Applications of the Local Electrode Atom Probe

  • David J. Larson
  • Ty J. Prosa
  • Robert M. Ulfig
  • Brian P. Geiser
  • Thomas F. Kelly


Over the past decade there has been a substantial expansion of the applicability of atom probe tomography (APT) to materials of all types. This expansion has been spurred on by major instrumental developments resulting in the achievement of high data collection rates, large fields of view, and renewed utilization of laser pulsing (see  Chap. 3). Furthermore, the advent of focused ion beam (FIB) methods for specimen preparation (see  Chap. 2) in APT has had an equally profound impact. FIB-based methods have not only made it possible to create a LEAP specimen from nearly any bulk material type, but also provided the capability to create specimens from specified regions of a sample and in nearly any orientation. At the turn of the century, random site specimen creation was the norm and site-specific specimen creation was a time-consuming process involving many handling steps in conjunction with electropolishing and electron microscopy. Today, FIB-based site-specific specimen creation is routine and electropolishing is often only used when it is more practical. While the use of thermal pulsing is necessary for materials that cannot be evaporated successfully with field pulsing, thermal pulsing also has been found to improve yield for a range of metal applications as well. Certain metal specimens, even high-strength steels, that will not run with adequate yield in voltage pulsing have been found to run with much higher success rate in laser pulsing. With these major advances, applications of APT have blossomed.


Atom Probe Multiple Quantum Well Atom Probe Tomography Relaxor Ferroelectric Butyric Acid Methyl Ester 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Kelly, T.F., Larson, D.J.: Atom probe tomography 2012. Ann. Rev. Mater. Res. 42, 1–31 (2012)CrossRefGoogle Scholar
  2. 2.
    Srinivasan, R., Banerjee, R., Hwang, J.Y., Viswanathan, G.B., Tiley, J., Dimiduk, D.M., Fraser, H.L.: Atomic scale structure and chemical composition across order–disorder interfaces. Phys. Rev. Lett. 102, 086101 (2009). doi: Google Scholar
  3. 3.
    Mishin, Y.: Atomistic modeling of the γ and γ′-phases of the Ni–Al system. Acta Mater. 52(6), 1451–1467 (2004). doi: 10.1016/j.actamat.2003.11.026 CrossRefGoogle Scholar
  4. 4.
    Ardell, A.J., Ozolins, V.: Trans-interface diffusion-controlled coarsening. Nat. Mater. 4(4), 309–316 (2005)CrossRefGoogle Scholar
  5. 5.
    Gault, B., Cui, X.Y., Moody, M.P., De Geuser, F., Sigli, C., Ringer, S.P., Deschamps, A.: Atom probe microscopy investigation of Mg site occupancy within delta’ precipitates in an Al–Mg–Li alloy. Scripta Mat. 66, 903–906 (2012)CrossRefGoogle Scholar
  6. 6.
    Miller, M.K., Longstreth-Spoor, L., Kelton, K.F.: Detecting density variations and nanovoids. Ultramicroscopy 111(6), 469–472 (2011). doi: 10.1016/j.ultramic.2011.01.027 CrossRefGoogle Scholar
  7. 7.
    Schreiber, D.K., Olszta, M.J., Saxey, D.W., Kruska, K., More, K.L., Lozano-Perez, S., Bruemmer, S.M.: Examinations of oxidation and sulfidation of grain boundaries in alloy 600 exposed to simulated pressurized water reactor primary water. Microsc. Microanal. 19, 676–687 (2013)CrossRefGoogle Scholar
  8. 8.
    Xiang, Y., Chitry, V., Liddicoat, P., Felfer, P., Cairney, J., Ringer, S., Kruse, N.: Long-chain terminal alcohols through catalytic CO hydrogenation. J. Am. Chem. Soc. 135(19), 7114–7117 (2013). doi: 10.1021/ja402512r CrossRefGoogle Scholar
  9. 9.
    Bagot, P.A.J., de Bocarme, T.V., Cerezo, A., Smith, G.D.W.: 3D atom probe study of gas adsorption and reaction on alloy catalyst surfaces I: instrumentation. Surf. Sci. 600, 3028–3035 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, T., Bagot, P.A.J., Marquis, E.A., Tsang, S.C.E., Smith, G.D.W.: Characterization of oxidation and reduction of a palladium–rhodium alloy by atom-probe tomography. J. Phys. Chem. C 116(7), 4760–4766 (2012). doi: 10.1021/jp211687m CrossRefGoogle Scholar
  11. 11.
    Li, T., Bagot, P.A.J., Marquis, E.A., Tsang, S.C.E., Smith, G.D.W.: Characterization of oxidation and reduction of Pt–Ru and Pt–Rh–Ru alloys by atom probe tomography and comparison with Pt–Rh. J. Phys. Chem. C 116(33), 17633–17640 (2012). doi: 10.1021/jp304359m CrossRefGoogle Scholar
  12. 12.
    Ohkubo T, Chen YM, Kodzuka M, Li F, Oh-ishi K, Hono K (2009) Laser-assisted atom probe analysis of bulk insulating ceramics. In: MRS Fall Meeting, Materials Research Society, Boston, MAGoogle Scholar
  13. 13.
    Chen, Y.M., Ohkubo, T., Hono, K.: Laser assisted field evaporation of oxides in atom probe analysis. Ultramicroscopy 111(5), 562 (2011)CrossRefGoogle Scholar
  14. 14.
    Kuchibhatla, S.V.N.T., Shutthanandan, V., Arey, B.W., Kovarik, L., Wang, C.M., Prosa, T.J., Ulfig, R., Thevuthasan, S., Gorman, B.P.: Embedded nanoparticle analysis using atom probe tomography and high-resolution electron microscopy. Microsc. Microanal. 17(S2), 760–761 (2011)CrossRefGoogle Scholar
  15. 15.
    Larson, D.J., Alvis, R.A., Lawrence, D.F., Prosa, T.J., Ulfig, R.M., Reinhard, D.A., Clifton, P.H., Gerstl, S.S.A., Bunton, J.H., Lenz, D.R., Kelly, T.F., Stiller, K.: Analysis of bulk dielectrics with atom probe tomography. Microsc. Microanal. 14(S2), 1254–1255 (2008)CrossRefGoogle Scholar
  16. 16.
    Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K., Todd, R.I.: Probing the improble: imaging carbon atoms in alumina. Mater. Today 13(10), 42–44 (2010)Google Scholar
  17. 17.
    Stiller, K., Viskari, L., Sundell, G., Liu, F., Thuvander, M., Andrén, H.O., Larson, D.J., Prosa, T.J., Reinhard, D.: Atom probe tomography of oxide scales. Oxid. Met. 79, 227–238 (2013)CrossRefGoogle Scholar
  18. 18.
    Talbot, E., Larde, R., Gourbilleau, F., Dufour, C., Pareige, P.: Si nanoparticles in SiO2: an atomic scale observation for optimization of optical devices. Eur. Phys. Lett. 87, 26004-26001–26004-26005 (2009)Google Scholar
  19. 19.
    Prosa, T.J., Lawrence, D., Olson, D., Lenz, D., Bunton, J.H., Larson, D.J.: Atom probe tomography analysis of thick film SiO2 and oxide interfaces: conditions leading to improved analysis yield. Microsc. Microanal. 17(S2), 750–751 (2011)CrossRefGoogle Scholar
  20. 20.
    Roussel, M., Chen, W.H., Talbot, E., Larde, R., Cadel, E., Gourbilleau, F., Grandidier, B., Stievenard, D., Pareige, P.: Atomic scale investigation of silicon nanowires and nanoclusters. Nanoscale Res. Lett. 6, 271 (2011). 27110.1186/1556-276x-6-271CrossRefGoogle Scholar
  21. 21.
    Bachhav, M., Danoix, R., Danoix, F., Hannoyer, B., Ogale, S., Vurpillot, F.: Investigation of wustite (Fe1-xO) by femtosecond laser assisted atom probe tomography. Ultramicroscopy 111, 584–588 (2011)CrossRefGoogle Scholar
  22. 22.
    Chen, Y., Reed, R.C., Marquis, E.A.: As-coated thermal barrier coating: structure and chemistry. Scr. Mater. 67(9), 779–782 (2012)CrossRefGoogle Scholar
  23. 23.
    Larde, R., Talbot, E., Vurpillot, F., Pareige, P., Schmerber, G., Beaurepaire, E., Dinia, A., Pierron-Bohnes, V.: Investigation at the atomic scale of the Co spatial distribution in Zn(Co)O magnetic semiconductor oxide. J. Appl. Phys. 105(12), 126107‐1‐3 (2009) doi:  10.1063/1.3152579
  24. 24.
    Larde, R., Talbot, E., Pareige, P., Bieber, H., Schmerber, G., Colis, S., Pierron-Bohnes, V., Dinia, A.: Evidence of superparamagnetic Co clusters in pulsed laser deposition-grown Zn(0.9)Co(0.1)O thin films using atom probe tomography. J. Am. Chem. Soc. 133(5), 1451–1458 (2011). doi: 10.1021/ja108290u CrossRefGoogle Scholar
  25. 25.
    Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K., Hono, K.: Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scr. Mater. 61, 693–696 (2009)CrossRefGoogle Scholar
  26. 26.
    Payne, D.J., Marquis, E.A.: Three-dimensional spatial distribution of Cr atoms in doped indium oxide. Chem. Mater. 23(5), 1085–1087 (2011)CrossRefGoogle Scholar
  27. 27.
    Li, F., Ohkubo, T., Chen, Y.M., Kodzuka, M., Ye, F., Ou, D.R., Mori, T., Hono, K.: Laser-assisted three-dimensional atom probe analysis of dopant distribution in Gd-doped CeO2. Scr. Mater. 63, 332–335 (2010)CrossRefGoogle Scholar
  28. 28.
    Li, F., Ohkubo, T., Chen, Y.M., Kodzuka, M., Hono, K.: Quantitative atom probe analyses of rare-earth-doped ceria by femtosecond pulsed laser. Ultramicroscopy 111(6), 589–594 (2011)CrossRefGoogle Scholar
  29. 29.
    Kirchhofer, R., Teague, M.C., Gorman, B.P.: Thermal effects on mass and spatial resolution during laser pulse atom probe tomography of cerium oxide. J. Nucl. Mater. 436, 23–28 (2013)CrossRefGoogle Scholar
  30. 30.
    Oberdorfer, C., Schmitz, G.: On the field evaporation behavior of dielectric materials in three-dimensional atom probe: a numeric simulation. Microsc. Microanal. 17, 15–25 (2011)CrossRefGoogle Scholar
  31. 31.
    Tsukada, M., Tamura, H., McKenna, K.P., Shluger, A.L., Chen, Y.M., Ohkubo, T., Hono, K.: Mechanism of laser assisted field evaporation from insulating oxides. Ultramicroscopy 111(6), 567–570 (2011)CrossRefGoogle Scholar
  32. 32.
    Mazumder, B., Vella, A., Deconihout, B., Al-Kassab, T.: Evaporation mechanisms of MgO in laser assisted atom probe tomography. Ultramicroscopy 11(6), 571–575 (2011)CrossRefGoogle Scholar
  33. 33.
    Karahka, M., Kreuzer, H.J.: Field evaporation of oxides: a theoretical study. Ultramicroscopy 132, 54–59 (2013) doi:
  34. 34.
    Tamura, H., Tsukada, M., McKenna, K.P., Shluger, A.L., Ohkubo, T., Hono, K.: Laser-assisted field evaporation from insulators triggered by photoinduced hole accumulation. Phys. Rev. B 86, 195430, 195431–195436 (2012)Google Scholar
  35. 35.
    Snoeyenbos, D., Jercinovic, M.J., Reinhard, D.A., Hombourger, C.: Characterization of minerals of geochronological interest by EPMA and atom probe tomography. Am. Geophys. Union Abstr. V23C-2830 (2012)Google Scholar
  36. 36.
    Valley, J.W., Cavosie, A.J., Ushikubo, T., Reinhard, D.A., Snoeyenbos, D., Lawrence, D., Larson, D.J., Clifton, P.H., Kelly, T.F., Strickland, A., Wilde, S., Moser, D.: Radiogenic dating at the atomic scale in 4.4Ga Zircons. Nature Geoscience in press (2013)Google Scholar
  37. 37.
    Heck, P.R., Stadermann, F.J., Isheim, D., Auciello, O.H., Daulton, T.L., Davis, A.M., Elam, J.W., Floss, C., Hiller, J., Larson, D.J., Lewis, J., Mane, A., Pellin, M.J., Savina, M.R., Seidman, D.N., Stephan, T.: Atom-probe analysis of nanodiamonds from allende. Meteoritics Planet. Sci. in press (2013)Google Scholar
  38. 38.
    Lewis, R.S., Anders, E., Draine, B.T.: Properties, detectability and origin of interstellar diamonds in meteorites. Nature 339, 117–121 (1989)CrossRefGoogle Scholar
  39. 39.
    Coplen, T.B., Bohlke, J.K., De Bievre, P., Ding, T., Holden, N.E., Hopple, J.A., Krouse, H.R., Lamberty, A., Peiser, H.S., Revesz, K., Rieder, S.E., Rosman, K.J.R., Roth, E., Taylor, P.D.P., Vocke, R.D., Xiao, Y.K.: Isotope-abundance variations of selected elements—(IUPAC Technical Report). Pure Appl. Chem. 74, 1987–2017 (2002)CrossRefGoogle Scholar
  40. 40.
    Kirchhofer, R., Diercks, D.R., Gorman, B.P., Brennecka, G.: Atomic scale composition profiling of ferroelectrics via laser-pulsed atom probe tomography and cross-correlative transmission electron microscopy. Microsc. Microanal. 19(s2), 908–981 (2013)Google Scholar
  41. 41.
    Kelly, T., Larson, D.J.: Local electrode atom probes. Mat. Char. 44(1–2), 59–85 (2000)CrossRefGoogle Scholar
  42. 42.
    Kelly, T.F., Gribb, T.T., Olson, J.D., Martens, R.L., Shepard, J.D., Wiener, S.A., Kunicki, T.C., Ulfig, R.M., Lenz, D., Strennen, E.M., Oltman, E., Bunton, J.H., Strait, D.R.: First data from a commercial local electrode atom probe (LEAP). Microsc. Microanal. 10, 373–383 (2004)CrossRefGoogle Scholar
  43. 43.
    Moore, J.S., Jones, K.S., Kennel, H., Corcoran, S.: 3-D Analysis of semiconductor dopant distributions in a patterned structure using LEAP. Ultramicroscopy 108, 536–539 (2008)CrossRefGoogle Scholar
  44. 44.
    Inoue, K., Yano, F., Nishida, A., Tsunomura, T., Toyama, T., Nagai, Y., Hasegawa, M.: Monolayer segregation of As atoms at the interface between gate-oxide and Si substrate in a p-MOSFET by 3D atom-probe technique. Appl. Phys. Lett. 92, 103506/103501–103503 (2008)Google Scholar
  45. 45.
    Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y., Hasegawa, M.: Dopant distribution in gate electrode of n- and p-type metal-oxidesemiconductor field effect transistor by laser-assisted atom probe. Appl. Phys. Lett. 95, 043502 (2009)CrossRefGoogle Scholar
  46. 46.
    Inoue, K., Yano, F., Nishida, A., Takamizawa, H., Tsunomura, T., Nagai, Y., Hasegawa, M.: Dopant distributions in n-MOSFET structure observed by three dimensional atom probe microscopy. Ultramicroscopy 109(12), 1479–1484 (2009)CrossRefGoogle Scholar
  47. 47.
    Lauhon, L.J., Adusumilli, P., Ronsheim, P., Flaitz, P.L., Lawrence, D.: Atom-probe tomography of semiconductor materials and device structures. MRS Bull. 34(10), 738–743 (2009)CrossRefGoogle Scholar
  48. 48.
    Kambham, A.K., Mody, J., Gilbert, M., Koelling, S., Vandervorst, W.: Atom-probe for FinFET dopant characterization. Ultramicroscopy 111(6), 535–539 (2011)CrossRefGoogle Scholar
  49. 49.
    Larson, D.J., Lawrence, D., Olson, D., Prosa, T.J., Reinhard, D.A., Ulfig, R.M., Clifton, P.H., Bunton, J.H., Lenz, D., Olson, J.D., Renaud, L., Martin, I., Kelly, T.F.: Prospects for atom probe tomography of commercial semiconductor devices. Microsc. Microanal. 17(S2), 752–753 (2011)CrossRefGoogle Scholar
  50. 50.
    Larson, D.J., Prosa, T.J., Lawrence, D., Geiser, B.P., Jones, C.M., Kelly, T.F.: Atom probe tomography for microelectronics. In: Haight, R., Ross, F., Hannon, J. (eds.) Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, vol. 2, pp. 407–477. World Scientific Publishing, London (2011)CrossRefGoogle Scholar
  51. 51.
    Larson, D.J., Lawrence, D., Lefebvre, W., Olson, D., Prosa, T.J., Reinhard, D.A., Ulfig, R.M., Clifton, P.H., Bunton, J.H., Lenz, D., Renaud, L., Martin, I., Kelly, T.F.: Toward atom probe tomography of microelectronic devices. J. Phys. 326, 012030 (2011)Google Scholar
  52. 52.
    Panciera, F., Hoummada, K., Gregoire, M., Juhel, M., Bicais, N., Mangelinck, D.: Three dimensional distributions of arsenic and platinum within NiSi contact and gate of an n-type transistor. Appl. Phys. Lett. 99(5), 051911–1 (2011). doi:  05191110.1063/1.3616150 Google Scholar
  53. 53.
    Larson, D.J., Lawrence, D., Olson, D., Prosa, T.J., Ulfig, R.M., Reinhard, D.A., Clifton, P.C., Kelly, T.F., Lefebvre, W.: From the store shelf to device-level atom probe analysis: an exercise in feasibility. In: 36th International Symposium for Testing and Failuer Analysis, San Jose, CA, pp. 189–197. ASM International (2011)Google Scholar
  54. 54.
    Gilbert, M., Vandervorst, W., Koelling, S., Kambham, A.K.: Atom probe analysis of a 3D finFET with high-k metal gate. Ultramicroscopy 111, 530–534 (2011)CrossRefGoogle Scholar
  55. 55.
    Takamizawa, H., Shimizu, Y., Inoue, K., Toyama, T., Okada, N., Kato, M., Uchida, H., Yano, F., Nishida, A., Mogami, T., Nagai, Y.: Origin of characteristic variability in MOSFET revealed by three-dimensional atom imaging. Appl. Phys. Lett. 100, 253504/253501–253503 (2012)Google Scholar
  56. 56.
    Shimizu, Y., Kawamura, Y., Uematsu, M., Itoh, K.M., Tomita, M., Sasaki, M., Uchida, H., Takahashi, M.: Atom probe microscopy of three-dimensional distribution of silicon isotopes in 28Si/30Si isotope superlattices with sub-nanometer spatial resolution. J. Appl. Phys. 106, 076102 (2009)CrossRefGoogle Scholar
  57. 57.
    Shimizu, Y., Kawamura, Y., Uematsu, M., Tomita, M., Kinno, T., Okada, N., Kato, M., Uchida, H., Takahashi, M., Ito, H., Ishikawa, H., Ohji, Y., Takamizawa, H., Nagai, Y., Itoh, K.M.: Depth and lateral resolution of laser-assisted atom probe microscopy of silicon revealed by isotopic heterostructures. J. Appl. Phys. 109, 036102/036101–036103 (2011)Google Scholar
  58. 58.
    Shimizu, Y., Takamizawa, H., Kawamura, Y., Uematsu, M., Toyama, T., Inoue, K., Haller, E.E., Itoh, K.M., Nagai, Y.: Atomic-scale characterization of germanium isotopic multilayers by atom probe tomography. J. Appl. Phys. 113, 3 (2013). doi: 10.1063/1.4773675 Google Scholar
  59. 59.
    Moutanabbir, O., Isheim, D., Seidman, D.N., Kawamura, Y., Itoh, K.M.: Ultraviolet-laser atom-probe tomographic three-dimensional atom-by-atom mapping of isotopically modulated Si nanoscopic layers. Appl. Phys. Lett. 98, 013111/013111–010113/013113 (2011)Google Scholar
  60. 60.
    Perea, D.E., Lensch, J.L., May, S.J., Wessels, B.W., Lauhon, L.J.: Composition analysis of single semiconductor nanowires using pulsed-laser atom probe tomography. Appl. Phys. A 85(3), 271–275 (2006)CrossRefGoogle Scholar
  61. 61.
    Canham, L.: Gaining light from silicon. Nature 408, 411–412 (2000)CrossRefGoogle Scholar
  62. 62.
    Gnaser, H.: Atom probe tomography of Si nanocrystals embedded in silicon oxide. Paper presented at the SiSS-15, Seikei University, TokyoGoogle Scholar
  63. 63.
    Roussel, M., Talbot, E., Gourbilleau, F., Pareige, P.: Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography. Nanoscale Res. Lett. 6, 164 (2011)CrossRefGoogle Scholar
  64. 64.
    Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Stokes, D.J., Clifton, P.H., Cerezo, A.: Three dimensional atom probe studies of an InxGa1−xN/GaN multiple quantum well structure: assessment of possible indium clustering. Appl. Phys. Lett. 90, 061903–1 (2007)Google Scholar
  65. 65.
    Gorman, B.P., Norman, A.G., Yan, Y.: Atom probe analysis of III–V and Si-based semiconductor photovoltaic structures. Microsc. Microanal. 13, 493–502 (2007)CrossRefGoogle Scholar
  66. 66.
    Galtrey, M.J., Oliver, R.A., Kappers, M.J., McAleese, C., Zhu, D., Humphreys, C.J., Clifton, P.H., Larson, D.J., Cerezo, A.: Compositional inhomogeneity of a high-efficiency InxGa1−xN based multiple quantum well ultraviolet emitter studied by three dimensional atom probe. Appl. Phys. Lett. 92, 041904 (2008)CrossRefGoogle Scholar
  67. 67.
    Galtrey, M.J., Oliver, R.A., Kappers, M.J., Humphreys, C.J., Clifton, P.H., Larson, D.J., Saxey, D.W., Cerezo, A.: Three-dimensional atom probe analysis of green- and blue-emitting InxGa1−xN/GaN multiple quantum well structures. J. Appl. Phys. 104, 013524 (2008)CrossRefGoogle Scholar
  68. 68.
    Galtrey, M.J., Oliver, R.A., Kappers, M.J., McAleese, C., Zhu, D., Humphreys, C.J., Clifton, P.H., Larson, D.J., Cerezo, A.: Atom probe reveals the structure of InxGa1–xN based quantum wells in three dimensions. Phys. Stat. Sol. B 245, 861–867 (2008)CrossRefGoogle Scholar
  69. 69.
    Müller, M., Cerezo, A., Smith, G.D.W., Chang, L., Gerstl, S.S.A.: Atomic scale characterization of buried InxGa1−xAs quantum dots using pulsed laser atom probe tomography. Appl. Phys. Lett. 92, 233115 (2008)CrossRefGoogle Scholar
  70. 70.
    Kodzuka, M., Ohkubo, T., Hono, K., Matsukura, F., Ohno, H.: 3DAP analysis of (Ga, Mn)As diluted magnetic semiconductor thin film. Ultramicroscopy 109(5), 644–648 (2009)CrossRefGoogle Scholar
  71. 71.
    Prosa, T.J., Clifton, P.H., Zhong, H., Tyagi, A., Shivaraman, R., DenBaars, S.P., Nakamura, S., Speck, J.S.: Atom probe analysis of interfacial abruptness and clustering within a single In(x)Ga(1−x)N quantum well device on semipolar (10–1–1) GaN substrate. Appl. Phys. Lett. 98(19), 191903–191905 (2011). doi: 19190310.1063/1.3589370 CrossRefGoogle Scholar
  72. 72.
    Tomiya, S., Kanitani, Y., Tanaka, S., Ohkubo, T., Hono, K.: Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits. Appl. Phys. Lett. 98(18), 181904 (2011). doi: 10.1063/1.3585118 CrossRefGoogle Scholar
  73. 73.
    Bennett, S.E., Saxey, D.W., Kappers, M.J., Barnard, J.S., Humphreys, C.J., Smith, G.D.W., Oliver, R.A.: Atom probe tomography assessment of the impact of electron beam exposure on In(x)Ga(1−x)N/GaN quantum wells. Appl. Phys. Lett. 99(2), 021906–1 (2011). doi:  02190610.1063/1.3610468 Google Scholar
  74. 74.
    Tomiya, S., Kanitani, Y., Tanaka, S., Ohkubo, T., Hono, K.: Atomic scale characterization of GaInN/GaN multiple quantum wells in V-shaped pits. Appl. Phys. Lett. 98(18), 181904–1 (2011) doi:  18190410.1063/1.3585118 Google Scholar
  75. 75.
    Agrawal, R., Bernal, R.A., Isheim, D., Espinosa, H.D.: Characterizing atomic composition and dopant distribution in wide band gap semiconductor nanowires using laser-assisted atom probe tomography. J. Phys. Chem. C 115(36), 17688–17694 (2011). doi: 10.1021/jp2047823 CrossRefGoogle Scholar
  76. 76.
    Bennett, S.E., Clifton, P.H., Ulfig, R.M., Kappers, M.J., Barnard, J.S., Humphreys, C.J., Oliver, R.A.: Mg dopant distribution in an AlGaN/GaN p-type superlattice assessed using atom probe tomography, TEM and SIMS. In: Walther, T., Nellist, P.D., Hutchison, J.L., Cullis, A.G. (eds.) 16th International Conference on Microscopy of Semiconducting Materials, vol. 209. J. Phys. Conf. Ser. (2010)Google Scholar
  77. 77.
    Holzworth, M.R., Rudawski, N.G., Pearton, S.J., Jones, K.S., Lu, L., Kang, T.S., Ren, F., Johnson, J.W.: Characterization of the gate oxide of an AlGaN/GaN high electron mobility transistor. Appl. Phys. Lett. 98(12), 122103 (2011). doi: 12210310.1063/1.3569715 CrossRefGoogle Scholar
  78. 78.
    Bennett, S.E., Smeeton, T.M., Saxey, D.W., Smith, G.D.W., Hooper, S.E., Heffernan, J., Humphreys, C.J., Oliver, R.A.: Atom probe tomography characterisation of a laser diode structure grown by molecular beam epitaxy. J. Appl. Phys. 111, 053508 (2012)CrossRefGoogle Scholar
  79. 79.
    Giddings, A.D., Keizer, J.G., Hara, M., Hamhuis, G.J., Yuasa, H., Fukuzawa, H., Koenraad, P.M.: Composition profiling of InAs quantum dots and wetting layers by atom probe tomography and cross-sectional scanning tunneling microscopy. Phys. Rev. B 83, 205308 (2011)CrossRefGoogle Scholar
  80. 80.
    Ali, S., Cooley, L.D., McCammon, D., Nelms, K.L., Peck, J., Prober, D., Swetz, D., Timbie, P.T., Weide, D.V.D.: Planar antenna-coupled transition-edge hot electron microbolometer. IEEE Trans. Appl. Supercond. 13(2), 184–187 (2003)CrossRefGoogle Scholar
  81. 81.
    Miller, M.K., Cerezo, A., Hetherington, M.G., Smith, G.D.W.: Atom Probe Field Ion Microscopy. Oxford University Press, Oxford (1996)Google Scholar
  82. 82.
    Thompson, K., Lawrence, D.J., Larson, D.J., Olson, J.D., Kelly, T.F., Gorman, B.: In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131–139 (2007)CrossRefGoogle Scholar
  83. 83.
    Miller, M.K., Russell, K.F., Thompson, K., Alvis, R., Larson, D.J.: Review of atom probe FIB-based specimen preparation methods. Microsc. Microanal. 13, 428–436 (2007)CrossRefGoogle Scholar
  84. 84.
    Larson, D.J., Prosa, T., Olson, D., Lefebvre, W., Lawrence, D., Clifton, P.H., Kelly, T.F.: Atom probe tomography of a commercial light emitting diode. In: 18th International Conference on Microscopy of Semiconducting Materials. J. Phys.: Inst. Phys. Conf. Ser. in press (2013)Google Scholar
  85. 85.
    Choi, P.-P., Cojocaru-Mirédin, O., Abou-Ras, D., Caballero, R., Raabe, D., Smentkowski, V.S., Park, C.G., Gu, G.H., Mazumder, B., Wong, M.H., Hu, Y.-L., Melo, T.P., Speck, J.S.: Atom probe tomography of compound semiconductors for photovoltaic and light-emitting device applications. Microsc. Today 20(3), 18–24 (2012). doi: 10.1017/S1551929512000235 CrossRefGoogle Scholar
  86. 86.
    Larson, D.J., Smentkowski, V.S., Reinhard, D.A., Prosa, T.J., Olson, D., Lawrence, D., Clifton, P.H., Ulfig, R.M., Kelly, T.F.: Atom probe tomography analysis of grain boundaries in CdTe. Microsc. Microanal. 18(S2), 928–929 (2012)CrossRefGoogle Scholar
  87. 87.
    Paudel, N.R., Kwon, D., Young, M., Wieland, K.A., Asher, S., Compaan, A.D.: In: 35th IEEE PVSC, pp. 1009–1013. (2010)Google Scholar
  88. 88.
    Cojocaru-Miredin, O., Choi, P., Wuerz, R., Raabe, D.: Atomic-scale characterization of the CdS/CuInSe2 interface in thin-film solar cells. Appl. Phys. Lett. 98, 103504/103501–103503 (2011)Google Scholar
  89. 89.
    Cojocaru-Mirédin, O., Choi, P., Wuerz, R., Raabe, D.: Atomic-scale distribution of impurities in CuInSe2-based thin-film solar cells. Ultramicroscopy 111(6), 552–556 (2011). doi: 10.1016/j.ultramic.2010.12.034 CrossRefGoogle Scholar
  90. 90.
    Ditto, J.J.: Devices and methods for cryo lift-out with in situ probe. U.S. Patent Application Patent 13/570,127, Accessed 14 Feb 2013Google Scholar
  91. 91.
    Kelly, T.F., Nishikawa, O., Panitz, J.A., Prosa, T.J.: Prospects for nanobiology with atom-probe tomography. MRS Bull. 34, 744–749 (2009)CrossRefGoogle Scholar
  92. 92.
    Gault, B., Yang, W., Ratinac, K.R., Zheng, R., Braet, F., Ringer, S.P.: Investigation of self-assembled monolayer by atom probe microscopy. Microsc. Microanal. 15(S2), 272–273 (2009)CrossRefGoogle Scholar
  93. 93.
    Prosa, T.J., Kostrna, S.L.P., Kelly, T.F.: Laser atom probe tomography: application to polymers. 50th International Field Emission Symposium, pp. 533–534. (2006)Google Scholar
  94. 94.
    Zhang, Y., Hillier, A.C.: Three-dimensional atom probe tomography of oxide, anion, and alkanethiolate coatings on gold. Anal. Chem. 82(14), 6139–6147 (2010). doi: 10.1021/ac1009035 CrossRefGoogle Scholar
  95. 95.
    Prosa, T.J., Kostrna Keeney, S., Kelly, T.F.: Atom probe tomography analysis of poly(3-alkylthiophene)s. J. Microsc. 237, 155 (2010)CrossRefGoogle Scholar
  96. 96.
    Li, H.C., Rao, K.K., Jeng, J.Y., Hsiao, Y.J., Guo, T.F., Jeng, Y.R., Wen, T.C.: Nano-scale mechanical properties of polymer/fullerene bulk hetero-junction films and their influence on photovoltaic cells. Sol. Energy Mater. Sol. Cells 95(11), 2976–2980 (2011). doi: 10.1016/j.solmat.2011.05.039 CrossRefGoogle Scholar
  97. 97.
    Joester, D., Hillier, A.C., Zhang, Y., Prosa, T.J.: Organic materials and organic/inorganic heterostructures in atom probe tomography. Microsc. Today 20, 26–31 (2012)CrossRefGoogle Scholar
  98. 98.
    Gordon, L.M., Joester, D.: Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature 469, 194–198 (2011)CrossRefGoogle Scholar
  99. 99.
    Panitz, J.A., Giaver, I.: Ferritin deposition on field-emitter tips. Ultramicroscopy 6, 3–6 (1981)CrossRefGoogle Scholar
  100. 100.
    Panitz, J.A.: Point-projection imaging of unstained ferritin clusters. Ultramicroscopy 7, 241–248 (1982)CrossRefGoogle Scholar
  101. 101.
    Panitz, J.A.: Biomolecular deposition on multiple field-emitter tips. Rev. Sci. Instrum. 56(4), 572–574 (1985)CrossRefGoogle Scholar
  102. 102.
    Greene, M.E., Kelly, T.F., Larson, D.J., Prosa, T.J.: Focused ion beam fabrication of solidified ferritin into nanoscale volumes for compositional analysis using time-of-flight mass spectrometry methods. J. Microsc. 247(3), 288–299 (2012). doi: 10.1111/j.1365-2818.2012.03644.x CrossRefGoogle Scholar
  103. 103.
    Gordon, L.M., Joester, D.: Towards atom probe tomography of hybrid organic–inorganic nanoparticles. Microsc. Microanal. 19(S2) 952–952 (2013)Google Scholar
  104. 104.
    Andren, H.O., Mattsson, L., Rolander, U.: Atom-probe analysis of zircaloy. J. Phys. 47(C-2), 191–196 (1986). doi: 10.1051/jphyscol:1986228 Google Scholar
  105. 105.
    Sano, N., Takeda, K.: Atom probe analysis of Sn in Zr-based alloys. J. Nucl. Mater. 252(1–2), 63–70 (1998). doi: 10.1016/s0022-3115(97)00302-4 CrossRefGoogle Scholar
  106. 106.
    Hudson, D., Cerezo, A., Smith, G.D.W.: Zirconium oxidation on the atomic scale. Ultramicroscopy 109(5), 667–671 (2009). doi: 10.1016/j.ultramic.2008.10.020 CrossRefGoogle Scholar
  107. 107.
    Hudson, D., Smith, G.D.W.: Initial observation of grain boundary solute segregation in a zirconium alloy (ZIRLO) by three-dimensional atom probe. Scr. Mater. 61(4), 411–414 (2009). doi: 10.1016/j.scriptamat.2009.04.032 CrossRefGoogle Scholar
  108. 108.
    Hudson, D., Smith, G.D.W., Gault, B.: Optimisation of mass ranging for atom probe microanalysis and application to the corrosion processes in Zr alloys. Ultramicroscopy 111(6), 480–486 (2011). doi: 10.1016/j.ultramic.2010.11.007 CrossRefGoogle Scholar
  109. 109.
    Thuvander, M., Andren, H.O.: Methods of quantitative matrix analysis of Zircaloy-2. Ultramicroscopy 111(6), 711–714 (2011). doi: 10.1016/j.ultramic.2010.12.008 CrossRefGoogle Scholar
  110. 110.
    Sundell, G., Thuvander, M., Andrén, H.O.: Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2. Corrosion Sci. 65(0), 10–12 (2012). doi:
  111. 111.
    Sundell, G., Thuvander, M., Andren, H.O.: Enrichment of Fe and Ni at metal and oxide grain boundaries in corroded Zircaloy-2. Corros. Sci. 65, 10–12 (2012). doi: 10.1016/j.corsci.2012.08.061 CrossRefGoogle Scholar
  112. 112.
    Cockeram, B.V., Leonard, K.J., Snead, L.L., Miller, M.K.: The use of a laser-assisted Local Electrode Atom Probe and TEM to examine the microstructure of Zircaloy and precipitate structure following low dose neutron irradiation at nominally 358 °C. J. Nucl. Mater. 433(1–3), 460–478 (2013). doi: 10.1016/j.jnucmat.2012.10.006 CrossRefGoogle Scholar
  113. 113.
    Colinge, J.-P. (ed.): FinFET and Other Multi-Gate Transistors. Springer, New York (2008)Google Scholar
  114. 114.
    Markoff, J.: To Enhance Chip Speed, Intel Enters 3rd Dimension. New York Times, New York (2011)Google Scholar
  115. 115.
    Marquis, E.A., Geiser, B.P., Prosa, T.J., Larson, D.J.: Evolution of tip shape during field evaporation of complex multilayer structures. J. Microsc. 241(3), 225–233 (2011)CrossRefGoogle Scholar
  116. 116.
    Larson, D.J., Geiser, B.P., Prosa, T.J., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F.: Improvements in planar feature reconstructions in atom probe tomography. J. Microsc. 243, 15 (2011)CrossRefGoogle Scholar
  117. 117.
    Gault, B., Haley, D., de Gueser, F., Moody, M.P., Marquis, E.A., Larson, D.J., Geiser, B.P.: Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448–457 (2011)CrossRefGoogle Scholar
  118. 118.
    Larson, D.J., Geiser, B.P., Prosa, T.J., Kelly, T.F.: On the use of simulated field-evaporated specimen apex shapes in atom probe tomography data reconstruction. Microsc. Microanal. 18(5), 953–963 (2012)CrossRefGoogle Scholar
  119. 119.
    Vandervorst, W., Jurczak, M., Everaert, J., Pawlak, B.J., Duffy, R., Del-Agua-Bomiquel, J., Poon, T.: J. Vac. Sci. Technol. B 26, 396 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • David J. Larson
    • 1
  • Ty J. Prosa
    • 1
  • Robert M. Ulfig
    • 1
  • Brian P. Geiser
    • 1
  • Thomas F. Kelly
    • 1
  1. 1.CAMECA Instruments, Inc.MadisonUSA

Personalised recommendations