Advertisement

Influence of Atomic Structure, Steps, and Kinks on the Catalytic Activity: In Situ Surface Studies

Chapter

Abstract

The surface science approach to catalysis started with the emergence of surface-sensitive techniques that can probe the structure and composition of surfaces. These techniques were made possible by the development of modern vacuum technology [1]. The investigation of surface properties contributed significantly to the development of thin-film technologies for electronics and coatings and, at the same time, provided a basic understanding of surface chemistry and reactions related to catalysis. A substantial number of review articles and books treat the surface science of catalysis until the turn of the millennium. A particularly successful approach was, and still is, to use single crystals to study the surface chemistry of catalysts. The advantage of using single crystals is significant control over the structural features of the surface where the reaction takes place. The crystal face, step orientation, step density, and density of the kinks can be controlled by accurately cutting along specific directions of the bulk crystal. Although the single-crystal surface science approach was successful in providing knowledge of the elementary surface processes of catalysis, it also led to the so-called materials gap (i.e., the difference between the structure and catalytic properties of single crystals and those of complex, real catalysts consisting of nanoparticles on porous oxide supports with the addition of promoters). To bridge this materials gap, surface science studies have shifted towards more complex systems, such as nanoparticles on well-defined oxide surfaces (see Part II). This chapter discusses several examples of recent single-crystal studies. This is not intended to provide a comprehensive, complete overview of recent literature on the subject; instead, it is limited to studies that highlight recent insights on the influence of the atomic structure, steps, and kinks on the catalytic activity of single-crystal surfaces. This chapter is organized as follows: First, the elementary steps of a catalytic reaction and the role of the atomic-scale structure, from the perspective of theoretical calculations, are discussed. Second, the importance of the formation of new structures under realistic reaction conditions for the case of surface oxides is discussed. The third part treats experiments that demonstrate the role of steps in catalytic systems.

Keywords

Scanning Tunneling Microscopy Density Functional Theory Calculation Scanning Tunneling Microscopy Image Step Density Chemisorption Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I want to thank V. Navarro of Leiden University and J. A. A. W. Elemans of Radboud University Nijmegen for their useful comments and discussion.

References

  1. 1.
    Sinfelt JH (2002) Role of surface science in catalysis. Surf Sci 500(1–3):923–946. doi: 10.1016/s0039-6028(01)01532-1 CrossRefGoogle Scholar
  2. 2.
    Hammer B, Norskov JK (1995) Electronic factors determining the reactivity of metal surfaces. Surf Sci 343(3):211–220. doi: 10.1016/0039-6028(96)80007-0 CrossRefGoogle Scholar
  3. 3.
    Norskov JK, Bligaard T, Hvolbaek B, Abild-Pedersen F, Chorkendorff I, Christensen CH (2008) The nature of the active site in heterogeneous metal catalysis. Chem Soc Rev 37(10):2163–2171. doi: 10.1039/b800260f CrossRefGoogle Scholar
  4. 4.
    Norskov JK, Bligaard T, Logadottir A, Bahn S, Hansen LB, Bollinger M, Bengaard H, Hammer B, Sljivancanin Z, Mavrikakis M, Xu Y, Dahl S, Jacobsen CJH (2002) Universality in heterogeneous catalysis. J Catal 209(2):275–278. doi: 10.1006/jcat.2002.3615 CrossRefGoogle Scholar
  5. 5.
    Jacobsen CJH, Dahl S, Clausen BS, Bahn S, Logadottir A, Norskov JK (2001) Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J Am Chem Soc 123(34):8404–8405. doi: 10.1021/ja010963d CrossRefGoogle Scholar
  6. 6.
    Besenbacher F, Chorkendorff I, Clausen BS, Hammer B, Molenbroek AM, Norskov JK, Stensgaard I (1998) Design of a surface alloy catalyst for steam reforming. Science 279(5358):1913–1915. doi: 10.1126/science.279.5358.1913 CrossRefGoogle Scholar
  7. 7.
    Wang XG, Chaka A, Scheffler M (2000) Effect of the environment on alpha-Al2O3 (0001) surface structures. Phys Rev Lett 84(16):3650–3653. doi: 10.1103/PhysRevLett.84.3650 CrossRefGoogle Scholar
  8. 8.
