Skip to main content

Nonlinear Models of DNA Dynamics

  • Chapter
  • First Online:
Mathematical Biophysics

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

To understand the mechanisms that mediate the activity of biological systems at the molecular and subcellular levels, it is necessary to study the physical processes involving biological macromolecules. Following this approach, application of the ideas and methods of modern nonlinear physics turns out to be especially productive. Up-to-date nonlinear DNA physics is a special field of scientific research that makes it possible to considerably promote our understanding of the laws underlying the function of this molecule of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Awrejcewich J (1996) Crystals. Their role in nature and in science. Academic, New York

    Google Scholar 

  • Bann C (1964) Crystals. Their role in nature and in science. Academic, New York

    Google Scholar 

  • Cadoni M, De Leo R, Demelio S et al (2008) Nonlinear torsional dynamics of macromolecules: from DNA to polyethylene. Int J Non Lin Mech 43:1094–1107

    Article  MATH  Google Scholar 

  • Cadoni M, Demelio R, De Leo S et al (2010) Propagation of twist solitons in real DNA chains. J Nonlin Math Phys 17:557–569

    Article  MATH  Google Scholar 

  • Crick FHS, Watson JD (1954) The complementary structure of deoxyribonucleic acid. Proc R Soc (London) A-223:80–96

    Article  ADS  Google Scholar 

  • Cuenda S, Sánchez A (2004) Disorder and fluctuations in nonlinear excitations in DNA. Fluct Noise Lett 4:L491–L504

    Article  Google Scholar 

  • De Leo R, Demelio S (2008) Numerical analysis of solitons profiles in a composite model for DNA torsion dynamics. Int J Non Lin Mech 43:1029–1039

    Article  MATH  Google Scholar 

  • Derks G, Gaeta G (2011) A minimal model of DNA dynamics in interaction with RNA-Polymerase. Phys D 240:1805–1817

    Article  MATH  MathSciNet  Google Scholar 

  • Englander SW, Kallenbach NR, Heeger AJ et al (1980) Nature of the open state in long polynucleotide double helices: possibility of solution excitations. Proc Natl Acad Sci USA 77:7222–7226

    Article  ADS  Google Scholar 

  • Franklin RE, Gosting RG (1953) Molecular structure of nucleic acid. Molecular configuration of sodium thymonucleateb. Nature 171:740–741

    Article  ADS  Google Scholar 

  • Guéron M, Kochoyan M, Leroy J-L (1987) A single mode of DNA base-pair opening drives imino proton exchange. Nature 328:89–92

    Article  ADS  Google Scholar 

  • Krueger A, Protozanova E, Frank-Kamenetskii M (2006) Sequence-dependent base pair opening in DNA double helix. Biophys J 90:3091–3099

    Article  Google Scholar 

  • McCommon JA, Harvey SC (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Prévost C, Takahashi M, Lavery R (2009) Deforming DNA: from physics to biology. R Chem Phys Chem 13:1399–1404

    Google Scholar 

  • Saeger W (1984) Principles of nucleic acid structure. Springer, Berlin

    Book  Google Scholar 

  • Schlick T (2002) Molecular modeling and simulation. An interdisciplinary guide. Springer, New York, second edition 2010

    Book  MATH  Google Scholar 

  • Varnai P, Lavery R (2006) Modeling DNA deformation. In: Lankas F, Sponer J (eds) Computational studies of DNA and RNA. Springer, Berlin

    Google Scholar 

  • Wilkins MHF, Seeds WE, Stokes AR et al (1953) Helical structure of crystalline deoxypentose nucleic acid. Nature 172:759–762

    Article  ADS  Google Scholar 

  • Yakuchevich LV (2004) Nonlinear physics of DNA. Wiley-VCH, Weinheim, first edition 1998

    Book  Google Scholar 

  • Yakushevich LV (2007) Theoretical physics of DNA: new ideas and tendencies in the modeling of the DNA nonlinear dynamics. EJTP 4:97–114

    MATH  Google Scholar 

  • Yakushevich LV (2011) Biomechanics of DNA: rotational oscillations of bases. Comput Res Model 3(3):319–328 (Rus)

    Google Scholar 

  • Yakushevich LV, Krasnobaeva LA, Shapovalov AV et al (2005) One- and two-soliton solutions for DNA. Biofizika 50(3):450–455

    Google Scholar 

  • Yakushevich LV, Gapa S, Awrejcewicz J (2009) Mechanical analog of the DNA base pair oscillations. In: Awrejcewicz J, Kazmierczak M, Olejnik P, Mrozowski J (eds) Dynamical systems – theory and applications. Left Grupa, Lodz

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rubin, A., Riznichenko, G. (2014). Nonlinear Models of DNA Dynamics . In: Mathematical Biophysics. Biological and Medical Physics, Biomedical Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4614-8702-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8702-9_8

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4614-8701-2

  • Online ISBN: 978-1-4614-8702-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics