Skip to main content

Data Collection

  • Chapter
  • First Online:
Local Electrode Atom Probe Tomography

Abstract

Data collection for an atom probe tomography (APT) experiment is the process of (1) introducing an electric field on a specimen in order to initiate ion emission by field evaporation, (2) using the initial ion events to allow fine positioning of the specimen, and (3) increasing and adjusting the voltage (and thus the electric field) to obtain a steady rate of detected ion events. The details of how one can maneuver through these steps safely and efficiently are the focus of this chapter. Because a strong electric field is required to initiate field evaporation, the resulting forces create large stresses that act on the specimen, placing it in continual jeopardy of mechanical failure. Consequently, a successful atom probe experiment is a balancing act of minimizing the chance for specimen failure while at the same time extracting maximum quality from the collected data. After reading this chapter, it becomes clear that prioritize yield over data quality (one must have data before judgments can be made on its quality), but the ultimate decision on this issue rests with the user. Depending on the details of any particular experiment, the user may decide that either specimen yield or data quality takes precedence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bevington, P.R., Robinson, K.D.: Data Reduction and Error Analysis for the Physical Sciences, 3rd edn. McGraw-Hill Higher Education, New York, NY (2003)

    Google Scholar 

  2. Gault, B., Moody, M.P., Cairney, J.M., Ringer, S.P.: Atom Probe Microscopy. Springer series in materials science, vol. 160. Springer, New York, NY (2012)

    Book  Google Scholar 

  3. Miller, M.K., Smith, G.D.W.: An atom probe study of the anomalous field evaporation of alloys containing silicon. J. Vac. Sci. Tech. 19(1), 57–62 (1981)

    Article  CAS  Google Scholar 

  4. Miller, M.K., Smith, G.D.W.: Atom Probe Microanalysis: Principles and Applications to Materials Problems. Materials Research Society, Pittsburgh, NJ (1989)

    Google Scholar 

  5. Andren, H.O., Henjered, A., Norden, H.: Composition of MC precipitates in a titanium stabilized austenitic stainless-steel. J. Mater. Sci. 15(9), 2365–2368 (1980). doi:10.1007/bf00552329

    Article  CAS  Google Scholar 

  6. Thuvander, M., Weidow, J., Angseryd, J., Falk, L.K.L., Liu, F., Sonestedt, M., Stiller, K., Andren, H.O.: Quantitative atom probe analysis of carbides. Ultramicroscopy 111(6), 604–608 (2011). doi:10.1016/j.ultramic.2010.12.024

    Article  CAS  Google Scholar 

  7. Saxey, D.W.: Correlated ion analysis and the interpretation of atom probe mass spectra. Ultramicroscopy 111(6), 473–479 (2011)

    Article  CAS  Google Scholar 

  8. Tang, F., Gault, B., Ringer, S.P., Martin, P., Bendavid, A., Cairney, J.M.: Microstructural investigation of Ti–Si–N hard coatings. Scripta Mater. 63, 192–195 (2010)

    Article  CAS  Google Scholar 

  9. Yao, L., Gault, B., Cairney, J.M., Ringer, S.P.: On the multiplicity of field evaporation events in atom probe: a new dimension to the analysis of mass spectra. Phil. Mag. Lett. 90(2), 121–129 (2010)

    Article  CAS  Google Scholar 

  10. Tsong, T.T., Liou, Y.: Cluster-ion formation in pulsed-laser-stimulated field desorption of condensed materials. Phys. Rev. B 32(7), 4340–4357 (1985)

    Article  CAS  Google Scholar 

  11. Prosa, T.J., Alvis, R.A., Kelly, T.F.: Observations of cluster ions originating from non-traditional atom probe materials. Microsc. Microanal. 14(S2), 1236 (2008)

    Article  Google Scholar 

  12. Birdseye, P.J., Smith, D.A.: The electric field and the stress on a field-ion specimen. Surf. Sci. 23, 198–210 (1970)

    Article  CAS  Google Scholar 

  13. Birdseye, P.J., Smith, D.A., Smith, G.D.W.: Analogue investigations of electric field distribution and ion trajectories in the field ion microscope. J. Phys. D 7(12), 1642–1651 (1974)

    Article  Google Scholar 

  14. Eaton, H.C., Bayuzick, R.J.: Field-induced stresses in field emitters. Surf. Sci. 70, 408–426 (1978)

    Article  CAS  Google Scholar 

  15. Smith, P.J., Smith, D.A.: Preliminary calculations of the electric field and the stress on a field-ion specimen. Phil. Mag. 21, 907–912 (1970)

    Article  Google Scholar 

  16. Rendulic, K.D., Muller, E.W.: Elastic deformation of field-ion-microscope tips. J. Appl. Phys. 38(5), 2070 (1967)

    Article  CAS  Google Scholar 

  17. Bowkett, K.M., Smith, D.A.: Field-Ion Microscopy. North-Holland, Amsterdam (1970)

    Google Scholar 

  18. Moy, C.K.S., Ranzi, G., Petersen, T.C., Ringer, S.P.: Macroscopic electrical field distribution and field-induced surface stresses of needle-shaped field emitters. Ultramicroscopy 111, 397–404 (2011)

    Article  CAS  Google Scholar 

  19. Miller, M.K.: Atom Probe Tomography: Analysis at the Atomic Level. Kluwer Academic/Plenum Publishers, New York, NY (2000)

    Book  Google Scholar 

  20. Smith, D.A., Birdseye, P.J., Goringe, M.J.: Forces on dislocations in field-ion specimens; further analysis of some previous observations. Phil. Mag. 27(5), 1175–1181 (1972)

    Article  Google Scholar 

  21. Loberg, B., Norden, H., Smith, D.A.: Observation of dislocations in a tungsten grain boundary by combined electron and field-ion microscopy. Arkiv Fysik 40(38), 513–519 (1969)

    Google Scholar 

  22. Larson, D.J., Miller, M.K.: In-situ micro-twinning of TiAl in the field ion microscope. Mater. Sci. Eng. A 250(1), 72–76 (1998)

    Article  Google Scholar 

  23. Koelling, S.: Three dimensional compositional analysis of semiconductors with the atom probe. Ph.D. Thesis, Katholieke Universiteit Leuven (2011)

    Google Scholar 

  24. Nishikawa, O.: Operation of the field ion microscope with neon. J. Appl. Phys. 35(10), 2806–2812 (1964)

    Article  CAS  Google Scholar 

  25. Lawrence, D., Alvis, R., Olson, D.: Specimen preparation for cross section atom probe analysis. Microsc. Microanal. 14(S2), 1004–1005 (2008)

    Article  Google Scholar 

  26. Larson, D.J., Prosa, T.J., Lawrence, D., Geiser, B.P., Jones, C.M., Kelly, T.F.: Atom probe tomography for microelectronics. In: Haight, R., Ross, F., Hannon, J. (eds.) Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, vol. 2, pp. 407–477. World Scientific Publishing, London (2011)

    Chapter  Google Scholar 

  27. Larson, D.J., Lawrence, D., Olson, D., Prosa, T.J., Ulfig, R.M., Reinhard, D.A., Clifton, P.C., Kelly, T.F., Lefebvre, W.: From the store shelf to device-level atom probe analysis: an exercise in feasibility. In: 36th International Symposium for Testing and Failuer Analysis, San Jose, CA 2011, pp 189–197. ASM International

    Google Scholar 

  28. Prosa, T.J., Lawrence, D., Olson, D., Larson, D.J., Marquis, E.A.: Backside lift-out specimen preparation: reversing the analysis direction in atom probe tomography. Microsc. Microanal. 15(S2), 298–299 (2009)

    Article  Google Scholar 

  29. Dieter, G.E.: Mechanical Metallurgy, 3rd edn. McGraw-Hill, New York, NY (1986)

    Google Scholar 

  30. Powell, R.W., Ho, C.Y., Liley, P.E.: Thermal Conductivity of Selected Materials. In: National Standard Reference Data Series-National Bureau of Standards. U.S. Government Printing Office, Washington, DC (1966)

    Google Scholar 

  31. Kellogg, G.L.: Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J. Appl. Phys. 52(6), 5320–5326 (1981)

    Article  CAS  Google Scholar 

  32. Kellogg, G.L.: Measurement of activation energies for field evaporation of tungsten ions as a function of electric field. Phys. Rev. B 29(8), 4304–4312 (1984)

    Article  CAS  Google Scholar 

  33. Wada, M.: On the thermally activated field evaporation of surface atoms. Surf. Sci. 145, 451–465 (1984)

    Article  CAS  Google Scholar 

  34. Menand, A., Blavette, D.: Temperature dependence of iridium field evaporation rate. J. Phys. 47(C7), 17–20 (1986)

    Google Scholar 

  35. Thompson, K., Bunton, J.H., Kelly, T.F., Larson, D.J.: Characterization of ultralow-energy implants and towards the analysis of three-dimensional dopant distributions using three-dimensional atom-probe tomography. J. Vac. Sci. Technol. B 24(1), 421 (2006). doi:10.1116/1.2141621

    Article  CAS  Google Scholar 

  36. Blavette, D., Duval, P., Letellier, L., Guttmann, M.: Atomic-scale APFIM and TEM investigation of grain boundary microchemistry in astrology nickel base superalloys. Acta Mater. 44(12), 4995–5005 (1996)

    Article  CAS  Google Scholar 

  37. Tsong, T.T., Ng, Y.S., Krishnaswamy, S.V.: Quantification of atom-probe FIM data and an application to the investigation of surface segregation of alloys. Appl. Phys. Lett. 32(11), 778–780 (1978)

    Article  CAS  Google Scholar 

  38. Cerezo, A., Smith, G.D.W., Waugh, A.R.: The FIM100 - performance of a commercial atom probe system. J. Phys. C9(45), 329–335 (1984)

    Google Scholar 

  39. Menand, A., Al Kassab, T., Chambreland, S., Sarrau, J.M.: Atom-probe study of aluminum-lithium alloys. J. Phys. C6(49), 353–358 (1988)

    Google Scholar 

  40. Sha, G., Ringer, S.P.: Effect of laser pulsing on the composition measurement of an Al–Mg–Si–Cu alloy using three-dimensional atom probe. Ultramicroscopy 109(5), 580–584 (2009)

    Article  CAS  Google Scholar 

  41. Marquis, E.A., Yahya, N.A., Larson, D.J., Miller, M.K., Todd, R.I.: Probing the improbable: imaging carbon atoms in alumina. Mater. Today 13(10), 42–44 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Larson, D.J., Prosa, T.J., Ulfig, R.M., Geiser, B.P., Kelly, T.F. (2013). Data Collection. In: Local Electrode Atom Probe Tomography. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8721-0_4

Download citation

Publish with us

Policies and ethics