Advertisement

Steiner Trees

  • Ignacio M. Pelayo
Chapter
Part of the SpringerBriefs in Mathematics book series (BRIEFSMATH)

Abstract

For a nonempty set W of vertices in a graph G, a connected subgraph of G with the minimum number of edges that contains all of W clearly must be a tree; such a tree is called a Steiner W-tree. The Steiner distance d(W) of W is the size of a Steiner W-tree [56].

Keywords

Convex Hull Differential Geometry Real Line Connected Graph Closed Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Anand, B.S., Changat, M., Klavžar, S., Peterin, I.: Convex sets in lexicographic products of graphs. Graphs Combin. 28, 77–84 (2012)MathSciNetMATHGoogle Scholar
  2. 2.
    Aniversario, I.S., Jamil, F.P., Canoy, S.R.: The closed geodetic numbers of graphs. Util. Math. 74, 3–18 (2007)MathSciNetMATHGoogle Scholar
  3. 3.
    Araujo, J., Campos, V., Giroire, F., Nisse, N., Sampaio, L., Soares, R.: On the hull number of some graph classes. Theor. Comput. Sci. 475, 1–12 (2013)MathSciNetMATHGoogle Scholar
  4. 4.
    Artigas, D., Dantas, S., Dourado, M.C., Szwarcfiter, J.L.: Partitioning a graph into convex sets. Discrete Math. 311(17), 1968–1977 (2011)MathSciNetMATHGoogle Scholar
  5. 5.
    Artigas, D., Dantas, S., Dourado, M.C., Szwarcfiter, J.L., Yamaguchi, S.: On the contour of graphs. Discrete Appl. Math. 161(10–11), 1356–1362 (2013)MathSciNetGoogle Scholar
  6. 6.
    Atici, M.: Computational complexity of geodetic set. Int. J. Comput. Math. 79(5), 587–591 (2002)MathSciNetMATHGoogle Scholar
  7. 7.
    Atici, M.: On the edge geodetic number of a graph. Int. J. Comput. Math. 80(7), 853–861 (2003)MathSciNetMATHGoogle Scholar
  8. 8.
    Atici, M., Vince, A.: Geodesics in graphs, an extremal set problem and perfect Hash families. Graphs Combin. 18(3), 403–413 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Bandelt, H.-J., Chepoi, V.: A Helly theorem in weakly modular spaces. Discrete Math. 125, 25–39 (1996)MathSciNetGoogle Scholar
  10. 10.
    Bandelt, H.-J., Chepoi, V.: Metric graph theory and geometry: a survey. In: Goodman, J.E., Pach, J., Pollack, R. (eds.) Surveys on Discrete and Computational Geometry: Twenty Years Later. Contemporary Mathematics, vol. 453, pp. 49–86. American Mathematical Society, Providence (2008)Google Scholar
  11. 11.
    Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41(2), 182–208 (1986)MathSciNetMATHGoogle Scholar
  12. 12.
    Barbosa, R.M., Coelho, E.M.M., Dourado, M.C., Rautenbach, D., Szwarcfiter, J.L.: On the Carathéodory number for the convexity of paths of order three. SIAM J. Discrete Math. 26(3), 929–939 (2012)MathSciNetMATHGoogle Scholar
  13. 13.
    Bermudo, S., Rodríguez-Velázquez, J.A., Sigarreta, J.M., Yero, I.G.: On geodetic and k-geodetic sets in graphs. Ars Combin. 96, 469–478 (2010)Google Scholar
  14. 14.
    Brandstädt, A., V.B., Spinrad, J.: Graph classes: a survey. SIAM Monographs on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)Google Scholar
  15. 15.
    Brešar, B., Gologranc, T.: On a local 3-Steiner convexity. European J. Combin. 32(8), 1222–1235 (2011)MathSciNetMATHGoogle Scholar
  16. 16.
    Brešar, B., Tepeh Horvat, A.: On the geodetic number of median graphs. Discrete Math. 308(18), 4044–4051 (2008)MathSciNetMATHGoogle Scholar
  17. 17.
    Brešar, B., Klavžar, S., Tepeh Horvat, A.: On the geodetic number and related metric sets in Cartesian product graphs. Discrete Math. 308(23), 5555–5561 (2008)MathSciNetMATHGoogle Scholar
  18. 18.
    Brešar, B., Changat, M., Mathews, J., Peterin, I., Narasimha-Shenoi, P.G., Tepeh Horvat, A.: Steiner intervals, geodesic intervals, and betweenness. Discrete Math. 309(20), 6114–6125 (2009)MathSciNetMATHGoogle Scholar
  19. 19.