    Reuter K, Scheffler M (2002) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys Rev B 65(3):035406. doi: 10.1103/PhysRevB.65.035406 CrossRefGoogle Scholar
  9. 9.
    Reuter K, Scheffler M (2003) Composition and structure of the RuO2(110) surface in an O-2 and CO environment: implications for the catalytic formation of CO2. Phys Rev B 68(4):045407. doi: 10.1103/PhysRevB.68.045407 CrossRefGoogle Scholar
  10. 10.
    Rogal J, Reuter K, Scheffler M (2007) CO oxidation at Pd(100): a first-principles constrained thermodynamics study. Phys Rev B 75(20):205433. doi: 10.1103/PhysRevB.75.205433 CrossRefGoogle Scholar
  11. 11.
    Bollinger MV, Jacobsen KW, Norskov JK (2003) Atomic and electronic structure of MoS2 nanoparticles. Phys Rev B 67(8):085410. doi: 10.1103/PhysRevB.67.085410 CrossRefGoogle Scholar
  12. 12.
    Liu ZP, Jenkins SJ, King DA (2004) Car exhaust catalysis from first principles: selective NO reduction under excess O2 conditions on Ir. J Am Chem Soc 126(34):10746–10756. doi: 10.1021/ja0481833 CrossRefGoogle Scholar
  13. 13.
    Michaelides A, Bocquet ML, Sautet P, Alavi A, King DA (2003) Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag{111}. Chem Phys Lett 367(3–4):344–350. doi: 10.1016/s0009-2614(02)01699-8 CrossRefGoogle Scholar
  14. 14.
    Seriani N, Mittendorfer F (2008) Platinum-group and noble metals under oxidizing conditions. J Phys Condens Matter 20(18):184023. doi: 10.1088/0953-8984/20/18/184023 CrossRefGoogle Scholar
  15. 15.
    Somorjai GA (1993) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  16. 16.
    Peden CHF, Goodman DW (1986) Kinetics of CO oxidation over Ru(0001). J Phys Chem 90(7):1360–1365. doi: 10.1021/j100398a031 CrossRefGoogle Scholar
  17. 17.
    Over H, Kim YD, Seitsonen AP, Wendt S, Lundgren E, Schmid M, Varga P, Morgante A, Ertl G (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287(5457):1474–1476. doi: 10.1126/science.287.5457.1474 CrossRefGoogle Scholar
  18. 18.
    Over H, Muhler M (2003) Catalytic CO oxidation over ruthenium—bridging the pressure gap. Prog Surf Sci 72(1–4):3–17. doi: 10.1016/s0079-6816(03)00011-x CrossRefGoogle Scholar
  19. 19.
    Over H, Balmes O, Lundgren E (2009) Direct comparison of the reactivity of the non-oxidic phase of Ru(0001) and the RuO2 phase in the Co oxidation reaction. Surf Sci 603(2):298–303. doi: 10.1016/j.susc.2008.11.012 CrossRefGoogle Scholar
  20. 20.
    Over H, Balmes O, Lundgren E (2009) In situ structure-activity correlation experiments of the ruthenium catalyzed CO oxidation reaction. Catal Today 145(3–4):236–242. doi: 10.1016/j.cattod.2008.10.048 CrossRefGoogle Scholar
  21. 21.
    McIntyre BJ, Salmeron M, Somorjai GA (1993) In situ scanning tunneling microscopy study of platinum (110) in a reactor cell at high-pressures and temperatures. J Vac Sci Technol A Vac Surf Films 11(4):1964–1968. doi: 10.1116/1.578531 CrossRefGoogle Scholar
  22. 22.
    Rasmussen PB, Hendriksen BLM, Zeijlemaker H, Ficke HG, Frenken JWM (1998) The “reactor STM”: a scanning tunneling microscope for investigation of catalytic surfaces at semi-industrial reaction conditions. Rev Sci Instrum 69(11):3879–3884. doi: 10.1063/1.1149193 CrossRefGoogle Scholar
  23. 23.
    Frenken J, Hendriksen B (2007) The reactor-STM: a real-space probe for operando nanocatalysis. MRS Bull 32(12):1015–1021. doi: 10.1557/mrs2007.210 CrossRefGoogle Scholar
  24. 24.
    Ferrer S, Ackermann MD, Lundgren E (2007) In situ investigations of chemical reactions on surfaces by X-ray diffraction at atmospheric pressures. MRS Bull 32(12):1010–1014. doi: 10.1557/mrs2007.209 CrossRefGoogle Scholar
  25. 25.
    Bernard P, Peters K, Alvarez J, Ferrer S (1999) Ultrahigh vacuum high pressure chamber for surface x-ray diffraction experiments. Rev Sci Instrum 70(2):1478–1480. doi: 10.1063/1.1149609 CrossRefGoogle Scholar
  26. 26.
    van Rijn R, Ackermann MD, Balmes O, Dufrane T, Geluk A, Gonzalez H, Isern H, de Kuyper E, Petit L, Sole VA, Wermeille D, Felici R, Frenken JWM (2010) Ultrahigh vacuum/high-pressure flow reactor for surface x-ray diffraction and grazing incidence small angle x-ray scattering studies close to conditions for industrial catalysis. Rev Sci Instrum 81(1):014101. doi: 10.1063/1.3290420 CrossRefGoogle Scholar
  27. 27.
    Hendriksen BLM, Frenken JWM (2002) CO oxidation on Pt(110): scanning tunneling microscopy inside a high-pressure flow reactor. Phys Rev Lett 89(4):046101. doi: 10.1103/PhysRevLett.89.046101 CrossRefGoogle Scholar
  28. 28.
    Imbihl R, Ertl G (1995) Oscillatory kinetics in heterogeneous catalysis. Chem Rev 95(3):697–733. doi: 10.1021/cr00035a012 CrossRefGoogle Scholar
  29. 29.
    Sales BC, Turner JE, Maple MB (1982) Oscillatory oxidation of CO over Pt, Pd and Ir catalysts—theory. Surf Sci 114(2–3):381–394. doi: 10.1016/0039-6028(82)90692-6 CrossRefGoogle Scholar
  30. 30.
    Ackermann MD, Pedersen TM, Hendriksen BLM, Robach O, Bobaru SC, Popa I, Quiros C, Kim H, Hammer B, Ferrer S, Frenken JWM (2005) Structure and reactivity of surface oxides on Pt(110) during catalytic CO oxidation. Phys Rev Lett 95(25):255505. doi: 10.1103/PhysRevLett.95.255505 CrossRefGoogle Scholar
  31. 31.
    Butcher DR, Grass ME, Zeng ZH, Aksoy F, Bluhm H, Li WX, Mun BS, Somorjai GA, Liu Z (2011) In situ oxidation study of Pt(110) and its interaction with CO. J Am Chem Soc 133(50):20319–20325. doi: 10.1021/ja207261s CrossRefGoogle Scholar
  32. 32.
    Li WX, Osterlund L, Vestergaard EK, Vang RT, Matthiesen J, Pedersen TM, Laegsgaard E, Hammer B, Besenbacher F (2004) Oxidation of Pt(110). Phys Rev Lett 93(14):146104. doi: 10.1103/PhysRevLett.93.146104 CrossRefGoogle Scholar
  33. 33.
    Pedersen TM, Li WX, Hammer B (2006) Structure and activity of oxidized Pt(110) and alpha-PtO2. Phys Chem Chem Phys 8(13):1566–1574. doi: 10.1039/b515166j CrossRefGoogle Scholar
  34. 34.
    Gustafson J, Mikkelsen A, Borg M, Lundgren E, Kohler L, Kresse G, Schmid M, Varga P, Yuhara J, Torrelles X, Quiros C, Andersen JN (2004) Self-limited growth of a thin oxide layer on Rh(111). Phys Rev Lett 92(12):126102. doi: 10.1103/PhysRevLett.92.126102 CrossRefGoogle Scholar
  35. 35.
    Gustafson J, Mikkelsen A, Borg M, Andersen JN, Lundgren E, Klein C, Hofer W, Schmid M, Varga P, Kohler L, Kresse G, Kasper N, Stierle A, Dosch H (2005) Structure of a thin oxide film on Rh(100). Phys Rev B 71(11):115442. doi: 10.1103/PhysRevB.71.115442 CrossRefGoogle Scholar
  36. 36.
    Dri C, Africh C, Esch F, Comelli G, Dubay O, Kohler L, Mittendorfer F, Kresse G, Dudin P, Kiskinova M (2006) Initial oxidation of the Rh(110) surface: ordered adsorption and surface oxide structures. J Chem Phys 125(9):094701. doi: 10.1063/1.2345058 CrossRefGoogle Scholar
  37. 37.
    Westerstrom R, Wang JG, Ackermann MD, Gustafson J, Resta A, Mikkelsen A, Andersen JN, Lundgren E, Balmes O, Torrelles X, Frenken JWM, Hammer B (2008) Structure and reactivity of a model catalyst alloy under realistic conditions. J Phys Condens Matter 20(18):184018. doi: 10.1088/0953-8984/20/18/184018 CrossRefGoogle Scholar
  38. 38.
    Mittendorfer F, Seriani N, Dubay O, Kresse G (2007) Morphology of mesoscopic Rh and Pd nanoparticles under oxidizing conditions. Phys Rev B 76(23):233413. doi: 10.1103/PhysRevB.76.233413 CrossRefGoogle Scholar
  39. 39.
    Nolte P, Stierle A, Jin-Phillipp NY, Kasper N, Schulli TU, Dosch H (2008) Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 321(5896):1654–1658. doi: 10.1126/science.1160845 CrossRefGoogle Scholar
  40. 40.
    Gustafson J, Westerstroem R, Mikkelsen A, Torrelles X, Balmes O, Bovet N, Andersen JN, Baddeley CJ, Lundgren E (2008) Sensitivity of catalysis to surface structure: the example of CO oxidation on Rh under realistic conditions. Phys Rev B 78(4):045423. doi: 10.1103/PhysRevB.78.045423 CrossRefGoogle Scholar
  41. 41.
    Gustafson J, Westerstrom R, Resta A, Mikkelsen A, Andersen JN, Balmes O, Torrelles X, Schmid M, Varga P, Hammer B, Kresse G, Baddeley CJ, Lundgren E (2009) Structure and catalytic reactivity of Rh oxides. Catal Today 145(3–4):227–235. doi: 10.1016/j.cattod.2008.11.011 CrossRefGoogle Scholar
  42. 42.
    He YB, Stierle A, Li WX, Farkas A, Kasper N, Over H (2008) Oxidation of Ir(111): from O-Ir-O trilayer to bulk oxide formation. J Phys Chem C 112(31):11946–11953. doi: 10.1021/jp803607y CrossRefGoogle Scholar
  43. 43.
    Lundgren E, Gustafson J, Mikkelsen A, Andersen JN, Stierle A, Dosch H, Todorova M, Rogal J, Reuter K, Scheffler M (2004) Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures. Phys Rev Lett 92(4):046101. doi: 10.1103/PhysRevLett.92.046101 CrossRefGoogle Scholar
  44. 44.
    Hendriksen BLM, Bobaru SC, Frenken JWM (2004) Oscillatory CO oxidation on Pd(100) studied with in situ scanning tunneling microscopy. Surf Sci 552(1–3):229–242. doi: 10.1016/j.susc.2004.01.025 CrossRefGoogle Scholar
  45. 45.
    Lundgren E, Mikkelsen A, Andersen JN, Kresse G, Schmid M, Varga P (2006) Surface oxides on close-packed surfaces of late transition metals. J Phys Condens Matter 18(30):R481–R499. doi: 10.1088/0953-8984/18/30/r01 CrossRefGoogle Scholar
  46. 46.
    Westerstrom R, Weststrate CJ, Gustafson J, Mikkelsen A, Schnadt J, Andersen JN, Lundgren E, Seriani N, Mittendorfer F, Kresse G, Stierle A (2009) Lack of surface oxide layers and facile bulk oxide formation on Pd(110). Phys Rev B 80(12):125431. doi: 10.1103/PhysRevB.80.125431 CrossRefGoogle Scholar
  47. 47.
    Nolte P, Stierle A, Kasper N, Jin-Phillipp NY, Reichert H, Ruhm A, Okasinski J, Dosch H, Schoder S (2008) Combinatorial high-energy x-ray microbeam study of the size-dependent oxidation of Pd nanoparticles on MgO(100). Phys Rev B 77(11):115444. doi: 10.1103/PhysRevB.77.115444 CrossRefGoogle Scholar
  48. 48.
    Kasper N, Stierle A, Nolte P, Jin-Phillipp Y, Wagner T, de Oteyza DG, Dosch H (2006) In situ oxidation study of MgO(100) supported Pd nanoparticles. Surf Sci 600(14):2860–2867. doi: 10.1016/j.susc.2006.05.030 CrossRefGoogle Scholar
  49. 49.
    van Rijn R, Balmes O, Resta A, Wermeille D, Westerstrom R, Gustafson J, Felici R, Lundgren E, Frenken JWM (2011) Surface structure and reactivity of Pd(100) during CO oxidation near ambient pressures. Phys Chem Chem Phys 13(29):13167–13171. doi: 10.1039/c1cp20989b CrossRefGoogle Scholar
  50. 50.
    Stierle A, Kasper N, Dosch H, Lundgren E, Gustafson J, Mikkelsen A, Andersen JN (2005) Surface x-ray study of the structure and morphology of the oxidized Pd(001) surface. J Chem Phys 122(4):044706. doi: 10.1063/1.1834491 CrossRefGoogle Scholar
  51. 51.
    Ketteler G, Ogletree DF, Bluhm H, Liu HJ, Hebenstreit ELD, Salmeron M (2005) In situ spectroscopic study of the oxidation and reduction of Pd(111). J Am Chem Soc 127(51):18269–18273. doi: 10.1021/ja055754y CrossRefGoogle Scholar
  52. 52.
    Grass ME, Zhang YW, Butcher DR, Park JY, Li YM, Bluhm H, Bratlie KM, Zhang TF, Somorjai GA (2008) A reactive oxide overlayer on rhodium nanoparticles during CO oxidation and its size dependence studied by in situ ambient-pressure X-ray photoelectron spectroscopy. Angew Chem Int Ed 47(46):8893–8896. doi: 10.1002/anie.200803574 CrossRefGoogle Scholar
  53. 53.
    Joo SH, Park JY, Renzas JR, Butcher DR, Huang WY, Somorjai GA (2010) Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett 10(7):2709–2713. doi: 10.1021/nl101700j CrossRefGoogle Scholar
  54. 54.
    Ackermann M, Robach O, Walker C, Quiros C, Isern H, Ferrer S (2004) Hydrogenation of carbon monoxide on Ni(111) investigated with surface X-ray diffraction at atmospheric pressure. Surf Sci 557(1–3):21–30. doi: 10.1016/j.susc.2004.03.061 CrossRefGoogle Scholar
  55. 55.
    Lauritsen JV, Helveg S, Laegsgaard E, Stensgaard I, Clausen BS, Topsoe H, Besenbacher E (2001) Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts. J Catal 197(1):1–5. doi: 10.1006/jcat.2000.3088 CrossRefGoogle Scholar
  56. 56.
    Vattuone L, Savio L, Rocca M (2008) Bridging the structure gap: chemistry of nanostructured surfaces at well-defined defects. Surf Sci Rep 63(3):101–168. doi: 10.1016/j.surfrep.2007.11.001 CrossRefGoogle Scholar
  57. 57.
    Dahl S, Logadottir A, Egeberg RC, Larsen JH, Chorkendorff I, Tornqvist E, Norskov JK (1999) Role of steps in N-2 activation on Ru(0001). Phys Rev Lett 83(9):1814–1817. doi: 10.1103/PhysRevLett.83.1814 CrossRefGoogle Scholar
  58. 58.
    Engbaek J, Lytken O, Nielsen JH, Chorkendorff L (2008) CO dissociation on Ni: the effect of steps and of nickel carbonyl. Surf Sci 602(3):733–743. doi: 10.1016/j.susc.2007.12.008 CrossRefGoogle Scholar
  59. 59.
    Vang RT, Honkala K, Dahl S, Vestergaard EK, Schnadt J, Laegsgaard E, Clausen BS, Norskov JK, Besenbacher F (2005) Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking. Nat Mater 4(2):160–162. doi: 10.1038/nmat1311 CrossRefGoogle Scholar
  60. 60.
    Vang RT, Honkala K, Dahl S, Vestergaard EK, Schnadt J, Laegsgaard E, Clausen BS, Norskov JK, Besenbacher F (2006) Ethylene dissociation on flat and stepped Ni(111): a combined STM and DFT study. Surf Sci 600(1):66–77. doi: 10.1016/j.susc.2005.10.006 CrossRefGoogle Scholar
  61. 61.
    Thostrup P, Christoffersen E, Lorensen HT, Jacobsen KW, Besenbacher F, Norskov JK (2001) Adsorption-induced step formation. Phys Rev Lett 87(12):126102. doi: 10.1103/PhysRevLett.87.126102 CrossRefGoogle Scholar
  62. 62.
    Thostrup P, Vestergaard EK, An T, Laegsgaard E, Besenbacher F (2003) CO-induced restructuring of Pt(110)-(1×2): Bridging the pressure gap with high-pressure scanning tunneling microscopy. J Chem Phys 118(8):3724–3730. doi: 10.1063/1.1540611 CrossRefGoogle Scholar
  63. 63.
    Gritsch T, Coulman D, Behm RJ, Ertl G (1989) Mechanism of the CO-induced 1×2→1×1 structural transformation of PT(110). Phys Rev Lett 63(10):1086–1089. doi: 10.1103/PhysRevLett.63.1086 CrossRefGoogle Scholar
  64. 64.
    Longwitz SR, Schnadt J, Vestergaard EK, Vang RT, Laegsgaard E, Stensgaard I, Brune H, Besenbacher F (2004) High coverage structures of carbon monoxide adsorbed on Pt(111) studied by high pressure scanning tunneling microscopy. J Phys Chem B 108(38):14497–14502. doi: 10.1021/jp0492218 CrossRefGoogle Scholar
  65. 65.
    Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Bluhm H, Salmeron M, Somorjai GA (2010) Break up of stepped platinum catalyst surfaces by high CO coverage. Science 327(5967):850–853. doi: 10.1126/science.1182122 CrossRefGoogle Scholar
  66. 66.
    Tao F, Dag S, Wang LW, Liu Z, Butcher DR, Salmeron M, Somorjai GA (2009) Restructuring of hex-Pt(100) under CO gas environments: formation of 2-D nanoclusters. Nano Lett 9(5):2167–2171. doi: 10.1021/nl900809u CrossRefGoogle Scholar
  67. 67.
    Besenbacher F, Thostrup P, Salmeron M (2012) The structure and reactivity of surfaces revealed by scanning tunneling microscopy. MRS Bull 37(7):677–681. doi:10.1557/mrs.2012.142CrossRefGoogle Scholar
  68. 68.
    Wang JG, Li WX, Borg M, Gustafson J, Mikkelsen A, Pedersen TM, Lundgren E, Weissenrieder J, Klikovits J, Schmid M, Hammer B, Andersen JN (2005) One-dimensional PtO2 at Pt steps: formation and reaction with CO. Phys Rev Lett 95(25):256102. doi: 10.1103/PhysRevLett.95.256102 CrossRefGoogle Scholar
  69. 69.
    Gustafson J, Resta A, Mikkelsen A, Westerstrom R, Andersen JN, Lundgren E, Weissenrieder J, Schmid M, Varga P, Kasper N, Torrelles X, Ferrer S, Mittendorfer F, Kresse G (2006) Oxygen-induced step bunching and faceting of Rh(553): experiment and ab initio calculations. Phys Rev B 74(3):035401. doi: 10.1103/PhysRevB.74.035401 CrossRefGoogle Scholar
  70. 70.
    Klikovits J, Schmid M, Merte LR, Varga P, Westerstrom R, Resta A, Andersen JN, Gustafson J, Mikkelsen A, Lundgren E, Mittendorfer F, Kresse G (2008) Step-orientation-dependent oxidation: from 1D to 2D oxides. Phys Rev Lett 101(26):266104. doi: 10.1103/PhysRevLett.101.266104 CrossRefGoogle Scholar
  71. 71.
    Westerstrom R, Gustafson J, Resta A, Mikkelsen A, Andersen JN, Lundgren E, Seriani N, Mittendorfer F, Schmid M, Klikovits J, Varga P, Ackermann MD, Frenken JWM, Kasper N, Stierle A (2007) Oxidation of Pd(553): from ultrahigh vacuum to atmospheric pressure. Phys Rev B 76(15):155410. doi: 10.1103/PhysRevB.76.155410 CrossRefGoogle Scholar
  72. 72.
    Hendriksen BLM, Ackermann MD, van Rijn R, Stoltz D, Popa I, Balmes O, Resta A, Wermeille D, Felici R, Ferrer S, Frenken JWM (2010) The role of steps in surface catalysis and reaction oscillations. Nat Chem 2(9):730–734. doi: 10.1038/nchem.728 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Institute for Molecules and MaterialsRadboud University NijmegenNijmegenThe Netherlands

Personalised recommendations