Skip to main content

Nutrition and Metabolism

  • Chapter
  • First Online:
High Altitude

Abstract

Like studies on isolated cells and tissues studied under hypoxic conditions, studies on men and women at altitude show a preference for carbohydrate-derived fuel energy sources (glycogen, glucose, and lactate). When dietary energy is adequate to cover need, at altitude working muscle utilizes little lipid. Classical concepts of a “Lactate Paradox” invoking a “Pasteur Effect” of presumed anaerobic metabolism are not supported by studies utilizing contemporary techniques. If anything, lactate shuttling is prominent at altitude, with lactate being produced in diverse tissue beds and serving at least two functions at altitude: lactate is a preferred fuel in working muscle and lactate is the major gluconeogenic precursor in support of glycemia at altitude. A third role of lactate, i.e., that of promoting cellular adaptations at altitude by increasing HIF-1 expression, is also suggested in the literature. While controlled laboratory studies show clear preference for carbohydrate-derived fuels under hypoxic conditions, cachexia is common among mountaineers. Under the stresses of altitude, loss of appetite and dietary energy insufficiency result in body wasting. Relative to energy content, carbohydrate foods are less efficient to carry or transport and CHO foods typically require water for cooking. Consequently, the tendency is to carry energy-dense, high-fat and protein foods at altitude. Because of the disparity between needs of the CNS and peripheral nerves and working muscles for CHO energy sources and dietary CHO supply, at altitude lean tissue is mobilized to supply gluconeogenic precursors and adipose is mobilized for glycerol (a lesser gluconeogenic precursor) and fatty acids (a less-preferred, but available energy substrate). The accomplishments of mountaineers are remarkable in many ways. That mountaineers accept and manage the challenge of working under multiple stresses, while having to rely on less-preferred fuel energy substrates is one more example of their extraordinary accomplishments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brooks GA, Butterfield GE. Metabolic responses of lowlanders to high-altitude exposure: Malnutrition versus the effect of hypoxia. In: Hornbein T, Schoene R, editors. High altitude: an exploration of human adaptation. New York: Marcel Dekker; 2001. p. 569–99.

    Google Scholar 

  2. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after acclimatization to 4,300 m. J Appl Physiol. 1991;70:919–27.

    Article  PubMed  CAS  Google Scholar 

  3. Brooks GA, Butterfield GE, Wolfe RR, et al. Decreased reliance on lactate during exercise after acclimatization to 4,300 m. J Appl Physiol. 1991;71:333–41.

    PubMed  CAS  Google Scholar 

  4. Green HJ, Sutton JR, Wolfel EE, et al. Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise. J Appl Physiol. 1992; 73:2701–8.

    PubMed  CAS  Google Scholar 

  5. Mazzeo RS, Bender PR, Brooks GA, et al. Arterial catecholamine responses during exercise with acute and chronic high-altitude exposure. Am J Physiol. 1991;261:E419–24.

    PubMed  CAS  Google Scholar 

  6. Roberts AC, Butterfield GE, Cymerman A, et al. Acclimatization to 4,300-m altitude decreases reliance on fat as a substrate. J Appl Physiol. 1996;81:1762–71.

    PubMed  CAS  Google Scholar 

  7. Roberts AC, Reeves JT, Butterfield GE, et al. Altitude and beta-blockade augment glucose utilization during submaximal exercise. J Appl Physiol. 1996;80:605–15.

    PubMed  CAS  Google Scholar 

  8. Wolfel EE, Groves BM, Brooks GA, et al. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. J Appl Physiol. 1991;70:1129–36.

    PubMed  CAS  Google Scholar 

  9. Braun B, Butterfield GE, Dominick SB, et al. Women at altitude: changes in carbohydrate metabolism at 4,300-m elevation and across the menstrual cycle. J Appl Physiol. 1998;85:1966–73.

    PubMed  CAS  Google Scholar 

  10. Braun B, Mawson JT, Muza SR, et al. Women at altitude: carbohydrate utilization during exercise at 4,300 m. J Appl Physiol. 2000;88:246–56.

    PubMed  CAS  Google Scholar 

  11. Butterfield GE. Elements of energy balance at altitude. In: Sutton JRCG, Remmers JE, editors. Hypoxia, the adaptations. Philadelphia: B.C. Decker; 1990. p. 88–93.

    Google Scholar 

  12. Butterfield GE. Maintenance of body weight at altitude: in search of 500 kcal/day. Nutritional needs in cold and high altitude environments. Washington, DC: National Academy Press; 1996.

    Google Scholar 

  13. Henderson GC, Fattor JA, Horning MA, et al. Glucoregulation is more precise in women than in men during postexercise recovery. Am J Clin Nutr. 2008;87:1686–94.

    PubMed  CAS  Google Scholar 

  14. Henderson GC, Fattor JA, Horning MA, et al. Lipolysis and fatty acid metabolism in men and women during the postexercise recovery period. J Physiol. 2007;584:963–81.

    Article  PubMed  CAS  Google Scholar 

  15. Mawson JT, Braun B, Rock PB, et al. Women at altitude: energy requirement at 4,300 m. J Appl Physiol. 2000;88:272–81.

    PubMed  CAS  Google Scholar 

  16. Brooks GA, Mercier J. Balance of carbohydrate and lipid utilization during exercise: the “crossover” concept. J Appl Physiol. 1994;76:2253–61.

    PubMed  CAS  Google Scholar 

  17. Brooks GA, Wolfel EE, Butterfield GE, et al. Poor relationship between arterial [lactate] and leg net release during exercise at 4,300 m altitude. Am J Physiol. 1998;275:R1192–201.

    PubMed  CAS  Google Scholar 

  18. Brooks GA, Wolfel EE, Groves BM, et al. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m. J Appl Physiol. 1992;72:2435–45.

    PubMed  CAS  Google Scholar 

  19. Butterfield GE, Gates J, Fleming S, et al. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol. 1992;72:1741–8.

    PubMed  CAS  Google Scholar 

  20. Bigham A, Bauchet M, Pinto D, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 2010;6:e1001116.

    Article  PubMed  Google Scholar 

  21. Yi X, Liang Y, Huerta-Sanchez E, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329:75–8.

    Article  PubMed  CAS  Google Scholar 

  22. Consolazio CF, Johnson HL, Krzywicki HJ, et al. Metabolic aspects of acute altitude exposure (4,300 meters) in adequately nourished humans. Am J Clin Nutr. 1972;25:23–9.

    PubMed  CAS  Google Scholar 

  23. Consolazio CF, Matoush LR, Johnson H, et al. Energy, nitrogen and water requirements of normal adults residing at 4300 meters for 28 days. Lab Rep No 308. Report. United States. Army Medical Research and Nutrition Laboratory, Denver; 1967. p. 1–19.

    Google Scholar 

  24. Hannon JP, Klain GJ, Sudman DM, et al. Nutritional aspects of high-altitude exposure in women. Am J Clin Nutr. 1976;29:604–13.

    PubMed  CAS  Google Scholar 

  25. Boyer SJ, Blume FD. Weight loss and changes in body composition at high altitude. J Appl Physiol. 1984;57:1580–5.

    PubMed  CAS  Google Scholar 

  26. Macdonald JH, Oliver SJ, Hillyer K, et al. Body composition at high altitude: a randomized placebo-controlled trial of dietary carbohydrate supplementation. Am J Clin Nutr. 2009;90:1193–202.

    Article  PubMed  CAS  Google Scholar 

  27. Krzywicki HJ, Consolazio CF, Johnson HL, et al. Metabolic aspects of caloric restriction (420 kcal): body composition changes. Am J Clin Nutr. 1972;25:67–70.

    PubMed  CAS  Google Scholar 

  28. Honig A. Peripheral arterial chemoreceptors and reflex control of sodium and water homeostasis. Am J Physiol. 1989;257:R1282–302.

    PubMed  CAS  Google Scholar 

  29. Hackett PH, Rennie D, Grover RF, et al. Acute mountain sickness and the edemas of high altitude: a common pathogenesis? Respir Physiol. 1981;46:383–90.

    Article  PubMed  CAS  Google Scholar 

  30. Calloway DH. Nitrogen balance of men with marginal intakes of protein and energy. J Nutr. 1975;105:914–23.

    PubMed  CAS  Google Scholar 

  31. Ahlborg G, Felig P. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise. J Clin Invest. 1982;69:45–54.

    Article  PubMed  CAS  Google Scholar 

  32. Zinker BA, Wilson RD, Wasserman DH. Interaction of decreased arterial PO2 and exercise on carbohydrate metabolism in the dog. Am J Physiol. 1995;269:E409–17.

    PubMed  CAS  Google Scholar 

  33. Cushman SW, Wardzala LJ. Potential mechanism of insulin action on glucose transport in the isolated rat adipose cell. Apparent translocation of intracellular transport systems to the plasma membrane. J Biol Chem. 1980;255:4758–62.

    PubMed  CAS  Google Scholar 

  34. Cartee GD, Douen AG, Ramlal T, et al. Stimulation of glucose transport in skeletal muscle by hypoxia. J Appl Physiol. 1991;70:1593–600.

    PubMed  CAS  Google Scholar 

  35. Gamboa JL, Garcia-Cazarin ML, Andrade FH. Chronic hypoxia increases insulin-stimulated glucose uptake in mouse soleus muscle. Am J Physiol Regul Integr Comp Physiol. 2011;300:R85–91.

    Article  PubMed  CAS  Google Scholar 

  36. Lundby C, Van Hall G. Substrate utilization in sea level residents during exercise in acute hypoxia and after 4 weeks of acclimatization to 4100 m. Acta Physiol Scand. 2002;176:195–201.

    Article  PubMed  CAS  Google Scholar 

  37. Brooks GA. Glycolytic end product and oxidative substrate during sustained exercise in mammals—the “lactate shuttle”. In: Gilles R, editor. Comparative physiology and biochemistry—current topics and trends, Respiration—metabolism—circulation, vol. A. Berlin: Springer; 1984. p. 208–18.

    Google Scholar 

  38. Hashimoto T, Hussien R, Oommen S, et al. Lactate sensitive transcription factor network in L6 cells: activation of MCT1 and mitochondrial biogenesis. FASEB J. 2007;21:2602–12.

    Article  PubMed  CAS  Google Scholar 

  39. Gutierrez G, Fernandez E, Hurtado FJ, et al. Hydroxymalonate inhibits lactate uptake by the rabbit hindlimb. J Appl Physiol. 1994;76:2735–41.

    PubMed  CAS  Google Scholar 

  40. Liu C, Wu J, Zhu J, et al. Lactate inhibits lipolysis in fat cells through activation of an orphan G-protein-coupled receptor, GPR81. J Biol Chem. 2009;284:2811–22.

    Article  PubMed  CAS  Google Scholar 

  41. Johnson JA, Fusaro RM. The role of the skin in carbohydrate metabolism. Adv Metab Disord. 1972;60:1–55.

    Article  PubMed  CAS  Google Scholar 

  42. Stanley WC, Wisneski JA, Gertz EW, et al. Glucose and lactate interrelations during moderate-intensity exercise in humans. Metabolism. 1988;37:850–8.

    Article  PubMed  CAS  Google Scholar 

  43. Roth DA, Brooks GA. Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys. 1990;279:377–85.

    Article  PubMed  CAS  Google Scholar 

  44. Roth DA, Brooks GA. Lactate and pyruvate transport is dominated by a pH gradient-sensitive carrier in rat skeletal muscle sarcolemmal vesicles. Arch Biochem Biophys. 1990;279:386–94.

    Article  PubMed  CAS  Google Scholar 

  45. Saddik M, Gamble J, Witters LA, et al. Acetyl-CoA carboxylase regulation of fatty acid oxidation in the heart. J Biol Chem. 1993;268:25836–45.

    PubMed  CAS  Google Scholar 

  46. Larsen JJ, Hansen JM, Olsen NV, et al. The effect of altitude hypoxia on glucose homeostasis in men. J Physiol. 1997;504(Pt 1):241–9.

    Article  PubMed  CAS  Google Scholar 

  47. Braun B, Rock PB, Zamudio S, et al. Women at altitude: short-term exposure to hypoxia and/or alpha(1)-adrenergic blockade reduces insulin sensitivity. J Appl Physiol. 2001;91:623–31.

    PubMed  CAS  Google Scholar 

  48. Van Hall G, Calbet JA, Sondergaard H, et al. Similar carbohydrate but enhanced lactate utilization during exercise after 9 wk of acclimatization to 5,620 m. Am J Physiol Endocrinol Metab. 2002;283:E1203–13.

    PubMed  Google Scholar 

  49. van Hall G, Lundby C, Araoz M, et al. The lactate paradox revisited in lowlanders during acclimatization to 4100 m and in high-altitude natives. J Physiol. 2009;587:1117–29.

    Article  PubMed  Google Scholar 

  50. Friedlander AL, Braun B, Pollack M, et al. Three weeks of caloric restriction alters protein metabolism in normal-weight, young men. Am J Physiol Endocrinol Metab. 2005;289:E446–55.

    Article  PubMed  CAS  Google Scholar 

  51. Barnholt KE, Hoffman AR, Rock PB, et al. Endocrine responses to acute and chronic high-altitude exposure (4,300 meters): modulating effects of caloric restriction. Am J Physiol Endocrinol Metab. 2006; 290:E1078–88.

    Article  PubMed  CAS  Google Scholar 

  52. Fulco CS, Friedlander AL, Muza SR, et al. Energy intake deficit and physical performance at altitude. Aviat Space Environ Med. 2002;73:758–65.

    PubMed  CAS  Google Scholar 

  53. Fulco CS, Kambis KW, Friedlander AL, et al. Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4,300-m altitude. J Appl Physiol. 2005;99:867–76.

    Article  PubMed  CAS  Google Scholar 

  54. Semenza GL. Regulation of oxygen homeostasis by hypoxia-inducible factor 1. Physiology. 2009;24:97–106 Cold Spring Harb Symp Quant Biol. 2011;76:347-53.

    Google Scholar 

  55. Semenza GL. Regulation of metabolism by hypoxia-inducible factor 1. Cold Spring Harbor symposia on quantitative biology; 2011

    Google Scholar 

  56. Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol. 1992;12:5447–54.

    PubMed  CAS  Google Scholar 

  57. Ugocsai P, Hohenstatt A, Paragh G, et al. HIF-1beta determines ABCA1 expression under hypoxia in human macrophages. Int J Biochem Cell Biol. 2010;42:241–52.

    Article  PubMed  CAS  Google Scholar 

  58. van Patot MC, Gassmann M. Hypoxia: adapting to high altitude by mutating EPAS-1, the gene encoding HIF-2alpha. High Alt Med Biol. 2011;12:157–67.

    Article  PubMed  Google Scholar 

  59. van Uden P, Kenneth NS, Webster R, et al. Evolutionary conserved regulation of HIF-1beta by NF-kappaB. PLoS Genet. 2011;7:e1001285.

    Article  PubMed  Google Scholar 

  60. Cerretelli P, Gelfi C. Energy metabolism in hypoxia: reinterpreting some features of muscle physiology on molecular grounds. Eur J Appl Physiol. 2011; 111:421–32.

    Article  PubMed  CAS  Google Scholar 

  61. Wang GL, Semenza GL. Purification and characterization of hypoxia-inducible factor 1. J Biol Chem. 1995;270:1230–7.

    Article  PubMed  CAS  Google Scholar 

  62. Kim JW, Tchernyshyov I, Semenza GL, et al. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3:177–85.

    Article  PubMed  Google Scholar 

  63. Papandreou I, Cairns RA, Fontana L, et al. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3:187–97.

    Article  PubMed  CAS  Google Scholar 

  64. Fukuda R, Zhang H, Kim JW, et al. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell. 2007;129:111–22.

    Article  PubMed  CAS  Google Scholar 

  65. Hochachka PW, Rupert JL, Monge C. Adaptation and conservation of physiological systems in the evolution of human hypoxia tolerance. Comp Biochem Physiol A. 1999;124:1–7.

    CAS  Google Scholar 

  66. Wadley GD. Effect of exercise intensity and hypoxia on skeletal muscle AMPK signaling and substrate metabolism in humans. Am J Physiol Endocrinol Metab. 2006;290:E694–702.

    Article  PubMed  CAS  Google Scholar 

  67. Brooks GA. Lactate shuttles in nature. Biochem Soc Trans. 2002;30:258–64.

    Article  PubMed  CAS  Google Scholar 

  68. Brooks GA. Cell–cell and intracellular lactate shuttles. J Physiol. 2009;587:5591–600.

    Article  PubMed  CAS  Google Scholar 

  69. Loscalzo J. The cellular response to hypoxia: tuning the system with microRNAs. J Clin Invest. 2010; 120:3815–7.

    Article  PubMed  CAS  Google Scholar 

  70. Snyder EM, Carr RD, Deacon CF, et al. Overnight hypoxic exposure and glucagon-like peptide-1 and leptin levels in humans. Appl Physiol Nutr Metab. 2008;33:929–35.

    Article  PubMed  CAS  Google Scholar 

  71. Yan X, Zhang J, Gong Q, et al. Appetite at high altitude: an fMRI study on the impact of prolonged high-altitude residence on gustatory neural processing. Exp Brain Res. 2011;209:495–9.

    Article  PubMed  Google Scholar 

  72. Campbell WW, Leidy HJ. Dietary protein and resistance training effects on muscle and body composition in older persons. J Am Coll Nutr. 2007;26:696S–703.

    Article  PubMed  CAS  Google Scholar 

  73. Campbell WW. Synergistic use of higher-protein diets or nutritional supplements with resistance training to counter sarcopenia. Nutr Rev. 2007;65:416–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Brooks Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brooks, G.A. (2014). Nutrition and Metabolism. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_15

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics