Nonlinear Models of DNA Dynamics

  • Andrew Rubin
  • Galina Riznichenko
Part of the Biological and Medical Physics, Biomedical Engineering book series (BIOMEDICAL)


To understand the mechanisms that mediate the activity of biological systems at the molecular and subcellular levels, it is necessary to study the physical processes involving biological macromolecules. Following this approach, application of the ideas and methods of modern nonlinear physics turns out to be especially productive. Up-to-date nonlinear DNA physics is a special field of scientific research that makes it possible to considerably promote our understanding of the laws underlying the function of this molecule of life.


Mechanical Analog Double Helix Rotational Oscillation Flat Wave Promoter Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Awrejcewich J (1996) Crystals. Their role in nature and in science. Academic, New YorkGoogle Scholar
  2. Bann C (1964) Crystals. Their role in nature and in science. Academic, New YorkGoogle Scholar
  3. Cadoni M, De Leo R, Demelio S et al (2008) Nonlinear torsional dynamics of macromolecules: from DNA to polyethylene. Int J Non Lin Mech 43:1094–1107CrossRefMATHGoogle Scholar
  4. Cadoni M, Demelio R, De Leo S et al (2010) Propagation of twist solitons in real DNA chains. J Nonlin Math Phys 17:557–569CrossRefMATHGoogle Scholar
  5. Crick FHS, Watson JD (1954) The complementary structure of deoxyribonucleic acid. Proc R Soc (London) A-223:80–96ADSCrossRefGoogle Scholar
  6. Cuenda S, Sánchez A (2004) Disorder and fluctuations in nonlinear excitations in DNA. Fluct Noise Lett 4:L491–L504CrossRefGoogle Scholar
  7. De Leo R, Demelio S (2008) Numerical analysis of solitons profiles in a composite model for DNA torsion dynamics. Int J Non Lin Mech 43:1029–1039CrossRefMATHGoogle Scholar
  8. Derks G, Gaeta G (2011) A minimal model of DNA dynamics in interaction with RNA-Polymerase. Phys D 240:1805–1817CrossRefMATHMathSciNetGoogle Scholar
  9. Englander SW, Kallenbach NR, Heeger AJ et al (1980) Nature of the open state in long polynucleotide double helices: possibility of solution excitations. Proc Natl Acad Sci USA 77:7222–7226ADSCrossRefGoogle Scholar
  10. Franklin RE, Gosting RG (1953) Molecular structure of nucleic acid. Molecular configuration of sodium thymonucleateb. Nature 171:740–741ADSCrossRefGoogle Scholar
  11. Guéron M, Kochoyan M, Leroy J-L (1987) A single mode of DNA base-pair opening drives imino proton exchange. Nature 328:89–92ADSCrossRefGoogle Scholar
  12. Krueger A, Protozanova E, Frank-Kamenetskii M (2006) Sequence-dependent base pair opening in DNA double helix. Biophys J 90:3091–3099CrossRefGoogle Scholar
  13. McCommon JA, Harvey SC (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  14. Prévost C, Takahashi M, Lavery R (2009) Deforming DNA: from physics to biology. R Chem Phys Chem 13:1399–1404Google Scholar
  15. Saeger W (1984) Principles of nucleic acid structure. Springer, BerlinCrossRefGoogle Scholar
  16. Schlick T (2002) Molecular modeling and simulation. An interdisciplinary guide. Springer, New York, second edition 2010CrossRefMATHGoogle Scholar
  17. Varnai P, Lavery R (2006) Modeling DNA deformation. In: Lankas F, Sponer J (eds) Computational studies of DNA and RNA. Springer, BerlinGoogle Scholar
  18. Wilkins MHF, Seeds WE, Stokes AR et al (1953) Helical structure of crystalline deoxypentose nucleic acid. Nature 172:759–762ADSCrossRefGoogle Scholar
  19. Yakuchevich LV (2004) Nonlinear physics of DNA. Wiley-VCH, Weinheim, first edition 1998CrossRefGoogle Scholar
  20. Yakushevich LV (2007) Theoretical physics of DNA: new ideas and tendencies in the modeling of the DNA nonlinear dynamics. EJTP 4:97–114MATHGoogle Scholar
  21. Yakushevich LV (2011) Biomechanics of DNA: rotational oscillations of bases. Comput Res Model 3(3):319–328 (Rus)Google Scholar
  22. Yakushevich LV, Krasnobaeva LA, Shapovalov AV et al (2005) One- and two-soliton solutions for DNA. Biofizika 50(3):450–455Google Scholar
  23. Yakushevich LV, Gapa S, Awrejcewicz J (2009) Mechanical analog of the DNA base pair oscillations. In: Awrejcewicz J, Kazmierczak M, Olejnik P, Mrozowski J (eds) Dynamical systems – theory and applications. Left Grupa, LodzGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Andrew Rubin
    • 1
  • Galina Riznichenko
    • 1
  1. 1.Department of BiophysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations