Skip to main content

Gastrointestinal Function

  • Chapter
  • First Online:

Abstract

Climbers lose weight above 5,000 m, which impairs physical performance and reduces safety margins. Although widely assumed to be due to energy imbalance, with expenditure exceeding nutritional intake, weight loss has been observed in mountaineers at rest at high altitude. Basal metabolic rate is increased and some evidence points to carbohydrate malabsorption. This chapter examines how the normal physiological processes of carbohydrate, fat, and protein absorption change at altitudes above 5,000 m, in a standard format briefly describing normal physiology, experimental models, and then field studies at altitude. Other aspects of gut function, from gastric acid secretion to mucosal morphology, mesenteric blood flow, motility, liver function, and the effect of hypoxia inducible factor on gut function are then described before gastrointestinal diseases in short-term visitors and residents at high altitude are addressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

3mG:

3-O-methyl-d-glucose

AUGIB:

Acute upper gastrointestinal bleeding

CHO:

Carbohydrate

COPD:

Chronic obstructive pulmonary disease

CRP:

C-reactive protein

CYP:

Cytochrome P-450 enzyme (variants)

DcytB:

Duodenal cytochrome b

DMT1:

Divalent metal transporter 1

FA:

Fatty acid

GLUT2:

Glucose transporter 2

GLUT5:

Glucose transporter 5

HIF:

Hypoxia inducible factor

HPV:

Hepatic portal vein

L/R ratio:

Lactulose–rhamnose ratio for intestinal permeability

LPS:

Lipopolysaccharide

MG:

Monoglyceride(s)

MJ:

Megajoules

PGA/PGC:

Pepsinogen A/pepsinogen C ratio

SGLT1:

Sodium-dependent glucose transporter 1

SMA:

Superior mesenteric artery

TG:

Triglyceride(s)

TNF:

Tumor necrosis factor α

References

  1. Kayser B. Nutrition and energetics of exercise at altitude: theory and possible practical implications. Sports Med. 1994;17:309–21.

    Article  PubMed  CAS  Google Scholar 

  2. Tschöp M, Strasburger CJ, Hartmann G, et al. Raised leptin concentrations at high altitude associated with loss of appetite. Lancet. 1998;352:1119–20.

    Article  PubMed  Google Scholar 

  3. Hamad N, Travis SPL. Weight loss at high altitude: pathophysiology and practical implications. Eur J Gastroenterol Hepatol. 2006;18:5–10.

    Article  PubMed  Google Scholar 

  4. Milledge JS, Travis SPL. Intestinal function and nutrition. In: Ward M, Milledge JS, West J, editors. High altitude medicine and physiology. 2nd ed. London: Chapman Hall; 1995. p. 285–300.

    Google Scholar 

  5. Gatterer H, Faulhaber M, Netzer N. Hypoxic training for football players. Scand J Med Sci Sports. 2009;19:607.

    Article  PubMed  CAS  Google Scholar 

  6. Edwards JSA, Dinmore AL, Travis SPL. Food and nutritional intake at high altitude. J Nutr Food Sci. 1998;1:5–8.

    Google Scholar 

  7. Read NW. Diarrhoea: the failure of colonic salvage. Lancet. 1982;2(8296):481–3.

    Article  PubMed  CAS  Google Scholar 

  8. Drozdowski LA, Thomson AB. Intestinal sugar transport. World J Gastroenterol. 2006;12:1657–70.

    PubMed  CAS  Google Scholar 

  9. Kellett GL, Brot-Laroche E, Mace OJ, et al. Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr. 2008;28:35–54.

    Article  PubMed  CAS  Google Scholar 

  10. Rytting E, Audus KL. Effects of low oxygen levels on the expression and function of transporter OCTN2 in BeWo cells. J Pharm Pharmacol. 2007;59:1095–102.

    Article  PubMed  CAS  Google Scholar 

  11. Baze MM, Schlauch K, Hayes JP. Gene expression of the liver in response to chronic hypoxia. Physiol Genomics. 2010;41:275–88.

    Article  CAS  Google Scholar 

  12. Milledge JS. Arterial oxygen desaturation and intestinal absorption of xylose. Br Med J. 1972;3(5826):557–8.

    Article  PubMed  CAS  Google Scholar 

  13. Morawa AP, Han SS. Studies on hypoxia. 8. Ultrastructural and biochemical effects of prolonged exposure on rat parotid glands. Exp Mol Pathol. 1974;21:268–87.

    Article  PubMed  CAS  Google Scholar 

  14. Pritchard JS, Lane DJ. Intestinal absorption studied in patients with chronic obstructive airways disease. Thorax. 1976;29:609.

    Google Scholar 

  15. Travis SPL, Menzies IS. Intestinal permeability: functional assessment and significance. Clin Sci. 1992;82:471–88.

    PubMed  CAS  Google Scholar 

  16. Debnam ES, Grimble GK. Methods for assessing intestinal absorptive function in relation to enteral nutrition. Curr Opin Clin Nutr Metab Care. 2001;4:355–67.

    Article  PubMed  CAS  Google Scholar 

  17. Pugh LGCE. Physiological and medical aspects of the Himalayan scientific and mountaineering expedition, 1960-61. Br Med J. 1962;2(5305):621–7.

    Article  PubMed  CAS  Google Scholar 

  18. Chesner IM, Small NA, Dykes PW. Intestinal absorption at high altitude. Postgrad Med J. 1987;63:173–5.

    Article  PubMed  CAS  Google Scholar 

  19. Boyer SJ, Blume FD. Weight loss and changes in body composition at high altitude. J Appl Physiol. 1984;57:1580–5.

    PubMed  CAS  Google Scholar 

  20. Dinmore AJ, Edwards JS, Menzies IS, et al. Intestinal carbohydrate absorption and permeability at high altitude (5,730 m). J Appl Physiol. 1994;76:1903–7.

    PubMed  CAS  Google Scholar 

  21. Travis SPL, Edwards JSA, Westerterp K, et al. Carbohydrate intake, hydrolysis and permeation at extreme altitude (5650m). Gastroenterology. 1996;110:A845.

    Google Scholar 

  22. Bjarnason I, Batt R, Catt S, et al. Evaluation of differential disaccharide excretion in urine for non-invasive investigation of altered intestinal disaccharidase activity caused by alpha-glucosidase inhibition, primary hypolactasia, and coeliac disease. Gut. 1996;39:374–81.

    Article  PubMed  CAS  Google Scholar 

  23. Sharma A, Singh SB, Panjwani U, et al. Effect of a carbohydrate supplement on feeding behaviour and exercise in rats exposed to hypobaric hypoxia. Appetite. 2002;39:127–35.

    Article  PubMed  CAS  Google Scholar 

  24. Brooks GA, Butterfield GE, Wolfe RR, et al. Increased dependence on blood glucose after acclimatization to 4300m. J Appl Physiol. 1991;70:919–27.

    Article  PubMed  CAS  Google Scholar 

  25. Mansbach CM, Tso P, Kuksis A. Intestinal lipid metabolism. New York: Kluwer Academic/Plenum; 2001.

    Book  Google Scholar 

  26. Rai RM, Malhotra MS, Dimri GP, et al. Utilization of different quantities of fat at high altitude. Am J Clin Nutr. 1975;28:242–7.

    PubMed  CAS  Google Scholar 

  27. Imray CH, Chesner I, Winterbourn M, et al. Fat absorption at altitude: a reappraisal (abstract). Int J Sports Med. 1992;13:87.

    Google Scholar 

  28. Butterfield GE, Gates J, Fleming S, et al. Increased energy intake minimizes weight loss in men at high altitude. J Appl Physiol. 1992;72:1741–8.

    PubMed  CAS  Google Scholar 

  29. Gilbert ER, Wong EA, Webb Jr KE. Board-invited review: peptide absorption and utilization: implications for animal nutrition and health. J Anim Sci. 2008;86:2135–55.

    Article  PubMed  CAS  Google Scholar 

  30. Vats P, Mukherjee AK, Kumria MM, et al. Changes in the activity levels of glutamine synthetase, glutaminase and glycogen synthetase in rats subjected to hypoxic stress. Int J Biometeorol. 1999;42:205–9.

    Article  PubMed  CAS  Google Scholar 

  31. Zhou QQ, Yang DZ, Luo YJ, et al. Over-starvation aggravates intestinal injury and promotes bacterial and endotoxin translocation under high-altitude hypoxic environment. World J Gastroenterol. 2011;17:1584–93.

    Article  PubMed  CAS  Google Scholar 

  32. Wagenmakers AJ. Amino acid metabolism, muscular fatigue and muscle wasting. Speculations on adaptations at high altitude. Int J Sports Med. 1992;13 Suppl 1:S110–3.

    Article  PubMed  CAS  Google Scholar 

  33. Lee PC, Struve M, Ruff H. Effects of hypoxia on the development of intestinal enzymes in neonatal and juvenile rats. Exp Biol Med. 2003;228:717–23.

    CAS  Google Scholar 

  34. Perry MA, Shepherd AP, Kvietys PR, et al. Effect of hypoxia on feline intestinal capillary permeability. Am J Physiol. 1985;248:G272–6.

    PubMed  CAS  Google Scholar 

  35. Kayser B, Acheson K, Decombaz J, et al. Protein absorption and energy digestibility at high altitude. J Appl Physiol. 1992;73:2425–31.

    PubMed  CAS  Google Scholar 

  36. Westerterp-Plantenga MS, Westerterp KR, Rubbens M, et al. Appetite at “high altitude” [Operation Everest III (Comex-’97)]: a simulated ascent of Mount Everest. J Appl Physiol. 1999;87:391–9.

    PubMed  CAS  Google Scholar 

  37. Kalson NS, Hext F, Davies AJ, et al. Do changes in gastro-intestinal blood flow explain high-altitude anorexia? Eur J Clin Invest. 2010;40:735–41.

    Article  PubMed  Google Scholar 

  38. Westerterp KR, Meijer EP, Rubbens M, et al. Operation Everest III: energy and water balance. Pflugers Arch. 2000;439:483–8.

    Article  PubMed  CAS  Google Scholar 

  39. Yingzhong Y, Droma Y, Rili G, et al. Regulation of body weight by leptin, with special reference to hypoxia-induced regulation. Intern Med. 2006;45:941–6.

    Article  PubMed  Google Scholar 

  40. Quintero P, Milagro FI, Campión J, et al. Impact of oxygen availability on body weight management. Med Hypotheses. 2010;74:901–7.

    Article  PubMed  CAS  Google Scholar 

  41. Ainslie P, Reilly T, Westerterp K. Estimating human energy expenditure: a review of techniques with particular reference to doubly labelled water. Sports Med. 2003;33:683–98.

    Article  PubMed  Google Scholar 

  42. Westerterp KR, Kayser B. Body mass regulation at altitude. Eur J Gastroenterol Hepatol. 2006;18:1–3.

    Article  PubMed  Google Scholar 

  43. Sridharan K, Malhotra MS, Upadhayay TN, et al. Changes in gastrointestinal function in humans at an altitude of 3500 m. Eur J Appl Physiol. 1982;50:145–54.

    Article  CAS  Google Scholar 

  44. Yamaji R, Sakamoto M, Miyatake K, et al. Hypoxia inhibits gastric emptying and gastric acid secretion in conscious rats. J Nutr. 1996;126:673–80.

    PubMed  CAS  Google Scholar 

  45. Vuille-ditBrill C, Meier D, Kymmer EE, et al. Hypoxia induces intestinal isocitrate dehydrogenase expression and enhances 13C-octanoate metabolism in healthy mountaineers after rapid ascent to 4559m (abstract). Gastroenterology. 2011;138:1708.

    Google Scholar 

  46. de Los SF, Tellez G, Farnell MB, et al. Hypobaric hypoxia in ascites resistant and susceptible broiler genetic lines influences gut morphology. Poult Sci. 2005;84:1495–8.

    Google Scholar 

  47. Solis de los SF, Farnell MB, Téllez G, et al. Effect of prebiotic on gut development and ascites incidence of broilers reared in a hypoxic environment. Poult Sci. 2005;84(7):1092–100.

    Google Scholar 

  48. Yoshimoto M, Sasaki M, Naraki N, et al. Regulation of gastric motility at simulated high altitude in conscious rats. J Appl Physiol. 2004;97:599–604.

    Article  PubMed  Google Scholar 

  49. Yang CM, Chen Y, Mao GP, et al. Effects of acute hypobaric hypoxia on gastric emptying and intestinal propulsion: experiment with rats. Zhonghua Yi Xue Za Zhi. 2006;86:2391–4 (Eng abstract).

    PubMed  CAS  Google Scholar 

  50. Hinninghofen H, Musial F, Kowalski A, et al. Gastric emptying effects of dietary fiber during 8 hours at two simulated cabin altitudes. Aviat Space Environ Med. 2006;77:121–3.

    PubMed  Google Scholar 

  51. Martin D, McCorkell S, Vercueil A, et al. Increased gastric-end tidal P(CO2) gap during exercise at high altitude measured by gastric tonometry. High Alt Med Biol. 2007;8:50–5.

    Article  PubMed  Google Scholar 

  52. Siński M, Kowalczyk P, Stolarczyk A, et al. Influence of the stimulation of carotid body chemoreceptors on the gastric mucosal blood flow in artificially ventilated and spontaneously breathing rats. J Physiol Pharmacol. 2002;53:359–69.

    PubMed  Google Scholar 

  53. Banfi G, Marinelli M, Bonini P, et al. Pepsinogens and gastrointestinal symptoms in mountain marathon runners. Int J Sports Med. 1996;17:554–8.

    Article  PubMed  CAS  Google Scholar 

  54. Anand AC, Saha A, Seth AK, et al. Symptomatic portal system thrombosis in soldiers due to extended stay at extreme altitude. J Gastroenterol Hepatol. 2005;20:777–83.

    Article  PubMed  Google Scholar 

  55. Berendsohn S. Hepatic function at high altitudes. Arch Intern Med. 1962;109:56–64.

    Google Scholar 

  56. Jürgens G, Christensen HR, Brøsen K, et al. Acute hypoxia and cytochrome P450-mediated hepatic drug metabolism in humans. Clin Pharmacol Ther. 2002;71:214–20.

    Article  PubMed  Google Scholar 

  57. Streit M, Göggelmann C, Dehnert C, et al. Cytochrome P450 enzyme-mediated drug metabolism at exposure to acute hypoxia (corresponding to an altitude of 4,500 m). Eur J Clin Pharmacol. 2005;6:39–46.

    Article  Google Scholar 

  58. Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell. 2010;40:294–309.

    Article  PubMed  CAS  Google Scholar 

  59. Glover LE, Colgan SP. Hypoxia and metabolic factors that influence inflammatory bowel disease pathogenesis. Gastroenterology. 2011;140:1748–55.

    Article  PubMed  CAS  Google Scholar 

  60. Feinman R, Deitch EA, Watkins AC, et al. HIF-1 mediates pathogenic inflammatory responses to intestinal ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2010;299:G833–43.

    Article  PubMed  CAS  Google Scholar 

  61. Kannan KB, Colorado I, Reino D, et al. Hypoxia-inducible factor plays a gut-injurious role in intestinal ischemia reperfusion injury. Am J Physiol Gastrointest Liver Physiol. 2011;300:G853–61.

    Article  PubMed  CAS  Google Scholar 

  62. Evstatiev R, Gasche C. Iron sensing and signalling. Gut. 2012;61(6):933–52.

    Article  PubMed  CAS  Google Scholar 

  63. Shah YM, Matsubara T, Ito S, et al. Intestinal hypoxia-inducible transcription factors are essential for iron absorption following iron deficiency. Cell Metab. 2009;9:152–64.

    Article  PubMed  CAS  Google Scholar 

  64. Taylor M, Qu A, Anderson ER, et al. Hypoxia-inducible factor-2α mediates the adaptive increase of intestinal ferroportin during iron deficiency in mice. Gastroenterology. 2011;140:2044–55.

    Article  PubMed  CAS  Google Scholar 

  65. Lee SY, Madan A, Furuta GT, et al. Lactase gene transcription is activated in response to hypoxia in intestinal epithelial cells. Mol Genet Metab. 2002;75:65–9.

    Article  PubMed  CAS  Google Scholar 

  66. Griffiths EA, Pritchard SA, McGrath SM, et al. Increasing expression of hypoxia-inducible proteins in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Br J Cancer. 2007;96:1377–83.

    Article  PubMed  CAS  Google Scholar 

  67. Park SK, Haase VH, Johnson RS. von Hippel Lindau tumor suppressor regulates hepatic glucose metabolism by controlling expression of glucose transporter 2 and glucose 6-phosphatase. Int J Oncol. 2007;30:341–8.

    PubMed  CAS  Google Scholar 

  68. Wan J, Chai H, Yu Z, et al. HIF-1α effects on angiogenic potential in human small cell lung carcinoma. J Exp Clin Cancer Res. 2011;30:77–91.

    Article  PubMed  CAS  Google Scholar 

  69. Taylor CT, McElwain JC. Ancient atmospheres and the evolution of oxygen sensing via the hypoxia-inducible factor in metazoans. Physiology (Bethesda). 2010;25:272–9.

    Article  CAS  Google Scholar 

  70. Anand AC, Sashindran VK, Mohan L. Gastrointestinal problems at high altitude. Trop Gastroenterol. 2006;27:147–53.

    PubMed  CAS  Google Scholar 

  71. DuPont HL. Systematic review: prevention of travellers’ diarrhoea. Aliment Pharmacol Ther. 2008;27:741–51.

    Article  PubMed  CAS  Google Scholar 

  72. Parry H, Howard AJ, Galpin OP, et al. The prophylaxis of travellers’ diarrhoea; a double blind placebo controlled trial of ciprofloxacin during a Himalayan expedition. J Infect. 1994;28:337–8.

    Article  PubMed  CAS  Google Scholar 

  73. Hill DR, Ryan ET. Management of travellers’ diarrhoea. Br Med J. 2008;337:1746.

    Article  Google Scholar 

  74. Frech SA, Dupont HL, Bourgeois AL, et al. Use of a patch containing heat-labile toxin from Escherichia coli against travellers’ diarrhoea: a phase II, randomised, double-blind, placebo-controlled field trial. Lancet. 2008;371:2019–25.

    Article  PubMed  CAS  Google Scholar 

  75. Kleessen B, Schroedl W, Stueck M, et al. Microbial and immunological responses relative to high-altitude exposure in mountaineers. Med Sci Sports Exerc. 2005;37:1313–8.

    Article  PubMed  Google Scholar 

  76. Ecology of Helicobacter pylori in Peru: infection rates in coastal, high altitude, and jungle communities. The Gastrointestinal Physiology Working Group of the Cayetano Heredia and the Johns Hopkins University. Gut 1992;33:604–5.

    Google Scholar 

  77. Recavarren-Arce S, Ramirez-Ramos A, Gilman RH, et al. Severe gastritis in the Peruvian Andes. Histopathology. 2005;46:374–9.

    Article  PubMed  CAS  Google Scholar 

  78. Ahmed ME, al-Knawy BA, al-Wabel AH, et al. Duodenal ulcer and Helicobacter pylori infection at high altitude: experience from southern Saudi Arabia. Can J Gastroenterol. 1997;11:313–6.

    PubMed  CAS  Google Scholar 

  79. Wu TY, Ding SQ, Liu JL, et al. Who should not go high: chronic disease and work at altitude during construction of the Qinghai-Tibet railroad. High Alt Med Biol. 2007;8:88–107.

    Article  PubMed  Google Scholar 

  80. Wu TY, Ding SQ, Liu JL, et al. High-altitude gastrointestinal bleeding: an observation in Qinghai-Tibetan railroad construction workers on Mountain Tanggula. World J Gastroenterol. 2007;13:774–80.

    PubMed  Google Scholar 

  81. Dong Y, Zheng J, Wang XY, et al. Effect of oxygen therapy for injury of intestinal mucosal barrier of rabbits in high altitude hemorrhagic shock. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2005;17:32–5 [Eng abstract].

    PubMed  Google Scholar 

  82. A’Court C, Stables R, Travis SPL. How to do it: be a doctor to a high altitude mountaineering expedition. Br Med J. 1995;310:1248–52.

    Article  Google Scholar 

  83. Singh I, Chohan IS, Lal M, et al. Effects of high altitude stay on the incidence of common diseases in man. Int J Biometeorol. 1977;21:93–122.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Travis D.Phil. F.R.C.P. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hamad, N., Travis, S. (2014). Gastrointestinal Function. In: Swenson, E., Bärtsch, P. (eds) High Altitude. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8772-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8772-2_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8771-5

  • Online ISBN: 978-1-4614-8772-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics