5.

    PubMed  CAS  Google Scholar 

  99. Hackett P. High altitude medicine. In: Auerbach PS, editor. Wilderness medicine. 5th ed. Philadelphia, PA: Mosby Elsevier; 2007.

    Google Scholar 

  100. Agostoni P, et al. Carvedilol reduces exercise-induced hyperventilation: a benefit in normoxia and a problem with hypoxia. Eur J Heart Fail. 2006;8(7):729–35.

    PubMed  CAS  Google Scholar 

  101. Valentini M, et al. Effects of beta-blockade on exercise performance at high altitude: a randomized, placebo-controlled trial comparing the efficacy of nebivolol versus carvedilol in healthy subjects. Cardiovasc Ther. 2012;30(4):240–8. Epub 2011/09/03.

    PubMed  CAS  Google Scholar 

  102. Allemann Y, et al. Patent foramen ovale and high-altitude pulmonary edema. JAMA. 2006;296(24):2954–8.

    PubMed  CAS  Google Scholar 

  103. Grunig E, et al. Stress Doppler echocardiography for identification of susceptibility to high altitude pulmonary edema. J Am Coll Cardiol. 2000;35(4):980–7.

    PubMed  CAS  Google Scholar 

  104. Dehnert C, et al. Identification of individuals susceptible to high-altitude pulmonary oedema at low altitude. Eur Respir J. 2005;25(3):545–51.

    PubMed  CAS  Google Scholar 

  105. Garcia JA, et al. The role of the right ventricle during hypobaric hypoxic exercise: insights from patients after the Fontan operation. Med Sci Sports Exerc. 1999;31(2):269–76.

    PubMed  CAS  Google Scholar 

  106. Broberg CS, et al. Adult patients with Eisenmenger syndrome report flying safely on commercial airlines. Heart. 2007;93(12):1599–603.

    PubMed  Google Scholar 

  107. Perloff JK, et al. Risk of stroke in adults with cyanotic congenital heart disease. Circulation. 1993;87(6):1954–9.

    PubMed  CAS  Google Scholar 

  108. Berman Jr W, et al. Systemic oxygen transport in patients with congenital heart disease. Circulation. 1987;75(2):360–8.

    PubMed  Google Scholar 

  109. Shlim DR, Papenfus K. Pulmonary embolism presenting as high-altitude pulmonary edema. Wilderness Environ Med. 1995;6(2):220–4.

    PubMed  CAS  Google Scholar 

  110. Boulos P, et al. Superior sagittal sinus thrombosis occurring at high altitude associated with protein C deficiency. Acta Haematol. 1999;102(2):104–6.

    PubMed  CAS  Google Scholar 

  111. Anand AC, et al. Symptomatic portal system thrombosis in soldiers due to extended stay at extreme altitude. J Gastroenterol Hepatol. 2005;20(5):777–83.

    PubMed  Google Scholar 

  112. Jha SK, et al. Stroke at high altitude: Indian experience. High Alt Med Biol. 2002;3(1):21–7.

    PubMed  Google Scholar 

  113. Fagenholz PJ, et al. Arterial thrombosis at high altitude resulting in loss of limb. High Alt Med Biol. 2007;8(4):340–7.

    PubMed  Google Scholar 

  114. Anand AC, et al. Thrombosis as a complication of extended stay at high altitude. Natl Med J India. 2001;14(4):197–201.

    PubMed  CAS  Google Scholar 

  115. Khalil KF, Saeed W. Pulmonary embolism in soldiers serving at high altitude. J Coll Physicians Surg Pak. 2010;20(7):468–71. Epub 2010/07/21.

    PubMed  Google Scholar 

  116. Sharma SC. Platelet count in temporary residents of high altitude. J Appl Physiol. 1980;49(6):1047–8.

    PubMed  CAS  Google Scholar 

  117. Maher JT, et al. Human coagulation abnormalities during acute exposure to hypobaric hypoxia. J Appl Physiol. 1976;41(5 Pt 1):702–7.

    PubMed  CAS  Google Scholar 

  118. Hudson JG, et al. The effect of high altitude on platelet counts, thrombopoietin and erythropoietin levels in young Bolivian airmen visiting the Andes. Int J Biometeorol. 1999;43(2):85–90. Epub 1999/11/07.

    PubMed  CAS  Google Scholar 

  119. Doughty HA, Beardmore C. Bleeding time at altitude. J R Soc Med. 1994;87(6):317–9.

    PubMed  CAS  Google Scholar 

  120. Bartsch P, et al. Coagulation and fibrinolysis in acute mountain sickness and beginning pulmonary edema. J Appl Physiol. 1989;66(5):2136–44.

    PubMed  CAS  Google Scholar 

  121. Bartsch P, et al. Fibrinogenolysis in the absence of fibrin formation in severe hypobaric hypoxia. Aviat Space Environ Med. 1988;59(5):428–32.

    PubMed  CAS  Google Scholar 

  122. Mannucci PM, et al. Short-term exposure to high altitude cause coagulation activation and inhibits fibrinolysis. Thromb Haemost. 2002;87(2):342–3.

    PubMed  CAS  Google Scholar 

  123. Bendz B, et al. Association between acute hypobaric hypoxia and activation of coagulation in human beings. Lancet. 2000;356(9242):1657–8.

    PubMed  CAS  Google Scholar 

  124. Bartsch P, et al. Hypobaric hypoxia. Lancet. 2001;357(9260):955–6.

    PubMed  CAS  Google Scholar 

  125. Schreijer AJ, et al. Activation of coagulation system during air travel: a crossover study. Lancet. 2006;367(9513):832–8.

    PubMed  CAS  Google Scholar 

  126. Basnyat B, et al. A language barrier, abdominal pain, and double vision. Lancet. 2001;357(9273):2022.

    PubMed  CAS  Google Scholar 

  127. Ashraf H, et al. Pulmonary embolism at high altitude and hyperhomocysteinemia. J Coll Physicians Surg Pak. 2006;16(1):71–3.

    PubMed  CAS  Google Scholar 

  128. Heffner JE, Sahn SA. High-altitude pulmonary infarction. Arch Intern Med. 1981;141(12):1721.

    PubMed  CAS  Google Scholar 

  129. Green RL, et al. The sickle-cell and altitude. Br Med J. 1971;4(5787):593–5. Epub 1971/12/04.

    PubMed  CAS  Google Scholar 

  130. Mahony BS, Githens JH. Sickling crises and altitude. Occurrence in the Colorado patient population. Clin Pediatr. 1979;18(7):431–8. Epub 1979/07/01.

    CAS  Google Scholar 

  131. Tiernan CJ. Splenic crisis at high altitude in 2 white men with sickle cell trait. Ann Emerg Med. 1999;33(2):230–3.

    PubMed  CAS  Google Scholar 

  132. Franklin QJ, Compeggie M. Splenic syndrome in sickle cell trait: four case presentations and a review of the literature. Mil Med. 1999;164(3):230–3.

    PubMed  CAS  Google Scholar 

  133. Lee MT, et al. Pulmonary hypertension in sickle cell disease. Clin Adv Hematol Oncol. 2007;5(8):645–53; 585.

    PubMed  Google Scholar 

  134. Brookhart MA, et al. The effect of altitude on dosing and response to erythropoietin in ESRD. J Am Soc Nephrol. 2008;19(7):1389–95.

    PubMed  CAS  Google Scholar 

  135. Hussein MM, et al. Low-dose recombinant human erythropoietin in dialysis patients living at high altitude. Nephrol Dial Transplant. 1992;7(2):173–4.

    PubMed  CAS  Google Scholar 

  136. Spivak JL. Polycythemia vera: myths, mechanisms, and management. Blood. 2002;100(13):4272–90.

    PubMed  CAS  Google Scholar 

  137. Torgano G, et al. Gastroduodenal lesions in polycythaemia vera: frequency and role of Helicobacter pylori. Br J Haematol. 2002;117(1):198–202.

    PubMed  Google Scholar 

  138. Carneskog J, et al. Plasma erythropoietin by high-detectability immunoradiometric assay in untreated and treated patients with polycythaemia vera and essential thrombocythaemia. Eur J Haematol. 1998;60(5):278–82.

    PubMed  CAS  Google Scholar 

  139. Moore K, et al. Extreme altitude mountaineering and Type 1 diabetes; the Diabetes Federation of Ireland Kilimanjaro Expedition. Diabet Med. 2001;18(9):749–55.

    PubMed  CAS  Google Scholar 

  140. Kalson NS, et al. Climbers with diabetes do well on Mount Kilimanjaro. Diabet Med. 2007;24(12):1496.

    PubMed  CAS  Google Scholar 

  141. Pavan P, et al. Extreme altitude mountaineering and type 1 diabetes: the Cho Oyu alpinisti in Alta Quota expedition. Diabetes Care. 2003;26(11):3196–7.

    PubMed  Google Scholar 

  142. Admetlla J, et al. Management of diabetes at high altitude. Br J Sports Med. 2001;35(4):282–3.

    PubMed  CAS  Google Scholar 

  143. Pavan P, et al. Metabolic and cardiovascular parameters in type 1 diabetes at extreme altitude. Med Sci Sports Exerc. 2004;36(8):1283–9.

    PubMed  Google Scholar 

  144. Gautier JF, et al. Influence of simulated altitude on the performance of five blood glucose meters. Diabetes Care. 1996;19(12):1430–3.

    PubMed  CAS  Google Scholar 

  145. Giordano BP, et al. Performance of seven blood glucose testing systems at high altitude. Diabetes Educ. 1989;15(5):444–8.

    PubMed  CAS  Google Scholar 

  146. Pecchio O, et al. Effects of exposure at an altitude of 3,000 m on performance of glucose meters. Diabetes Care. 2000;23(1):129–31.

    PubMed  CAS  Google Scholar 

  147. Fink KS, et al. Effect of high altitude on blood glucose meter performance. Diabetes Technol Ther. 2002;4(5):627–35.

    PubMed  Google Scholar 

  148. Oberg D, Ostenson CG. Performance of glucose dehydrogenase-and glucose oxidase-based blood glucose meters at high altitude and low temperature. Diabetes Care. 2005;28(5):1261. Epub 2005/04/28.

    PubMed  Google Scholar 

  149. de Mol P, et al. Accuracy of handheld blood glucose meters at high altitude. PLoS One. 2010;5(11):e15485. Epub 2010/11/26.

    PubMed  Google Scholar 

  150. King BR, et al. Changes in altitude cause unintended insulin delivery from insulin pumps: mechanisms and implications. Diabetes Care. 2011;34(9):1932–3. Epub 2011/08/06.

    PubMed  Google Scholar 

  151. Leal C, et al. Diabetic retinopathy at high altitude. High Alt Med Biol. 2008;9(1):24–7.

    PubMed  Google Scholar 

  152. Mader TH, Tabin G. Going to high altitude with preexisting ocular conditions. High Alt Med Biol. 2003;4(4):419–30.

    PubMed  Google Scholar 

  153. Kohner EM. Aspirin for diabetic retinopathy. BMJ. 2003;327(7423):1060–1.

    PubMed  Google Scholar 

  154. Chew EY, et al. Effects of aspirin on vitreous/preretinal hemorrhage in patients with diabetes mellitus. Early Treatment Diabetic Retinopathy Study report no. 20. Arch Ophthalmol. 1995;113(1):52–5.

    PubMed  CAS  Google Scholar 

  155. Ri-Li G, et al. Obesity: associations with acute mountain sickness. Ann Intern Med. 2003;139(4):253–7.

    PubMed  Google Scholar 

  156. Alpert MA. Obesity cardiomyopathy: pathophysiology and evolution of the clinical syndrome. Am J Med Sci. 2001;321(4):225–36.

    PubMed  CAS  Google Scholar 

  157. Wu TY, et al. High-altitude gastrointestinal bleeding: an observation in Qinghai-Tibetan railroad construction workers on Mountain Tanggula. World J Gastroenterol. 2007;13(5):774–80.

    PubMed  Google Scholar 

  158. Saito A. The medical reports of the China-Japan-Nepal Friendship Expedition to Mt. Qomolungma/Sagamartha (Everest). Jpn J Mount Med. 1989;9:83–7.

    Google Scholar 

  159. Liu MF. Upper alimentary bleeding at high altitude. In: Lu YD, Li KX, Yin ZY, editors. High altitude medicine and physiology. Tianjing: Tianjing Science and Technology Press; 1995. p. 586.

    Google Scholar 

  160. Fruehauf H, et al. Unsedated transnasal esophago-gastroduodenoscopy at 4559 M (14,957 ft)—endoscopic findings in healthy mountaineers after rapid ascent to high altitude. Gastroenterology. 2010;138(5 Suppl 1):S483–4.

    Google Scholar 

  161. Hopkins WE, et al. Frequency and significance of intrapulmonary right-to-left shunting in end-stage hepatic disease. Am J Cardiol. 1992;70(4):516–9.

    PubMed  CAS  Google Scholar 

  162. Benjaminov FS, et al. Portopulmonary hypertension in decompensated cirrhosis with refractory ascites. Gut. 2003;52(9):1355–62.

    PubMed  CAS  Google Scholar 

  163. Bogaard HJ, et al. A 31-year-old man with hemoptysis at high altitude and abnormal hepatic biochemistry tests. Chest. 2007;132(3):1088–92.

    PubMed  Google Scholar 

  164. Mairbaurl H, et al. Exercise performance of hemodialysis patients during short-term and prolonged exposure to altitude. Clin Nephrol. 1989;32(1):31–9.

    PubMed  CAS  Google Scholar 

  165. Blumberg A, et al. Effect of altitude on erythropoiesis and oxygen affinity in anaemic patients on maintenance dialysis. Eur J Clin Invest. 1973;3(2):93–7.

    PubMed  CAS  Google Scholar 

  166. Mairbaurl H, et al. Increase in Hb-O2-affinity at moderate altitude (2000 m) in patients on maintenance hemodialysis. Clin Nephrol. 1989;31(4):198–203.

    PubMed  CAS  Google Scholar 

  167. Quick J, et al. Stimulation of erythropoietin in renal insufficiency by hypobaric hypoxia. Nephrol Dial Transplant. 1992;7(10):1002–6.

    PubMed  CAS  Google Scholar 

  168. Abassi Z, et al. Pulmonary hypertension in chronic dialysis patients with arteriovenous fistula: pathogenesis and therapeutic prospective. Curr Opin Nephrol Hypertens. 2006;15(4):353–60.

    PubMed  CAS  Google Scholar 

  169. Luks AM, et al. Chronic kidney disease at high altitude. J Am Soc Nephrol. 2008;19(12):2262–71.

    PubMed  CAS  Google Scholar 

  170. Mader TH, et al. Refractive changes during 72-hour exposure to high altitude after refractive surgery. Ophthalmology. 1996;103(8):1188–95.

    PubMed  CAS  Google Scholar 

  171. Nelson ML, et al. Refractive changes caused by hypoxia after laser in situ keratomileusis surgery. Ophthalmology. 2001;108(3):542–4.

    PubMed  CAS  Google Scholar 

  172. Boes DA, et al. Effect of high-altitude exposure on myopic laser in situ keratomileusis. J Cataract Refract Surg. 2001;27(12):1937–41.

    PubMed  CAS  Google Scholar 

  173. White LJ, Mader TH. Refractive changes at high altitude after LASIK. Ophthalmology. 2000;107(12):2118.

    PubMed  CAS  Google Scholar 

  174. Dimmig JW, Tabin G. The ascent of Mount Everest following laser in situ keratomileusis. J Refract Surg. 2003;19(1):48–51.

    PubMed  Google Scholar 

  175. Brinchmann-Hansen O, Myhre K. Blood pressure, intraocular pressure, and retinal vessels after high altitude mountain exposure. Aviat Space Environ Med. 1989;60(10 Pt 1):970–6.

    PubMed  CAS  Google Scholar 

  176. Bayer A, et al. Intraocular pressure measured at ground level and 10,000 feet. Aviat Space Environ Med. 2004;75(6):543–5.

    PubMed  Google Scholar 

  177. Ersanli D, et al. Intraocular pressure at a simulated altitude of 9000 m with and without 100% oxygen. Aviat Space Environ Med. 2006;77(7):704–6.

    PubMed  Google Scholar 

  178. Somner JE, et al. What happens to intraocular pressure at high altitude? Invest Ophthalmol Vis Sci. 2007;48(4):1622–6.

    PubMed  Google Scholar 

  179. Baumgartner RW, et al. Going high with preexisting neurological conditions. High Alt Med Biol. 2007; 8(2):108–16.

    PubMed  Google Scholar 

  180. Silber E, et al. Clinical features of headache at altitude: a prospective study. Neurology. 2003;60(7):1167–71.

    PubMed  CAS  Google Scholar 

  181. Schoonman GG, et al. Normobaric hypoxia and nitroglycerin as trigger factors for migraine. Cephalalgia. 2006;26(7):816–9.

    PubMed  CAS  Google Scholar 

  182. Richalet JP, et al. Physiological risk factors for severe high-altitude illness: a prospective cohort study. Am J Respir Crit Care Med. 2012;185(2):192–8. Epub 2011/11/11.

    PubMed  Google Scholar 

  183. Murdoch DR. Focal neurological deficits and migraine at high altitude. J Neurol Neurosurg Psychiatry. 1995;58(5):637.

    PubMed  CAS  Google Scholar 

  184. Luks AM, Swenson ER. Medication and dosage considerations in the prophylaxis and treatment of high-altitude illness. Chest. 2008;133(3):744–55.

    PubMed  Google Scholar 

  185. Grissom CK, DeLoughery TG. Chronic diseases and wilderness activities. In: Auerbach PS, editor. Wilderness medicine. 5th ed. Philadelphia, PA: Mosby Elsevier; 2007.

    Google Scholar 

  186. Luks AM, et al. Can people with Raynaud’s phenomenon travel to high altitude? Wilderness Environ Med. 2009;20(2):129–38.

    PubMed  Google Scholar 

  187. Jean D, Moore LG. Travel to high altitude during pregnancy: frequently asked questions and recommendations for clinicians. High Alt Med Biol. 2012;13(2):73–81.

    PubMed  Google Scholar 

  188. Kelly PT, et al. Air travel hypoxemia vs. the hypoxia inhalation test in passengers with COPD. Chest. 2008;133(4):920–6.

    PubMed  Google Scholar 

  189. Roggla G, Moser B. The function of metered dose inhalers at moderate altitude. J Travel Med. 2006;13(4):248; author reply 248–9.

    PubMed  Google Scholar 

  190. Van Patot MC, et al. Risk of impaired coagulation in warfarin patients ascending to altitude (>2400 m). High Alt Med Biol. 2006;7(1):39–46.

    PubMed  Google Scholar 

  191. Messer J, et al. Association of adrenocorticosteroid therapy and peptic-ulcer disease. N Engl J Med. 1983;309(1):21–4.

    PubMed  CAS  Google Scholar 

  192. Nielsen GL, et al. Risk of hospitalization resulting from upper gastrointestinal bleeding among patients taking corticosteroids: a register-based cohort study. Am J Med. 2001;111(7):541–5.

    PubMed  CAS  Google Scholar 

  193. World Health Organization. Breastfeeding and maternal medication. Geneva: World Health Organization; 2002.

    Google Scholar 

  194. Product Information: Decadron®, dexamethasone. West Point, PA: Merck & Co.; 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Luks M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Luks, A.M., Hackett, P.H. (2014). High Altitude and Common Medical Conditions. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_23

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics