High Altitude pp 379-403 | Cite as

Acute Mountain Sickness and High Altitude Cerebral Oedema

Chapter

Abstract

This chapter summarises advances made over the last 12 years regarding our understanding of the pathophysiology and its clinical implications in acute mountain sickness (AMS) and high altitude cerebral oedema (HACE). Issues on the definition and diagnosis of AMS and HACE as well as determinants of incidence and susceptibility are discussed. Furthermore, new studies on prevention and treatment of AMS are critically evaluated. Findings on lung function, gas exchange, metabolism, hormonal response, markers of inflammation, changes in the autonomic nervous system, cerebral blood flow, and brain imaging are reviewed. The results of these examinations are incorporated into an overall concept relating to the underlying pathophysiology of acute mountain sickness and high altitude cerebral oedema.

Keywords

Placebo Permeability Fatigue Adduct Angiotensin 

References

  1. 1.
    Roach RC, Bärtsch P, Hackett PH, et al. The Lake Louise acute mountain sickness scoring system. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and molecular medicine. Burlington: Queen City Printers Inc.; 1993. p. 272–4.Google Scholar
  2. 2.
    West JB. Con: headache should not be a required symptom for the diagnosis of acute mountain sickness. High Alt Med Biol. 2011;12:23–5.PubMedGoogle Scholar
  3. 3.
    Maggiorini M, Müller A, Hofstetter D, Bärtsch P, Oelz O. Assessment of acute mountain sickness by different score protocols in the Swiss Alps. Aviat Space Environ Med. 1998;69(12):1186–92.PubMedGoogle Scholar
  4. 4.
    Bärtsch P, Müller A, Hofstetter D, et al. AMS and HAPE scoring in the Alps. In: Sutton JR, Houston CS, Coates G, editors. Hypoxia and molecular medicine. Burlington: Queen City Press; 1993. p. 265–71.Google Scholar
  5. 5.
    Bailey DM, Roukens R, Knauth M, Kallenberg K, Christ S, Mohr A, et al. Free radical-mediated damage to barrier function is not associated with altered brain morphology in high-altitude headache. J Cereb Blood Flow Metab. 2006;26(1):99–111.PubMedGoogle Scholar
  6. 6.
    Loeppky JA, Icenogle MV, Charlton G, Conn CA, Maes D, Riboni K, et al. Hypoxemia and acute mountain sickness: which comes first? High Alt Med Biol. 2008;9:271–9.PubMedGoogle Scholar
  7. 7.
    Hampson NB, Camporesi EM, Stolp BW, Moon RE, Shook JE, Griebel JA, et al. Cerebral oxygen availability by NIR spectroscopy during transient hypoxia in humans. J Appl Physiol. 1990;69:907–13.PubMedGoogle Scholar
  8. 8.
    Bailey DM, Evans KA, James PE, McEneny J, Young IS, Fall L, et al. Altered free radical metabolism in acute mountain sickness: implications for dynamic cerebral autoregulation and blood-brain barrier function. J Physiol. 2009;587:73–85.PubMedGoogle Scholar
  9. 9.
    Iversen HK, Olesen J, Tfelt-Hansen P. Intravenous nitroglycerin as an experimental model of vascular headache. Basic characteristics. Pain. 1989;38: 17–24.PubMedGoogle Scholar
  10. 10.
    Schneider M, Bernasch D, Weymann J, Holle R, Bärtsch P. Acute mountain sickness: influence of susceptibility, pre-exposure and ascent rate. Med Sci Sports Exerc. 2002;34(12):1886–91.PubMedGoogle Scholar
  11. 11.
    Muhm JM, Rock PB, McMullin DL, Jones SP, Eilers KD, Space DR, et al. Effect of aircraft-cabin altitude on passenger discomfort. N Engl J Med. 2007; 357:18–27.PubMedGoogle Scholar
  12. 12.
    Wagner DR, D’Zatko K, Tatsugawa K, Murray K, Parker D, Streeper T, et al. Determinants of summit success and acute mountain sickness. Med Sci Sports Exerc. 2008;40:1820–7.PubMedGoogle Scholar
  13. 13.
    Ziaee V, Yunesian M, Ahmadinejad Z, Halabchi F, Kordi R, Alizadeh R, et al. Acute mountain sickness in Iranian trekkers around Mount Damavand (5761 m) in Iran. Wilderness Environ Med. 2003; 14:214–9.PubMedGoogle Scholar
  14. 14.
    Bloch KE, Turk AJ, Maggiorini M, Hess T, Merz T, Bosch MM, et al. Effect of ascent protocol on acute mountain sickness and success at Muztagh Ata, 7546 m. High Alt Med Biol. 2009;10:25–32.PubMedGoogle Scholar
  15. 15.
    Ge RL, Chase PJ, Witkowski S, Wyrick BL, Stone JA, Levine BD, et al. Obesity: associations with acute mountain sickness. Ann Intern Med. 2003;139(4):253–7.Google Scholar
  16. 16.
    Gaillard S, Dellasanta P, Loutan L, Kayser B. Awareness, prevalence, medication use, and risk factors of acute mountain sickness in tourists trekking around the Annapurnas in Nepal: a 12-year follow-up. High Alt Med Biol. 2004;5:410–9.PubMedGoogle Scholar
  17. 17.
    Vardy J, Vardy J, Judge K. Can knowledge protect against acute mountain sickness? J Public Health (Oxf). 2005;27:366–70.Google Scholar
  18. 18.
    Ledderhos C, Pongratz H, Exner J, Gens A, Roloff D, Honig A. Reduced tolerance of simulated altitude (4200 m) in young men with borderline hypertension. Aviat Space Environ Med. 2002;73:1063–6.PubMedGoogle Scholar
  19. 19.
    Roach RC, Loeppky JA, Icenogle MV. Acute mountain sickness: increased severity during simulated altitude compared with normobaric hypoxia. J Appl Physiol. 1996;81(5):1908–10.PubMedGoogle Scholar
  20. 20.
    Schommer K, Hammer M, Hotz L, Menold E, Bärtsch P, Berger MM. Exercise intensity typical of mountain climbing does not exacerbate acute mountain sickness in normobaric hypoxia. J Appl Physiol. 2012;113:1068–74.PubMedGoogle Scholar
  21. 21.
    Kalson NS, Thompson J, Davies AJ, Stokes S, Earl MD, Whitehead A, et al. The effect of angiotensin-converting enzyme genotype on acute mountain sickness and summit success in trekkers attempting the summit of Mt. Kilimanjaro (5,895 m). Eur J Appl Physiol. 2009;105:373–9.PubMedGoogle Scholar
  22. 22.
    Karinen H, Peltonen J, Tikkanen H. Prevalence of acute mountain sickness among Finnish trekkers on Mount Kilimanjaro, Tanzania: an observational study. High Alt Med Biol. 2008;9:301–6.PubMedGoogle Scholar
  23. 23.
    Pesce C, Leal C, Pinto H, Gonzalez G, Maggiorini M, Schneider M, et al. Determinants of acute mountain sickness and success on Mount Aconcagua (6962 m). High Alt Med Biol. 2005;6(2):158–66.PubMedGoogle Scholar
  24. 24.
    Yaron M, Waldman N, Niermeyer S, Nicholas R, Honigman B. The diagnosis of acute mountain sickness in preverbal children. Arch Pediatr Adolesc Med. 1998;152:683–7.PubMedGoogle Scholar
  25. 25.
    Yaron M, Niermeyer S, Lindgren KN, Honigman B. Evaluation of diagnostic criteria and incidence of acute mountain sickness in preverbal children. Wilderness Environ Med. 2002;13:21–6.PubMedGoogle Scholar
  26. 26.
    Bloch J, Duplain H, Rimoldi SF, Stuber T, Kriemler S, Allemann Y, et al. Prevalence and time course of acute mountain sickness in older children and adolescents after rapid ascent to 3450 meters. Pediatrics. 2009;123:1–5.PubMedGoogle Scholar
  27. 27.
    Maggiorini M, Bühler B, Walter M, Oelz O. Prevalence of acute mountain sickness in the Swiss Alps. Br Med J. 1990;301:853–5.Google Scholar
  28. 28.
    Moraga FA, Pedreros CP, Rodríguez CE. Acute mountain sickness in children and their parents after rapid ascent to 3500 m (Putre, Chile). Wilderness Environ Med. 2008;19:287–92.PubMedGoogle Scholar
  29. 29.
    Moraga FA, Osorio JD, Vargas ME. Acute mountain sickness in tourists with children at Lake Chungará (4400 m) in Northern Chile. Wilderness Environ Med. 2002;13:31–5.PubMedGoogle Scholar
  30. 30.
    Baumgartner RW, Bärtsch P. Ataxia in acute mountain sickness does not improve with short-term oxygen inhalation. High Alt Med Biol. 2002;3:283–92.PubMedGoogle Scholar
  31. 31.
    Cymerman A, Muza SR, Beidleman BA, Ditzler DT, Fulco CS. Postural instability and acute mountain sickness during exposure to 24 hours of simulated altitude (4300 m). High Alt Med Biol. 2001;2:509–14.PubMedGoogle Scholar
  32. 32.
    Johnson BG, Wright AD, Beazley MF, Harvey TC, Hillenbrand P, Imray CHE, the Birmingham Medical Research Expeditionary Society. The sharpened Romberg test for assessing ataxia in mild acute mountain sickness. Wilderness Environ Med. 2005;16:62–6.PubMedGoogle Scholar
  33. 33.
    Wu T, Ding S, Liu J, Jia J, Dai R, Liang B, et al. Ataxia: an early indicator in high altitude cerebral edema. High Alt Med Biol. 2006;7:275–80.PubMedGoogle Scholar
  34. 34.
    Bärtsch P, Roach R. Acute mountain sickness and high-altitude cerebral edema. In: Hornbein TF, Schoene R, editors. High altitude—an exploration of human adaptation. New York: Marcel Dekker; 2001. p. 731–76.Google Scholar
  35. 35.
    Bärtsch P, Swenson ER, Paul A, Jülg B, Hohenhaus E. Hypoxic ventilatory response, ventilation, gas exchange, and fluid balance in acute mountain sickness. High Alt Med Biol. 2002;3:361–76.PubMedGoogle Scholar
  36. 36.
    Richalet JP, Larmignat P, Poitrine E, Letournel M, Canoui-Poitrine F. Physiological risk factors of severe high altitude illness: a prospective cohort study. Am J Respir Crit Care Med. 2012;185:1092–198.Google Scholar
  37. 37.
    Erba P, Anastasi S, Senn O, Maggiorini M, Bloch KE. Acute mountain sickness is related to nocturnal hypoxemia but not to hypoventilation. Eur Respir J. 2004;24(2):303–8.PubMedGoogle Scholar
  38. 38.
    Cremona G, Asnaghi R, Baderna P, Brunetto A, Brutsaert T, Cavallaro C, et al. Pulmonary extravascular fluid accumulation in recreational climbers: a prospective study. Lancet. 2002;359:303–9.PubMedGoogle Scholar
  39. 39.
    Compte-Torrero L, Botella de Maglia J, de Diego-Damiá AG-PL, Ramírez-Galleymore P, Perpińa-Tordera M. Changes in spirometric parameters and arterial oxygen saturation during a mountain ascent to over 3000 meters. Arch Bronconeumol. 2005; 41:547–52.PubMedGoogle Scholar
  40. 40.
    Senn O, Clarenbach CF, Fischler M, Thalmann R, Brunner-La-Rocca H, Egger P, et al. Do changes in lung function predict high-altitude pulmonary edema at an early stage? Med Sci Sports Exerc. 2006;38(9):1565–70.PubMedGoogle Scholar
  41. 41.
    Mason NP, Barry PW, Pollard AJ, Collier DJ, Taub NA, Miller MR, et al. Serial changes in spirometry during an ascent to 5300 m in the Nepalese Himalayas. High Alt Med Biol. 2000;1:185–95.PubMedGoogle Scholar
  42. 42.
    Deboeck G, Moraine JJ, Naeije R. Respiratory muscle strength may explain hypoxia-induced decrease in vital capacity. Med Sci Sports Exerc. 2005; 37(5):754–8.PubMedGoogle Scholar
  43. 43.
    Fasano V, Paolucci E, Pomidori L, Cogo A. High-altitude exposure reduces inspiratory muscle strength. Int J Sports Med. 2007;28:426–30.PubMedGoogle Scholar
  44. 44.
    Mason NP, Petersen M, Mélot C, Imanov B, Matveykine O, Gautier MT, et al. Serial changes in nasal potential difference and lung electrical impedance tomography at high altitude. J Appl Physiol. 2003;94:2043–50.PubMedGoogle Scholar
  45. 45.
    Dehnert C, Luks AM, Schendler G, Menold E, Berger MM, Mairbäurl H, et al. No evidence for interstitial lung oedema by extensive pulmonary function testing at 4,559 m (Author Correction). Eur Respir J. 2010;36:699.Google Scholar
  46. 46.
    Thompson AAR, Baillie JK, Toshner M, Maxwell SRJ, Webb DJ, Irving JB. Pericardial effusions in healthy lowlanders after acute ascent to high altitude. Heart. 2006;92(4):539–40.PubMedGoogle Scholar
  47. 47.
    Bors W, Michel C, Saran M, Lengfelder E. The involvement of oxygen radicals during the autoxidation of adrenalin. Biochim Biophys Acta. 1978; 540:162–72.PubMedGoogle Scholar
  48. 48.
    Kamimori GH, Ryan EJ, Otterstetter R, Barkley JE, Glickman EL, Davis HQ. Catecholamine levels in hypoxia-induced acute mountain sickness. Aviat Space Environ Med. 2009;80:376–80.PubMedGoogle Scholar
  49. 49.
    Lanfranchi PA, Colombo R, Cremona G, Baderna P, Spagnolatti L, Mazzuero G, et al. Autonomic cardiovascular regulation in subjects with acute mountain sickness. Am J Physiol Heart Circ Physiol. 2005;289:H2364–72.PubMedGoogle Scholar
  50. 50.
    Chen Y-C, Lin F-C, Shiao G-M, Chang S-C. Effect of rapid ascent to high altitude on autonomic cardiovascular modulation. Am J Med Sci. 2008; 336:248–53.PubMedGoogle Scholar
  51. 51.
    Sevre K, Bendz B, Hankø E, Nakstad AR, Hauge A, Kåsin JI, et al. Reduced autonomic activity during stepwise exposure to high altitude. Acta Physiol Scand. 2001;173:409–17.PubMedGoogle Scholar
  52. 52.
    Loeppky JA, Icenogle MV, Maes D, Riboni K, Scotto P, Roach RC. Body temperature, autonomic responses, and acute mountain sickness. High Alt Med Biol. 2003;4:367–73.PubMedGoogle Scholar
  53. 53.
    Koehle MS, Guenette JA, Warburton DER. Oximetry, heart rate variability, and the diagnosis of mild-to-moderate acute mountain sickness. Eur J Emerg Med. 2010;17:119–22.PubMedGoogle Scholar
  54. 54.
    Baumgartner R, Spyridopoulos I, Bärtsch P, Maggiorini M, Oelz O. Acute mountain sickness is not related to cerebral blood flow. A decompression chamber study. J Appl Physiol. 1999;86:1578–82.PubMedGoogle Scholar
  55. 55.
    Pagani M, Ansjön R, Lind F, Uusijärvi J, Sumen G, Jonsson C, et al. Effects of acute hypobaric hypoxia on regional cerebral blood flow distribution: a single photon emission computed tomography study in humans. Acta Physiol Scand. 2000;168:377–83.PubMedGoogle Scholar
  56. 56.
    Dyer EA, Hopkins SR, Perthen JE, Buxton RB, Dubowitz DJ. Regional cerebral blood flow during acute hypoxia in individuals susceptible to acute mountain sickness. Respir Physiol Neurobiol. 2008; 160:267–76.PubMedGoogle Scholar
  57. 57.
    Van Osta A, Moraine JJ, Melot C, Mairbaurl H, Maggiorini M, Naeije R. Effects of high altitude exposure on cerebral hemodynamics in normal subjects. Stroke. 2005;36(3):557–60.PubMedGoogle Scholar
  58. 58.
    Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, et al. Increased cerebral output of free radicals during hypoxia; implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol. 2009;297:R1283–93.PubMedGoogle Scholar
  59. 59.
    Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, et al. Serum S100B: a noninvasive marker of blood-brain barrier function and brain lesions. Cancer. 2003;97:2806–13.PubMedGoogle Scholar
  60. 60.
    Bosch MM, Barthelmes D, Merz TM, Bloch KE, Turk AJ, Hefti U, et al. High incidence of optic disc swelling at very high altitudes. Arch Ophthalmol. 2008;126:644–50.PubMedGoogle Scholar
  61. 61.
    Sutherland AI, Morris DS, Owen CG, Bron AJ, Roach RC. Optic nerve sheath diameter, intracranial pressure and acute mountain sickness on Mount Everest: a longitudinal cohort study. Br J Sports Med. 2008;42:183–8.PubMedGoogle Scholar
  62. 62.
    Fagenholz PJ, Gutman JA, Murray AF, Noble VE, Camargo Jr CA, Harris NS. Optic nerve sheath diameter correlates with the presence and severity of acute mountain sickness: evidence for increased intracranial pressure. J Appl Physiol. 2009;106:1207–11.PubMedGoogle Scholar
  63. 63.
    Willmann G, Fischer MD, Schatz A, Schommer K, Messias K, Zrenner E, et al. Quantification of optic disc edema during exposure to high altitude shows no correlation to acute mountain sickness. PLos One. 2011;6(11):e27022.PubMedGoogle Scholar
  64. 64.
    Wilson MH, Milledge J. Direct measurement of intracranial pressure at high altitude and correlation of ventricular size with acute mountain sickness: Brian Cummins’ results from the 1985 Kishtwar Expedition. Neurosurgery. 2008;63:970–5.PubMedGoogle Scholar
  65. 65.
    Somner JEA, Morris DS, Scott KM, MacCormick JC. What happens to intraocular pressure at high altitude? Invest Ophthalmol Vis Sci. 2007; 48:1622–6.PubMedGoogle Scholar
  66. 66.
    Pavlidis M, Stupp T, Georgalas I, Georgiadou E, Moschos M, Thanos S. Intraocular pressure changes during high-altitude acclimatization. Graefes Arch Clin Exp Ophthalmol. 2006;244:298–304.PubMedGoogle Scholar
  67. 67.
    Cymerman A, Rock PB, Muza SR, Lyons TP, Fulco CS, Mazzeo RS, et al. Intraocular pressure and acclimatization to 4300 m altitude. Aviat Space Environ Med. 2000;71:1045–50.PubMedGoogle Scholar
  68. 68.
    Kallenberg K, Bailey DM, Christ S, Mohr A, Roukens R, Menold E, Steiner T, Bärtsch P, et al. Magnetic resonance imaging evidence of cytotoxic cerebral edema in acute mountain sickness. J Cereb Blood Flow Metab. 2007;27:1064–71.PubMedGoogle Scholar
  69. 69.
    Fischer R, Vollmar C, Thiere M, Born C, Leitl M, Pfluger T, et al. No evidence of cerebral oedema in severe acute mountain sickness. Cephalalgia. 2004; 24:66–71.PubMedGoogle Scholar
  70. 70.
    Schoonman G, Sándor P, Nirkko A, Lange T, Jaermann T, Dydak U, Kremer C, Ferrari M, Boesiger P, Baumgartner R. Hypoxia-induced acute mountain sickness is associated with intracellular cerebral edema: a 3 T magnetic resonance imaging study. J Cereb Blood Flow Metab. 2008;28:198–206.PubMedGoogle Scholar
  71. 71.
    Mórocz IA, Zientara GP, Gudbjartsson H, Muza S, Lyons T, Rock PB, et al. Volumetric quantification of brain swelling after hypobaric hypoxia exposure. Exp Neurol. 2001;168:96–104.PubMedGoogle Scholar
  72. 72.
    Dubowitz DJ, Dyer EAW, Theilmann RJ, Buxton RB, Hopkins SR. Early brain swelling in acute hypoxia. J Appl Physiol. 2009;107:244–52.PubMedGoogle Scholar
  73. 73.
    Grant S, MacLeod N, Kay JW, Watt M, Patel S, Paterson A, et al. Sea level and acute responses to hypoxia: do they predict physiological responses and acute mountain sickness at altitude? Br J Sports Med. 2002;36:141–6.PubMedGoogle Scholar
  74. 74.
    Burtscher M, Flatz M, Faulhaber M. Prediction of susceptibility to acute mountain sickness by SaO2 values during short-term exposure to hypoxia. High Alt Med Biol. 2004;5(3):335–40.PubMedGoogle Scholar
  75. 75.
    O’Connor T, Dubowitz G, Bickler PE. Pulse oximetry in the diagnosis of acute mountain sickness. High Alt Med Biol. 2004;5(3):341–8.PubMedGoogle Scholar
  76. 76.
    Roach RC, Greene ER, Schoene RB, Hackett PH. Arterial oxygen saturation for prediction of acute mountain sickness. Aviat Space Environ Med. 1998;69:1182–5.PubMedGoogle Scholar
  77. 77.
    Chen HC, Lin WL, Wu JY, Wang SH, Chiu TF, Weng YM, et al. Change in oxygen saturation does not predict acute mountain sickness on Jade Mountain. Wilderness Environ Med. 2012; 23:122–7.PubMedGoogle Scholar
  78. 78.
    Wagner DR, Knott JR, Fry JP. Oximetry fails to predict acute mountain sickness or summit success during a rapid ascent to 5640 meters. Wilderness Environ Med. 2012;23:114–21.PubMedGoogle Scholar
  79. 79.
    Tannheimer M, Albertini N, Ulmer HV, Thomas A, Engelhardt M, Schmidt R. Testing individual risk of acute mountain sickness at greater altitudes. Mil Med. 2009;174:363–9.PubMedGoogle Scholar
  80. 80.
    Hayat A, Hussain MM, Aziz S, Siddiqui AH, Hussain T. Hyperventilation capacity—a predictor of altitude sickness. J Ayub Med Coll Abbottabad. 2006;18:17–20.PubMedGoogle Scholar
  81. 81.
    Jafarian S, Gorouhi F, Ghergherechi M, Lotfi J. Respiratory rate within the first hour of ascent predicts subsequent acute mountain sickness severity. Arch Iran Med. 2008;11:152–6.PubMedGoogle Scholar
  82. 82.
    Thomassen O, Skaiaa SC. High-altitude cerebral edema with absence of headache. Wilderness Environ Med. 2007;18:45–7.PubMedGoogle Scholar
  83. 83.
    Hackett PH, Yarnell PR, Hill R, Reynard K, Heit J, McCormick J. High-altitude cerebral edema evaluated with magnetic resonance imaging. JAMA. 1998;280(22):1920–5.PubMedGoogle Scholar
  84. 84.
    Jeong JH, Kwon JC, Chin J, Yoon SJ, Na DL. Globus pallidus lesions associated with high mountain climbing. J Korean Med Sci. 2002;17:861–3.PubMedGoogle Scholar
  85. 85.
    Litch JA, Bishop RA. High-altitude global amnesia. Wilderness Environ Med. 2000;11:25–8.PubMedGoogle Scholar
  86. 86.
    Litch JA, Bishop RA. Transient global amnesia at high altitude. N Engl J Med. 1999;340:1444.PubMedGoogle Scholar
  87. 87.
    Basnyat B. Case report: delirium at high altitude. High Alt Med Biol. 2002;3:69–71.PubMedGoogle Scholar
  88. 88.
    Firth PG, Bolay H. Transient high altitude neurological dysfunction: an origin in the temporoparietal cortex. High Alt Med Biol. 2004;5:71–5.PubMedGoogle Scholar
  89. 89.
    Kallenberg K, Dehnert C, Dörfler A, Schellinger PD, Bailey DM, Knauth M, et al. Microhemorrhages in nonfatal high-altitude cerebral edema. J Cereb Blood Flow Metab. 2008;28:1635–42.PubMedGoogle Scholar
  90. 90.
    Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345:107–14.PubMedGoogle Scholar
  91. 91.
    Bärtsch P, Bailey D, Berger M, Knauth M, Baumgartner M. Acute mountain sickness: controversies and advances. High Alt Med Biol. 2004; 5:110–24.PubMedGoogle Scholar
  92. 92.
    Bärtsch P, Baumgartner RW, Waber U, Maggiorini M, Oelz O. Comparison of carbon-dioxide-enriched, oxygen-enriched, and normal air in treatment of acute mountain sickness. Lancet. 1990;336:772–5.PubMedGoogle Scholar
  93. 93.
    Bärtsch P, Shaw S, Weidmann P, Hildebrandt W, Bucler T, Biollaz J. Fluid retention in acute mountain sickness: cause or consequence? In: Ohno H, Kobayashi T, Masuyama S, Nakashima M, editors. Progress in mountain medicine and high altitude physiology. Matsumoto: Press Committee of the 3rd World Congress on Mountain Medicine and High Altitude Physiology; 1998. p. 234–9.Google Scholar
  94. 94.
    Rupert JL, Koehle MS. Evidence for a genetic basis for altitude-related illnesses. High Alt Med Biol. 2006;7:150–67.PubMedGoogle Scholar
  95. 95.
    Montgomery HE, Marshall R, Hemingway H, Myerson S, Clarkson P, Dollery C, Hayward M, Holliman DE, Jubb M, World M, et al. Human gene for physical performance. Nature. 1998;393:221–2.PubMedGoogle Scholar
  96. 96.
    Thompson J, Raitt J, Hutchings L, Drenos F, Bjargo E, Loset A, Grocott M, Montgomery H. Angiotensin-converting enzyme genotype and successful ascent to extreme altitude. High Alt Med Biol. 2007; 8:278–85.PubMedGoogle Scholar
  97. 97.
    Dehnert C, Weymann JMHE, Woods D, Maggiorini M, Scherrer U, Gibbs JSR, Bärtsch P. No association between high-altitude tolerance and the ACE I/D gene polymorphism. Med Sci Sports Exerc. 2002; 34:1928–33.PubMedGoogle Scholar
  98. 98.
    Koehle MS, Wang P, Guenette JA, Rupert JL. No association between variants in the ACE and angiotensin II receptor 1 genes and acute mountain sickness in Nepalese pilgrims to the Janai Purnima Festival at 4380 m. High Alt Med Biol. 2006;7:281–9.PubMedGoogle Scholar
  99. 99.
    Li FZ, Zhou CZ, Jiang CZ, Sun SY, He M, Zhang SY, et al. [Relationship between heat stress protein 70 gene polymorphisms and the risk of acute mountain sickness] [Article in Chinese]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2004;22:413–5.PubMedGoogle Scholar
  100. 100.
    Møller K, Paulson OB, Hornbein TF, Colier WNJM, Paulson AS, Roach RC, et al. Unchanged cerebral blood flow and oxidative metabolism after acclimatization to high altitude. J Cereb Blood Flow Metab. 2002;22:118–26.PubMedGoogle Scholar
  101. 101.
    Kennedy C, Sakurada O, Shinohara M, Jehle J, Solokoff L. Local cerebral glucose utilization in the normal conscious macaque monkey. Ann Neurol. 1978;4:293–301.PubMedGoogle Scholar
  102. 102.
    Subudhi AW, Dimmen AC, Roach RC. Effects of acute hypoxia on cerebral and muscle oxygenation during incremental exercise. J Appl Physiol. 2007;103:177–83.PubMedGoogle Scholar
  103. 103.
    Hoshi Y. Towards the next generation of near-infrared spectroscopy. Philos Trans A Math Phys Eng Sci. 2011;369:4425–39.PubMedGoogle Scholar
  104. 104.
    Hackett PH. The cerebral etiology of high-altitude cerebral edema and acute mountain sickness. Wilderness Environ Med. 1999;10:97–109.PubMedGoogle Scholar
  105. 105.
    Baumgartner RW, Bärtsch P, Maggiorini M, Waber U, Oelz O. Enhanced cerebral blood flow in acute mountain sickness. Aviat Space Environ Med. 1994;65:726–9.PubMedGoogle Scholar
  106. 106.
    Jensen JB, Wright AD, Lassen NA, Harvey TC, Winterborn MH, Raichle ME, et al. Cerebral blood flow in acute mountain sickness. J Appl Physiol. 1990;69:430–3.PubMedGoogle Scholar
  107. 107.
    Sørensen SC, Lassen NA, Severinghaus JW, Coudert J, Zamora MP. Cerebral glucose metabolism and cerebral blood flow in high altitude residents. J Appl Physiol. 1974;37:305–10.PubMedGoogle Scholar
  108. 108.
    Lassen NA, Harper AM. High-altitude cerebral oedema. Lancet. 1975;2:1154.PubMedGoogle Scholar
  109. 109.
    Bailey DM, Davies B. Acute mountain sickness; prophylactic benefits of antioxidant vitamin supplementation at high altitude. High Alt Med Biol. 2001;2:21–9.PubMedGoogle Scholar
  110. 110.
    Richalet J-P, Hornych A, Rathat C, Aumont J, Larmignat P, Rémy P. Plasma prostaglandins, leukotrienes and thromboxane in acute high altitude hypoxia. Respir Physiol. 1991;85:205–15.PubMedGoogle Scholar
  111. 111.
    Roach JM, Muza SR, Rock PB, Lyons TP, Lilly CM, Drazen JM, et al. Urinary leukotriene E (4) levels increase upon exposure to hypobaric hypoxia. Chest. 1996;110:946–51.PubMedGoogle Scholar
  112. 112.
    Kleger G-R, Bärtsch P, Vock P, Heilig B, Roberts LJI, Ballmer PE. Evidence against an increase of capillary permeability in subjects exposed to high altitude. J Appl Physiol. 1996;81:1917–23.PubMedGoogle Scholar
  113. 113.
    Hartmann G, Tschöp M, Fischer R, Bidlingmaier C, Riepl R, Tschöp K, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 2000;12:246–52.PubMedGoogle Scholar
  114. 114.
    Bailey DM, Ainslie PN, Jackson SK, Richardson RS, Ghatei M. Evidence against redox regulation of energy homoeostasis in humans at high altitude. Clin Sci. 2004;107(6):589–600.PubMedGoogle Scholar
  115. 115.
    Julian CG, Subudhi AW, Wilson MJ, Dimmen AC, Pecha T, Roach R. Acute mountain sickness, inflammation and permeability: new insights from a blood biomarker study. J Appl Physiol. 2011;111:392–9.PubMedGoogle Scholar
  116. 116.
    Bailey DM, Taudorf S, Berg RM, Lundby C, Pedersen BK, Moller K. Inflammatory “priming” predisposes to acute mountain sickness. In: Roach RC, Wagner PD, Hackett PH, editors. Hypoxia and the circulation. Banff: Springer; 2007. p. 300.Google Scholar
  117. 117.
    Bailey DM, Davies B, Young IS, Hullin DA, Seddon PS. A potential role for free radical-mediated skeletal muscle soreness in the pathophysiology of acute mountain sickness. Aviat Space Environ Med. 2001;72:513–21.PubMedGoogle Scholar
  118. 118.
    Bailey DM, Davies B, Castell LM, Collier DJ, Milledge JS, Hullin DA, et al. Symptoms of infection and acute mountain sickness; associated metabolic sequelae and problems in differential diagnosis. High Alt Med Biol. 2003;4:319–31.PubMedGoogle Scholar
  119. 119.
    Bailey DM, Bärtsch P, Knauth M, Baumgartner RW. Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cell Mol Life Sci. 2009;66:3583–94.PubMedGoogle Scholar
  120. 120.
    Schoch HJ, Fischer S, Marti HH. Hypoxia-induced vascular endothelial growth factor expression causes vascular leakage in the brain. Brain. 2002; 125:2549–57.PubMedGoogle Scholar
  121. 121.
    Xu F, Severinghaus JW. Rat brain VEGF expression in alveolar hypoxia: possible role in high-altitude cerebral edema. J Appl Physiol. 1998;85(1):53–7.PubMedGoogle Scholar
  122. 122.
    Maloney J, Wang D, Duncan T, Voelkel N, Ruoss S. Plasma vascular endothelial growth factor in acute mountain sickness. Chest. 2000;118:47–52.PubMedGoogle Scholar
  123. 123.
    Kendall RL, Wang G, Thomas KA. Identification of a natural soluble form of the vascular endothelial growth factor receptor, FLT-1, and its heterodimerization with KDR. Biochem Biophys Res Commun. 1996;226:324–8.PubMedGoogle Scholar
  124. 124.
    Tissot van Patot MC, Leadbetter G, Keyes LE, Bendrick-Peart J, Bekckey VE, Christians U, et al. Greater free plasma VEGF and lower soluble VEGF receptor-1 in acute mountain sickness. J Appl Physiol. 2005;98:1626–9.PubMedGoogle Scholar
  125. 125.
    Schommer K, Wiesegart N, Dehnert C, Mairbäurl H, Bärtsch P. No correlation between plasma levels of vascular endothelial growth factor or its soluble receptor and acute mountain sickness. High Alt Med Biol. 2011;12:323–7.PubMedGoogle Scholar
  126. 126.
    Roach RC, Hackett PH. Frontiers of hypoxia research: acute mountain sickness. J Exp Biol. 2001;204:3161–70.PubMedGoogle Scholar
  127. 127.
    Sanchez del Rio M, Moskowitz MA. High altitude headache—lessons form headaches at sea level. In: Roach RC, Wagner PD, Hackett PH, editors. Hypoxia: into the next millenium. New York: Kluwer Academic/Plenum Publishers; 1999. p. 145–53.Google Scholar
  128. 128.
    Matsuzawa Y, Kobayashi T, Fujimoto K, Shinozaki S, Yoshikawa S, Yamaguchi S, et al. Cerebral edema in acute mountain sickness. In: Ueda G, Reeves JT, Sekiguchi M, editors. High-altitude medicine. Matsumoto: Shinshu University Press; 1992. p. 300–4.Google Scholar
  129. 129.
    Ross RT. The random nature of cerebral mountain sickness. Lancet. 1985;1:990–1.PubMedGoogle Scholar
  130. 130.
    Reeves JT, Moore LG, McCullough RE, McCullough RG, Harrison G, Tranmer BI, Micco AJ, Tucker A, Weil JV. Headache at high altitude is not related to internal carotid arterial blood velocity. J Appl Physiol. 1985;59:909–15.PubMedGoogle Scholar
  131. 131.
    Baumgartner R, Spyridopoulos I, Bärtsch P, Maggiorini M, Oelz O. Acute mountain sickness is not related to cerebral blood flow. A decompression chamber study. J Appl Physiol. 1999;86:1578–82.PubMedGoogle Scholar
  132. 132.
    Wilson MH, Imray CHE, Hargens AR. The headache of high altitude and microgravity—similarities with clinical syndromes of cerebral venous hypertension. High Alt Med Biol. 2011;12:379–86.PubMedGoogle Scholar
  133. 133.
    Wilson MH, Davagnanam I, Holland G, Dattani RS, Tamm A, Hirani SP et al. Cerebral venous system and anatomical predisposition to high-altitude headache. Ann Neurol, i2013;73:381-89.PubMedGoogle Scholar
  134. 134.
    Strassman AM, Levy D. Response properties of dural nociceptors in relation to headache. J Neurophysiol. 2006;95:1298–306.PubMedGoogle Scholar
  135. 135.
    Rosenblum WI. Cytotoxic edema: monitoring its magnitude and contribution to brain swelling. J Neuropathol Exp Neurol. 2007;66:771–8.PubMedGoogle Scholar
  136. 136.
    Catani M, ffytche DH. The rises and falls of disconnection syndromes. Brain. 2005;128:2224–39.PubMedGoogle Scholar
  137. 137.
    Clarke C. High altitude cerebral oedema. Int J Sports Med. 1988;9:170–4.PubMedGoogle Scholar
  138. 138.
    Jafarian S, Gorouhi F, Salimi S, Lotfi J. Sumatriptan for prevention of acute mountain sickness: randomized clinical trial. Ann Neurol. 2007;62:273–7.PubMedGoogle Scholar
  139. 139.
    Bailey DM, Taudorf S, Berg RMG, Jensen LT, Lundby C, Evans KA, et al. Transcerebral exchange kinetics of nitrite and calcitonin gene-related peptide in acute mountain sickness—evidence against trigeminovascular activation? Stroke. 2009;40:2205–8.PubMedGoogle Scholar
  140. 140.
    Ikeda Y, Jimbo H, Shimazu M, Satoh K. Sumatriptan scavenges superoxide, hydroxyl, and nitric oxide radicals: in vitro electron spin resonance study. Headache. 2002;42:888–92.PubMedGoogle Scholar
  141. 141.
    Jafarian S, Gorouhi F, Salimi S, Lotfi J. Low-dose gabapentin in treatment of high-altitude headache. Cephalalgia. 2007;27:1274–7.PubMedGoogle Scholar
  142. 142.
    Gertsch JH, Lipman GS, Holck PS, Merritt A, Mulcahy A, Fisher RS, et al. Prospective, double-blind, randomized, placebo-controlled comparison of Acetazolamide versus ibuprofen for prophylaxis against high altitude headache: the headache evaluation at altitude trial (HEAT). Wilderness Environ Med. 2010;21:236–43.PubMedGoogle Scholar
  143. 143.
    Harris NS, Wenzel RP, Thomas SH. High altitude headache: efficacy of acetaminophen vs. ibuprofen in a randomized, controlled trial. J Emerg Med. 2003;24:383–7.PubMedGoogle Scholar
  144. 144.
    Asanuma M, Nishibayashi-Asanuma S, Miyazaki I, Kohno M, Ogawa N. Neuroprotective effects of non-steroidal anti-inflammatory drugs by direct scavenging of nitric oxide radicals. J Neurochem. 2001;76:1895–904.PubMedGoogle Scholar
  145. 145.
    Bailey DM, Brugniaux JV, Pietri S, Culcasi M, Swenson ER. Redox-regulation of neurovascular function by acetazolamide: complementary insight into mechanisms underlying high-altitude acclimatisation. J Physiol. 2012;590(Pt 15):3627–8.PubMedGoogle Scholar
  146. 146.
    Prouillac C, Vicendo P, Garrigues JC, Poteau R, Rima G. Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Rad Biol Med. 2009;46:1139–48.PubMedGoogle Scholar
  147. 147.
    Hackett PH, Roach RC. High altitude cerebral edema. High Alt Med Biol. 2004;5(2):136–46.PubMedGoogle Scholar
  148. 148.
    Dumont L, Mardirosoff C, Tramèr MR. Efficacy and harm of pharmacological prevention of acute mountain sickness: quantitative systematic review. BMJ. 2000;321:267–72.PubMedGoogle Scholar
  149. 149.
    Bärtsch P, Schneider M. Pharmacological prevention of acute mountain sickness—same ascent rates must be used to assess effectiveness of different doses of acetazolamide. BMJ. 2001;322:48.PubMedGoogle Scholar
  150. 150.
    Severinghaus JW. Sightings: diamox debate. High Alt Med Biol. 2001;2:9.Google Scholar
  151. 151.
    Carlsten C, Swenson ER, Ruoss S. A dose-response study of acetazolamide for acute mountain sickness prophylaxis in vacationing tourists at 12,000 feet (3630 m). High Alt Med Biol. 2004;5(1):33–9.PubMedGoogle Scholar
  152. 152.
    Basnyat B, Gertsch JH, Johnson EW, Castro-Marin F, Inoue Y, Yeh C. Efficacy of low-dose Acetazolamide (125 mg BID) for the prophylaxis of acute mountain sickness: a prospective, double-blind, randomized, placebo-controlled trial. High Alt Med Biol. 2003;4(1):45–52.PubMedGoogle Scholar
  153. 153.
    van Patot MC, Leadbetter III G, Keyes LE, Maakestad KM, Olson S, Hackett PH. Prophylactic low-dose acetazolamide reduces the incidence and severity of acute mountain sickness. High Alt Med Biol. 2008;9:289–93.PubMedGoogle Scholar
  154. 154.
    Basnyat B, Gertsch JH, Holck PS, Johnson EW, Luks AM, Donham BP, et al. Acetazolamide 125 mg BD is not significantly different from 375 mg BD in the prevention of acute mountain sickness: the prophylactic acetazolamide dosage comparison for efficacy (PACE) trial. High Alt Med Biol. 2006;7(1):17–27.PubMedGoogle Scholar
  155. 155.
    Swenson ER. Carbonic anhydrase inhibitors and ventilation: a complex interplay of stimulation and suppression. Eur Respir J. 1998;12:1242–7.PubMedGoogle Scholar
  156. 156.
    Kayser B, Hulsebosch R, Bosch F. Low-dose acetylsalicylic acid analog and acetazolamide for prevention of acute mountain sickness. High Alt Med Biol. 2008;9:15–23.PubMedGoogle Scholar
  157. 157.
    Baillie JK, Thompson AAR, Irving JB, Bates MGD, Sutherland AI, MacNee W, et al. Oral antioxidant supplementation does not prevent acute mountain sickness: double-blind, randomized placebo-controlled trial. Q J Med. 2009;102:341–8.Google Scholar
  158. 158.
    Bailey DM, Young IS, McEneny J, Lawrenson L, Kim J, Barden J, Richardson RS. Regulation of free radical outflow from an isolated muscle bed in exercising humans. Am J Physiol Heart Circ Physiol. 2004;287(4):H1689–99.PubMedGoogle Scholar
  159. 159.
    Roach RC, Maes D, Sandoval D, Robergs RA, Icenogle M, Hinghofer-Szalkay H, et al. Exercise exacerbates acute mountain sickness at simulated high altitude. J Appl Physiol. 2000;88:581–5.PubMedGoogle Scholar
  160. 160.
    Scherrmann J-M. Drug delivery to brain via the blood-brain barrier. Vascul Pharmacol. 2002; 38:349–54.PubMedGoogle Scholar
  161. 161.
    Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol. 2006;91:807–19.PubMedGoogle Scholar
  162. 162.
    Bailey DM, Lawrenson L, McEneny J, Young IS, James PE, Jackson SK, et al. Electron paramagnetic spectroscopic evidence of exercise-induced free radical accumulation in human skeletal muscle. Free Radic Res. 2007;41:182–90.PubMedGoogle Scholar
  163. 163.
    Kagan VE, Wipf P, Stoyanovsky D, Greenberger JS, Borisenko G, Belikova NA, et al. Mitochondrial targeting of electron scavenging antioxidants: regulation of selective oxidation vs random chain reactions. Adv Drug Deliv Rev. 2009;61:1375–85.PubMedGoogle Scholar
  164. 164.
    Patir H, Sarada SK, Singh S, Mathew T, Singh B, Bansal A. Quercetin as a prophylactic measure against high altitude cerebral edema. Free Radic Biol Med. 2012;53:659–68.PubMedGoogle Scholar
  165. 165.
    van Patot MC, Keyes LE, Leadbetter GI, Hackett PH. Gingko biloba for prevention of acute mountain sickness: does it work? High Alt Med Biol. 2009;10:33–43.PubMedGoogle Scholar
  166. 166.
    Gertsch JH, Basnyat B, Johnson EW, Onopa J, Holck PS. Randomised, controlled trial of ginkgo biloba and acetazolamide for prevention of acute mountain sickness: the prevention of high altitude illness trial (PHAIT). BMJ. 2004;328:797–9.PubMedGoogle Scholar
  167. 167.
    Gertsch JH, Seto TB, Mor J, Onopa J. Gingko biloba for the prevention of severe acute mountain sickness (AMS) starting one day before rapid ascent. High Alt Med Biol. 2002;3:29–37.PubMedGoogle Scholar
  168. 168.
    Chow T, Browne V, Heileson HL, Wallace D, Anholm J. Ginkgo biloba and acetazolamide prophylaxis for acute mountain sickness—a randomized, placebo-controlled trial. Arch Intern Med. 2005;165(3):296–301.PubMedGoogle Scholar
  169. 169.
    Moraga FA, Flores A, Serra J, Esnaola C, Barriento C. Ginkgo biloba decreases acute mountain sickness in people descending to high altitude at Ollagüe (3696 m) in Northern Chile. Wilderness Environ Med. 2007;18:251–7.PubMedGoogle Scholar
  170. 170.
    Leadbetter G, Keyes LE, Maakestad KM, Olson S, Tissot van Patot MC, Hackett PH. Gingko biloba does—and does not—prevent acute mountain sickness. Wilderness Environ Med. 2009;20:66–71.PubMedGoogle Scholar
  171. 171.
    Fischer R, Lang SM, Leitl M, Thiere M, Steiner U, Huber RM. Theophylline and acetazolamide reduce sleep-disordered breathing at high altitude. Eur Respir J. 2004;23:47–52.PubMedGoogle Scholar
  172. 172.
    Küpper TE, Strohl KP, Hoefer M, Gieseler U, Netzer CM, Netzer NC. Low-dose theophylline reduces symptoms of acute mountain sickness. J Travel Med. 2008;15:307–14.PubMedGoogle Scholar
  173. 173.
    Fischer R, Lang SM, Steiner U, Toepfer M, Hautmann H, Pongratz H, Huber RM. Theophylline improves acute mountain sickness. Eur Respir J. 2000;15:123–7.PubMedGoogle Scholar
  174. 174.
    Muza SR, Kaminsky D, Fulco CS, Banderet LE, Cymerman A. Cysteinyl leukotriene blockade does not prevent acute mountain sickness. Aviat Space Environ Med. 2004;75:413–9.PubMedGoogle Scholar
  175. 175.
    Grissom CK, Richer LD, Elstad MR. The effects of a 5-lipoxygenase inhibitor on acute mountain sickness and urinary leukotriene E-4 after ascent to high altitude. Chest. 2005;127:565–70.PubMedGoogle Scholar
  176. 176.
    Luks A, Henderson WR, Swenson ER. Leukotriene receptor blockade does not prevent acute mountain sickness induced by normobaric hypoxia. High Alt Med Biol. 2007;8:131–8.PubMedGoogle Scholar
  177. 177.
    Dumont L, Lysakowski C, Tramer MR, Junod JD, Mardirosoff C, Tassonyi E, et al. Magnesium for the prevention and treatment of acute mountain sickness. Clin Sci. 2004;106(3):269–77.PubMedGoogle Scholar
  178. 178.
    Vecchia D, Pietrobon D. Migraine: a disorder of brain excitatory-inhibitory balance? Trends Neurosci. 2012;35:507–20.PubMedGoogle Scholar
  179. 179.
    Freilinger T, Anttila V, de Vries B, Malik R, Kallela M, Terwindt GM, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44(7):777–82.PubMedGoogle Scholar
  180. 180.
    Kupers R, Kehlet H. Brain imaging of clinical pain states: a critical review and strategies for the future. Lancet Neurol. 2006;5:1033–44.PubMedGoogle Scholar
  181. 181.
    Stephenson DT, Arneric SP. Neuroimaging of pain: advances and future prospects. J Pain. 2008; 9:567–79.PubMedGoogle Scholar
  182. 182.
    Lee JH, Huh YM, Jun YW, Seo JW, Jang JT, Song HT, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2007;13:95–9.PubMedGoogle Scholar
  183. 183.
    Buck A, Schirlo C, Jasinsky V, Weber B, Burger C, von Schulthess GK, et al. Changes of cerebral blood flow during short-term exposure to norrmobaric hypoxia. J Cereb Blood Flow Metab. 1998;18:906–10.PubMedGoogle Scholar
  184. 184.
    Tracey I, Johns E. The pain matrix: reloaded or reborn as we image tonic pain using arterial spin labelling. Pain. 2010;148:359–60.PubMedGoogle Scholar
  185. 185.
    Weiller C, May A, Limmroth V, Jüptner M, Kaube H, von Schayck R, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1:658–60.PubMedGoogle Scholar
  186. 186.
    Afridi SK, Matharu MS, Lee L, Kaube H, Friston KJ, Frackowiak RSJ. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128:932–9.PubMedGoogle Scholar
  187. 187.
    Sánchez del Rio M, Linera JA. Functional neuroimaging of headaches. Lancet Neurol. 2004;3:645–51.PubMedGoogle Scholar
  188. 188.
    Edden RAE, Harris AD, Murphy K, Evans CJ, Saxena N, Hall JE, et al. Edited MRS is sensitive to changes in lactate concentration during inspiratory hypoxia. J Magn Reson Imaging. 2010;32:320–5.PubMedGoogle Scholar
  189. 189.
    Terpstra M, Ugurbil K, Gruetter R. Direct in vivo measurement of human cerebral GABA concentration using MEGA-editing at 7 Tesla. Magn Reson Med. 2002;47:1009–12.PubMedGoogle Scholar
  190. 190.
    Edden RAE, Pomper MG, Barker PB. In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla. Magn Reson Med. 2007;57:977–82.PubMedGoogle Scholar
  191. 191.
    Terpstra M, Henry PG, Gruetter R. Measurement of reduced glutathione (GSH) in human brain using LCmodel analysis of difference-edited spectra. Magn Reson Med. 2003;50:19–23.PubMedGoogle Scholar
  192. 192.
    Terpstra M, Gruetter R. H NMR detection of vitamin C in human brain in vivo. Magn Reson Med. 2004;51:225–9.PubMedGoogle Scholar
  193. 193.
    Fayed N, Modrego PJ, Morales H. Evidence of brain damage after high-altitude climbing by means of magnetic resonance imaging. Am J Med. 2006; 119:168.e1–6.Google Scholar
  194. 194.
    Bailey DM, Evans KA, McEneny J, Young IS, Hullin DA, James PE, et al. Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Exp Physiol. 2011; 96:1196–207.PubMedGoogle Scholar
  195. 195.
    Alperin NJ, Lee SH, Loth F, Raksin PB, Lichtor T. MR-intracranial pressure (ICP): a method to measure intracranial elastance and pressure noninvasively by means of MR imaging: baboon and human study. Radiology. 2000;217:877–85.PubMedGoogle Scholar
  196. 196.
    Zagorac D, Yamaura K, Zhang C, Roman RJ, Harder DR. The effect of superoxide anion on autoregulation of cerebral blood flow. Stroke. 2005; 36:2589–94.PubMedGoogle Scholar
  197. 197.
    Gelfi C, De Palma S, Ripamonti M, Eberini I, Wait R, Bajracharya A, et al. New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB J. 2004;18(3):612–4.PubMedGoogle Scholar
  198. 198.
    Kumar V, Calamaras TD, Haeussler DJ, Colucci W, Cohen RA, McComb ME, et al. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal. 2012;17:1528–59.PubMedGoogle Scholar
  199. 199.
    Olesen J, Diener HC, Husstedt IW, Goadsby PJ, Hall D, Meier U, et al. Calcitonin gene-related peptide receptor antagonist BIBN 4096 BS for the acute treatment of migraine. N Engl J Med. 2004; 350:1104–10.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Division of Sports Medicine, Department of Internal MedicineMedical University Clinic, University of HeidelbergHeidelbergGermany
  2. 2.Neurovascular Research Laboratory, Faculty of Life Sciences and EducationUniversity of South WalesMid-GlamorganUK

Personalised recommendations