    Brešar, B., Kovše, M., Tepeh Horvat, A.: Geodetic sets in graphs. In: Structural Analysis of Complex Networks, pp. 197–218. Birkhäuser/Springer, New York (2011)Google Scholar
  20. 20.
    Brešar, B., Šumenjak, T.K., Tepeh Horvat, A.: The geodetic number of the lexicographic product of graphs. Discrete Math. 311(16), 1693–1698 (2011)MathSciNetMATHGoogle Scholar
  21. 21.
    Buckley, F., Harary, F.: Distance in Graphs. Addison-Wesley, Redwood City (1990)MATHGoogle Scholar
  22. 22.
    Buckley, F., Harary, F., Quintas, L.V.: Extremal results on the geodetic number of a graph. Scientia 2A, 17–26 (1988)MathSciNetGoogle Scholar
  23. 23.
    Cáceres, J., Márquez, A., Oellermann, O.R., Puertas, M.L.: Rebuilding convex sets in graphs. Discrete Math. 297(1–3), 26–37 (2005)MathSciNetMATHGoogle Scholar
  24. 24.
    Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C.: On geodetic sets formed by boundary vertices. Discrete Math. 306(2), 188–198 (2006)MathSciNetMATHGoogle Scholar
  25. 25.
    Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C.: Geodeticity of the contour of chordal graphs. Discrete Appl. Math. 156(7), 1132–1142 (2008)MathSciNetMATHGoogle Scholar
  26. 26.
    Cáceres, J., Márquez, A., Puertas, M.L.: Steiner distance and convexity in graphs. European J. Combin. 29(3), 726–736 (2008)MathSciNetMATHGoogle Scholar
  27. 27.
    Cáceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L.: On the geodetic and the hull numbers in strong product graphs. Comput. Math. Appl. 60(11), 3020–3031 (2010)MathSciNetMATHGoogle Scholar
  28. 28.
    Cáceres, J., Oellermann, O.R., Puertas, M.L.: Minimal trees and monophonic convexity. Discuss. Math. Graph Theory 32(4), 685–704 (2012)MathSciNetGoogle Scholar
  29. 29.
    Cagaanan, G.B., Canoy, S.R.: On the hull sets and hull number of the Cartesian product of graphs. Discrete Math. 287, 141–144 (2004)MathSciNetMATHGoogle Scholar
  30. 30.
    Cagaanan, G.B., Canoy, S.R.: On the geodetic covers and geodetic bases of the composition G[K m]. Ars Combin. 79, 33–45 (2006)MathSciNetMATHGoogle Scholar
  31. 31.
    Cagaanan, G.B., Canoy, S.R.: Bounds for the geodetic number of the Cartesian product of graphs. Util. Math. 79, 91–98 (2009)MathSciNetMATHGoogle Scholar
  32. 32.
    Calder, J.R.: Some elementary properties of interval convexities. J. London Math. Soc. 3(2), 422–428 (1971)MathSciNetMATHGoogle Scholar
  33. 33.
    Canoy, S.R., Cagaanan, G.B.: On the geodesic and hull numbers of the sum of graphs. Congr. Numer. 161, 97–104 (2003)MathSciNetMATHGoogle Scholar
  34. 34.
    Canoy, S.R., Cagaanan, G.B.: On the hull number of the composition of graphs. Ars Combin. 75, 113–119 (2005)MathSciNetMATHGoogle Scholar
  35. 35.
    Canoy, S.R., Garces, I.J.L.: Convex sets under some graph operations. Graphs Combin. 18(4), 787–793 (2002)MathSciNetMATHGoogle Scholar
  36. 36.
    Canoy, S.R., Cagaanan, G.B., Gervacio, S.V.: Convexity, geodetic and hull numbers of the join of graphs. Util. Math. 71, 143–159 (2006)MathSciNetMATHGoogle Scholar
  37. 37.
    Centeno, C.C., Dantas, S., Dourado, M.C., Rautenbach, D., Szwarcfiter, J.L.: Convex partitions of graphs induced by paths of order three. Discrete Math. Theory Comput. Sci. 12(5), 175–184 (2010)MathSciNetGoogle Scholar
  38. 38.
    Chae, G.-B., Palmer, E.M., Siu, W.-C.: Geodetic number of random graphs of diameter 2. Australas. J. Combin. 26, 11–20 (2002)MathSciNetMATHGoogle Scholar
  39. 39.
    Chang, G.J., Tong, L.-D., Wang, H.-T.: Geodetic spectra of graphs. European J. Combin. 25(3), 383–391 (2004)MathSciNetMATHGoogle Scholar
  40. 40.
    Changat, M., Mathew, J.: On triangle path convexity in graphs. Discrete Math. 206, 91–95 (1999)MathSciNetMATHGoogle Scholar
  41. 41.
    Changat, M., Mathew, J.: Induced path transit function, monotone and Peano axioms. Discrete Math. 286(3), 185–194 (2004)MathSciNetMATHGoogle Scholar
  42. 42.
    Changat, M., Klavžar, S., Mulder, H.M.: The all-paths transit function of a graph. Czechoslovak Math. J. 51(2), 439–448 (2001)MathSciNetMATHGoogle Scholar
  43. 43.
    Changat, M., Mulder, H.M., Sierksma, G.: Convexities related to path properties on graphs. Discrete Math. 290(2–3), 117–131 (2005)MathSciNetMATHGoogle Scholar
  44. 44.
    Changat, M., Mathew, J., Mulder, H.M.: The induced path function, monotonicity and betweenness. Discrete Appl. Math. 158(5), 426–433 (2010)MathSciNetMATHGoogle Scholar
  45. 45.
    Changat, M., Narasimha-Shenoi, P.G., Mathews, J.: Triangle path transit functions, betweenness and pseudo-modular graphs. Discrete Math. 309(6), 1575–1583 (2009)MathSciNetMATHGoogle Scholar
  46. 46.
    Changat, M., Narasimha-Shenoi, P.G., Pelayo, I.M.: The longest path transit function of a graph and betweenness. Util. Math. 82, 111–127 (2010)MathSciNetMATHGoogle Scholar
  47. 47.
    Changat, M., Lakshmikuttyamma, A.K., Mathews, J., Peterin, I., Prasanth, N.-S., Tepeh, A.: A note on 3-Steiner intervals and betweenness. Discrete Math. 311(22), 2601–2609 (2011)MathSciNetMATHGoogle Scholar
  48. 48.
    Chartrand, G., Zhang, P.: Convex sets in graphs. Congr. Numer. 136, 19–32 (1999)MathSciNetMATHGoogle Scholar
  49. 49.
    Chartrand, G., Zhang, P.: The forcing geodetic number of a graph. Discuss. Math. Graph Theory 19, 45–58 (1999)MathSciNetMATHGoogle Scholar
  50. 50.
    Chartrand, G., Zhang, P.: The geodetic number of an oriented graph. Europ. J. Combin. 21, 181–189 (2000)MathSciNetMATHGoogle Scholar
  51. 51.
    Chartrand, G., Zhang, P.: On graphs with a unique minimum hull set. Discuss. Math. Graph Theory 21(1), 31–42 (2001)MathSciNetMATHGoogle Scholar
  52. 52.
    Chartrand, G., Zhang, P.: The forcing convexity number of a graph. Czechoslovak Math. J. 51(4), 847–858 (2001)MathSciNetMATHGoogle Scholar
  53. 53.
    Chartrand, G., Zhang, P.: The forcing hull number of a graph. J. Combin. Math. Combin. Comput. 36, 81–94 (2001)MathSciNetMATHGoogle Scholar
  54. 54.
    Chartrand, G., Zhang, P.: Extreme Geodesic Graphs. Czechoslovak Math. J. 52(4), 771–780 (2002)MathSciNetMATHGoogle Scholar
  55. 55.
    Chartrand, G., Zhang, P.: The Steiner number of a graph. Discrete Math. 242, 41–54 (2002)MathSciNetMATHGoogle Scholar
  56. 56.
    Chartrand, G., Oellermann, O.R., Tian, S., Zou, H.: Steiner distance in graphs. Časopis Pěst. Mat. 114(4), 399–410 (1989)MathSciNetMATHGoogle Scholar
  57. 57.
    Chartrand, G., Zhang, P., Harary, F.: Extremal problems in geodetic graph theory. Cong. Numer. 131, 55–66 (1998)MathSciNetMATHGoogle Scholar
  58. 58.
    Chartrand, G., Harary, F., Zhang, P.: Geodetic sets in graphs. Discuss. Math. Graph Theory 20, 129–138 (2000)MathSciNetMATHGoogle Scholar
  59. 59.
    Chartrand, G., Harary, F., Zhang, P.: On the hull number of a graph. Ars Combin. 57, 129–138 (2000)MathSciNetMATHGoogle Scholar
  60. 60.
    Chartrand, G., Harary, F., Swart, H.C., Zhang, P.: Geodomination in graphs. Bull. Inst. Combin. Appl. 31, 51–59 (2001)MathSciNetMATHGoogle Scholar
  61. 61.
    Chartrand, G., Chichisan, A., Wall, C.E., Zhang, P.: On convexity in graphs. Congr. Numer. 148, 33–41 (2001)MathSciNetMATHGoogle Scholar
  62. 62.
    Chartrand, G., Fink, J.F., Zhang, P.: Convexity in oriented graphs. Discrete Math. 116(1–2), 115–126 (2002)MathSciNetMATHGoogle Scholar
  63. 63.
    Chartrand, G., Harary, F., Zhang, P.: On the geodetic number of a graph. Networks 39, 1–6 (2002)MathSciNetMATHGoogle Scholar
  64. 64.
    Chartrand, G., Wall, C.E., Zhang, P.: The convexity number of a graph. Graphs and Combin. 18(2), 209–217 (2002)MathSciNetMATHGoogle Scholar
  65. 65.
    Chartrand, G., Palmer, E.M., Zhang, P.: The geodetic number of a graph: a survey. Congr. Numer. 156, 37–58 (2002)MathSciNetMATHGoogle Scholar
  66. 66.
    Chartrand, G., Erwin, D., Johns, G.L., Zhang, P.: Boundary vertices in graphs. Discrete Math. 263, 25–34 (2003)MathSciNetMATHGoogle Scholar
  67. 67.
    Chartrand, G., Fink, J.F., Zhang, P.: The hull number of an oriented graph. Int. J. Math. Math. Sci. 36, 2265–2275 (2003)MathSciNetGoogle Scholar
  68. 68.
    Chartrand, G., Garry, L., Zhang, P.: The detour number of a graph. Util. Math. 64, 97–113 (2003)MathSciNetMATHGoogle Scholar
  69. 69.
    Chartrand, G., Garry, L., Zhang, P.: On the detour number and geodetic number of a graph. Ars Combin. 72, 3–15 (2004)MathSciNetMATHGoogle Scholar
  70. 70.
    Chartrand, G., Escuadro, H., Zhang, P.: Detour distance in graphs. J. Combin. Math. Combin. Comput. 52, 75–94 (2005)MathSciNetGoogle Scholar
  71. 71.
    Chartrand, G., Lesniak, L., Zhang, P.: Graphs and Digraphs, 5th edn. CRC Press, Boca Raton (2011)Google Scholar
  72. 72.
    Chastand, M., Polat, N.: On geodesic structures of weakly median graphs I. Decomposition and octahedral graphs. Discrete Math. 306(13), 1272–1284 (2006)MathSciNetMATHGoogle Scholar
  73. 73.
    Chastand, M., Polat, N.: On geodesic structures of weakly median graphs II: Compactness, the role of isometric rays. Discrete Math. 306(16), 1846–1861 (2006)MathSciNetMATHGoogle Scholar
  74. 74.
    Chepoi, V.: Isometric subgraphs of Hamming graphs and d-convexity. Cyber. Syst. Anal. 24(1), 6–11 (1988)MathSciNetGoogle Scholar
  75. 75.
    Chepoi, V.: Separation of two convex sets in convexity structures. J. Geom. 50(1–2), 30–51 (1994)MathSciNetMATHGoogle Scholar
  76. 76.
    Chepoi, V.: Peakless functions on graphs. Discrete Appl. Math. 73(2), 175–189 (1997)MathSciNetMATHGoogle Scholar
  77. 77.
    Cyman, J., Lemanska, M., Raczek, J.: Graphs with convex domination number close to their order. Discuss. Math. Graph Theory 26(2), 307–316 (2006)MathSciNetMATHGoogle Scholar
  78. 78.
    Dirac, G.A.: On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)MathSciNetMATHGoogle Scholar
  79. 79.
    Dong, L., Lu, C., Wang, X.: The upper and lower geodetic numbers of graphs. Ars Combin. 91, 401–409 (2009)MathSciNetMATHGoogle Scholar
  80. 80.
    Dourado, M.C., Protti, F., Szwarcfiter, J.L.: On the complexity of the geodetic and convexity numbers of a graph. RMS Lect. Notes Ser. Math. 7, 101–108 (2008)MathSciNetGoogle Scholar
  81. 81.
    Dourado, M.C., Gimbel, J.G., Kratochvíl, J., Protti, F., Szwarcfiter, J.L.: On the computation of the hull number of a graph. Discrete Math. 309(18), 5668–5674 (2009)MathSciNetMATHGoogle Scholar
  82. 82.
    Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the hull number of triangle-free graphs. SIAM J. Discrete Math. 23(4), 2163–2172 (2009/10)Google Scholar
  83. 83.
    Dourado, M.C., Protti, F., Szwarcfiter, J.L.: Complexity results related to monophonic convexity. Discrete Appl. Math. 158(12), 1268–1274 (2010)MathSciNetMATHGoogle Scholar
  84. 84.
    Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: Some remarks on the geodetic number of a graph. Discrete Math. 310, 832–837 (2010)MathSciNetMATHGoogle Scholar
  85. 85.
    Dourado, M.C., Rautenbach, D., dos Santos, V.F., Schäfer, P.M., Szwarcfiter, J.L., Toman, A.: An upper bound on the P 3-Radon number. Discrete Math. 312(16), 2433–2437 (2012)MathSciNetMATHGoogle Scholar
  86. 86.
    Dourado, M.C., Protti, F., Rautenbach, D., Szwarcfiter, J.L.: On the convexity number of graphs. Graphs Combin. 28(3), 333–345 (2012)MathSciNetMATHGoogle Scholar
  87. 87.
    Dourado, M.C., Rautenbach, D., de Sá, V.G.P., Szwarcfiter, J.L.: On the geodetic radon number of grids. Discrete Math. 313(1), 111–121 (2013)MathSciNetMATHGoogle Scholar
  88. 88.
    Dragan, F.F., Nicolai, F., Brandstädt, A.: Convexity and HHD-free graphs. SIAM J. Discrete Math. 12, 119–135 (1999)MathSciNetMATHGoogle Scholar
  89. 89.
    Duchet, P.: Convex sets in graphs II. Minimal path convexity. J. Comb. Theory Ser. B 44(3), 307–316 (1988)MathSciNetMATHGoogle Scholar
  90. 90.
    Duchet, P.: Convexity in combinatorial structures. Rend. Circ. Mat. Palermo 14(2), 261–293 (1987)Google Scholar
  91. 91.
    Duchet, P.: Discrete convexity: retractions, morphisms and the partition problem. Proceedings of the Conference on Graph Connections, India, 1998, pp. 10–18. Allied Publishers, New Delhi (1999)Google Scholar
  92. 92.
    Duchet, P.: Radon and Helly numbers of segment spaces. Ramanujan Math. Soc. Lect. Notes Ser. 5, 57–71 (2008)MathSciNetGoogle Scholar
  93. 93.
    Duchet, P., Meyniel, H.: Convex sets in graphs I. Helly and Radon theorems for graphs and surfaces. European J. Combin. 4(2), 127–132 (1983)MathSciNetMATHGoogle Scholar
  94. 94.
    Edelman, P.H., Jamison, R.E.: The theory of convex geometries. Geometriae Dedicata 19, 247–270 (1985)MathSciNetMATHGoogle Scholar
  95. 95.
    Ekim, T., Erey, A., Heggernes, P., van‘t Hof, P., Mesiter, D.: Computing minimum geodetic sets in proper interval graphs. Lect. Notes Comput. Sci. 7256, 279–290 (2012)Google Scholar
  96. 96.
    Eroh, L., Oellermann, O.R.: Geodetic and Steiner sets in 3-Steiner distance hereditary graphs. Discrete Math. 308(18), 4212–4220 (2008)MathSciNetMATHGoogle Scholar
  97. 97.
    Escuadro, H., Gera, R., Hansberg, A., Rad, N.J., Volkmann, L.: Geodetic domination in graphs. J. Combin. Math. Combin. Comput. 77, 89–101 (2011)MathSciNetMATHGoogle Scholar
  98. 98.
    Everett, M.G., Seidman, S.B.: The hull number of a graph. Discrete Math. 57, 217–223 (1985)MathSciNetMATHGoogle Scholar
  99. 99.
    Farber, M.: Bridged graphs and geodesic convexity. Discrete Math. 66, 249–257 (1987)MathSciNetMATHGoogle Scholar
  100. 100.
    Farber, M., Jamison, R.E.: Convexity in graphs and hypergraphs. SIAM J. Alg. Disc. Math. 7(3), 433–444 (1986)MathSciNetMATHGoogle Scholar
  101. 101.
    Farber, M., Jamison, R.E.: On local convexity in graphs. Discrete Math. 66, 231–247 (1987)MathSciNetMATHGoogle Scholar
  102. 102.
    Farrugia, A.: Orientable convexity, geodetic and hull numbers in graphs. Discrete Appl. Math. 148(3), 256–262 (2005)MathSciNetMATHGoogle Scholar
  103. 103.
    Frucht, R., Harary, F.: On the corona of two graphs. Aequationes Math. 4, 322–325 (1970)MathSciNetMATHGoogle Scholar
  104. 104.
    Gimbel, J.G.: Some remarks on the convexity number of a graph. Graphs Combin. 19, 357–361 (2003)MathSciNetMATHGoogle Scholar
  105. 105.
    Goddard, W.: A note on Steiner-distance-hereditary graphs. J. Combin. Math. Combin. Comput. 40, 167–170 (2002)MathSciNetMATHGoogle Scholar
  106. 106.
    Gruber, P.M., Wills, J.M.: Handbook of Convex Geometry, (v. A-B). North-Holland, Amsterdam (1993)Google Scholar
  107. 107.
    Gutin, G., Yeo, A.: On the number of connected convex subgraphs of a connected acyclic digraph. Discrete Appl. Math. 157(7), 1660–1662 (2009)MathSciNetMATHGoogle Scholar
  108. 108.
    Hammark, R., Imrich, R., Klavžar, S.: Handbook of Product Graphs. CRC Press, Boca Raton (2011)Google Scholar
  109. 109.
    Hansberg, A., Volkmann, L.: On the geodetic and geodetic domination numbers of a graph. Discrete Math. 310(15–16), 2140–2146 (2010)MathSciNetMATHGoogle Scholar
  110. 110.
    Hansen, P., van Omme, N.: On pitfalls in computing the geodetic number of a graph. Optim. Lett. 1(3), 299–307 (2007)MathSciNetMATHGoogle Scholar
  111. 111.
    Harary, F.: Achievement and avoidance games for graphs. Ann. Discrete Math. 13(11), 111–119 (1982)Google Scholar
  112. 112.
    Harary, F., Nieminen, J.: Convexity in graphs. J. Differential Geom. 16(2), 185–190 (1981)MathSciNetMATHGoogle Scholar
  113. 113.
    Harary, F., Loukakis, E., Tsouros, C.: The geodetic number of a graph. Math. Comput. Modelling 17(11), 89–95 (1993)MathSciNetMATHGoogle Scholar
  114. 114.
    Hasegawa, Y., Saito, A.: Graphs with small boundary. Discrete Math. 307(14), 1801–1807 (2007)MathSciNetMATHGoogle Scholar
  115. 115.
    Henning, M.A., Nielsen, M.H., Oellermann, O.R.: Local Steiner convexity. European J. Combin. 30, 1186–1193 (2009)MathSciNetMATHGoogle Scholar
  116. 116.
    Hernando, C., Jiang, T., Mora, M., Pelayo, I.M., Seara, C.: On the Steiner, geodetic and hull numbers of graphs. Discrete Math. 293(1–3), 139–154 (2005)MathSciNetMATHGoogle Scholar
  117. 117.
    Hernando, C., Mora, M., Pelayo, I.M., Seara, C.: Some structural, metric and convex properties on the boundary of a graph. Electron. Notes Discrete Math. 24, 203–209 (2006)MathSciNetGoogle Scholar
  118. 118.
    Hernando, C., Mora, M., Pelayo, I.M., Seara, C.: Some structural, metric and convex properties of the boundary of a graph. Ars Combin. 109, 267–283 (2013)MathSciNetGoogle Scholar
  119. 119.
    Hernando, C., Mora, M., Pelayo, I.M., Seara, C.: On monophonic sets in graphs. Submitted.Google Scholar
  120. 120.
    Howorka, E.: A characterization of distance-hereditary graphs. Quart. J. Math. Oxford Ser. 2 28(112), 417–420 (1977)Google Scholar
  121. 121.
    Howorka, E.: A characterization of Ptolemaic graphs. J. Graph Theory 5(3), 323–331 (1981)MathSciNetMATHGoogle Scholar
  122. 122.
    Hung, J.-T., Tong, L.-D., Wang, H.-T.: The hull and geodetic numbers of orientations of graphs. Discrete Math. 309(8), 2134–2139 (2009)MathSciNetMATHGoogle Scholar
  123. 123.
    Imrich, W., Klavžar, S.: A convexity lemma and expansion procedures for bipartite graphs. European J. Combin. 19(6), 677–685 (1998)MathSciNetMATHGoogle Scholar
  124. 124.
    Isaksen, D.C., Robinson, B.: Triangle-free polyconvex graphs. Ars Combin. 64, 259–263 (2002)MathSciNetMATHGoogle Scholar
  125. 125.
    Jamil, F.P.; Aniversario, I.S., Canoy, S.R.: On closed and upper closed geodetic numbers of graphs. Ars Combin. 84, 191–203 (2007)MathSciNetMATHGoogle Scholar
  126. 126.
    Jamil, F.P.; Aniversario, I.S., Canoy, S.R.: The closed geodetic numbers of the corona and composition of graphs. Util. Math. 82, 135–153 (2010)MathSciNetMATHGoogle Scholar
  127. 127.
    Jamison, R.E.: Copoints in antimatroids. Congr. Numer. 29, 535–544 (1980)MathSciNetGoogle Scholar
  128. 128.
    Jamison, R.E.: Partition numbers for trees and ordered sets. Pacific J. Math. 96, 115–140 (1981)MathSciNetMATHGoogle Scholar
  129. 129.
    Jamison, R.E., Nowakowsky, R.: A Helly theorem for convexity in graphs. Disc. Math. 51, 35–39 (1984)MATHGoogle Scholar
  130. 130.
    Jiang, T., Pelayo, I.M., Pritikin, D.: Geodesic Convexity and Cartesian Products in Graphs. Manuscript (2004)Google Scholar
  131. 131.
    Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)Google Scholar
  132. 132.
    Kay, D.C., Womble, E.W.: Axiomatic convexity theory and relationships between the Carathéodory, Helly and Radon numbers. Pacific J. Math. 38, 471–485 (1971)MathSciNetMATHGoogle Scholar
  133. 133.
    Klee, V.: What is a convex set. Am. Math. Mon. 78, 616–631 (1971)MathSciNetMATHGoogle Scholar
  134. 134.
    Korte, B., Lovász, L.: Homomorphisms and Ramsey properties of antimatroids. Discrete Appl. Math. 15 (2–3), 283–290 (1986)MathSciNetMATHGoogle Scholar
  135. 135.
    Korte, B., Lovász, L., Schrader, R.: Gredoids. Springer, Berlin (1991)Google Scholar
  136. 136.
    Kubicka, E., Kubicki, G., Oellermann, O.R.: Steiner intervals in graphs. Discrete Appl. Math. 81(1–3), 181–190 (1998)MathSciNetMATHGoogle Scholar
  137. 137.
    Lemanska, M.: Weakly convex and convex domination numbers. Opuscula Math. 24(2), 181–188 (2004)MathSciNetMATHGoogle Scholar
  138. 138.
    Levi, F.W.: On Helly’s theorem and the axioms of convexity. J. Indian Math. Soc. 15, 65–76 (1951)MATHGoogle Scholar
  139. 139.
    Lu, C.: The geodetic numbers of graphs and digraphs. Sci. China Ser. A: Math. 50(8), 1163–1172 (2007)MATHGoogle Scholar
  140. 140.
    Malvestuto, F.M., Mezzini, M., Moscarini, M.: Characteristic properties and recognition of graphs in which geodesic and monophonic convexities are equivalent. Discrete Math. Algorithms Appl. 4(4), 1250063, pp. 14 (2012)Google Scholar
  141. 141.
    McKee, T.A., McMorris, F.R.: Topics in intersection graph theory. SIAM Monographs in Discrete Mathematics and Applications. SIAM, Philadelphia (1999)MATHGoogle Scholar
  142. 142.
    Morgana, M.A., Mulder, H.M.: The induced path convexity, betweenness, and svelte graphs. Discrete Math. 254(1–3), 349–370 (2002)MathSciNetMATHGoogle Scholar
  143. 143.
    Mulder, H.M.: The interval function of a graph. Mathematical Centre Tracts. Mathematisch Centrum, Amsterdam (1980)MATHGoogle Scholar
  144. 144.
    Mulder, H.M., Nebeský, L.: Axiomatic characterization of the interval function of a graph. European J. Combin. 30(5), 1172–1185 (2009)MathSciNetMATHGoogle Scholar
  145. 145.
    Müller, H., Brandstädt, A.: The NP-completeness of Steiner tree and dominating set for chordal bipartite graphs. Theoret. Comput. Sci. 53(2–3), 257–265 (1987)MathSciNetMATHGoogle Scholar
  146. 146.
    Muntean, R., Zhang, P.: On geodomination in graphs. Congr. Numer. 143, 161–174 (2000)MathSciNetMATHGoogle Scholar
  147. 147.
    Muntean, R., Zhang, P.: k-geodomination in graphs. Ars Combin. 63, 33–47 (2002)Google Scholar
  148. 148.
    Nebeský, L.: A characterization of the interval function of a connected graph. Czechoslovak Math. J. 44(1), 173–178 (1994)MathSciNetMATHGoogle Scholar
  149. 149.
    Nielsen, M.H., Oellermann, O.R.: Helly theorems for 3-Steiner and 3-monophonic convexity in graphs. Discrete Math. 311(10–11), 872–880 (2011)MathSciNetMATHGoogle Scholar
  150. 150.
    Nielsen, M.H., Oellermann, O.R.: Steiner trees and convex geometries. SIAM J. Discrete Math. 23(2), 680–693 (2011)MathSciNetGoogle Scholar
  151. 151.
    Oellermann, O.R., Peters-Fransen, J.: The strong metric dimension of graphs and digraphs. Discrete Appl. Math. 155, 356–364 (2007)MathSciNetMATHGoogle Scholar
  152. 152.
    Oellermann, O.R., Puertas, M.L.: Steiner intervals and Steiner geodetic numbers in distance-hereditary graphs. Discrete Math. 307(1), 88–96 (2007)MathSciNetMATHGoogle Scholar
  153. 153.
    Parker, D.B., Westhoff, R.F., Wolf, M.J.: Two-path convexity in clone-free regular multipartite tournaments. Australas. J. Combin. 36, 177–196 (2006)MathSciNetMATHGoogle Scholar
  154. 154.
    Parvathy, K.S., Vijayakumar, A.: Geodesic iteration number. Proceedings of the Conference on Graph Connections, India, 1998, pp. 91–94. Allied Publishers, New Delhi (1999)Google Scholar
  155. 155.
    Pelayo, I.M.: Comment on “The Steiner number of a graph” by G. Chartrand and P. Zhang [Discrete Math. 242, 41–54 (2002)]. Discrete Math. 280, 259–263 (2004)Google Scholar
  156. 156.
    Pelayo, I.M.: Generalizing the Krein-Milman property in graph convexity spaces: a short survey. Ramanujan Math. Soc. Lect. Notes Ser. 5, 131–142 (2008)MathSciNetGoogle Scholar
  157. 157.
    Peterin, I.: The pre-hull number and lexicographic product. Discrete Math. 312(14), 2153–2157 (2012)MathSciNetMATHGoogle Scholar
  158. 158.
    Peterin, I.: Intervals and convex sets in strong product of graphs. Graphs Combin. 29(3), 705–714 (2013)MathSciNetMATHGoogle Scholar
  159. 159.
    Polat, N.: A Helly theorem for geodesic convexity in strongly dismantlable graphs. Discrete Math. 140, 119–127 (1995)MathSciNetMATHGoogle Scholar
  160. 160.
    Polat, N.: Graphs without isometric rays and invariant subgraph properties. I. J. Graph Theory 27(2), 99–109 (1998)MathSciNetMATHGoogle Scholar
  161. 161.
    Polat, N.: On isometric subgraphs of infinite bridged graphs and geodesic convexity. Discrete Math. 244(1–3), 399–416 (2002)MathSciNetMATHGoogle Scholar
  162. 162.
    Polat, N.: On constructible graphs, locally Helly graphs, and convexity. J. Graph Theory 43(4), 280–298 (2003)MathSciNetMATHGoogle Scholar
  163. 163.
    Polat, N., Sabidussi, G.: On the geodesic pre-hull number of a graph. European J. Combin. 30(5), 1205–1220 (2009)MathSciNetMATHGoogle Scholar
  164. 164.
    Raczek, J.: NP-completeness of weakly convex and convex dominating set decision problems. Opuscula Math. 24(2), 189–196 (2004)MathSciNetMATHGoogle Scholar
  165. 165.
    Sampathkumar, E.: Convex sets in a graph. Indian J. Pure Appl. Math. 15(10), 1065–1071 (1984)MathSciNetMATHGoogle Scholar
  166. 166.
    Santhakumaran, A.P., John, J.: Edge geodetic number of a graph. J. Discrete Math. Sci. Cryptogr. 10(3), 415–432 (2007)MathSciNetMATHGoogle Scholar
  167. 167.
    Sierksma, G.: Carathéodory and Helly-numbers of convex product structures. Pacific J. Math. 61, 275–282 (1975)MathSciNetMATHGoogle Scholar
  168. 168.
    Sierksma, G.: Relationships between Carathéodory, Helly, Radon and exchange numbers of convexity spaces. Nieuw Archief voor Wisk. 25(2), 115–132 (1977)MathSciNetMATHGoogle Scholar
  169. 169.
    Soltan, V.P.: Metric convexity in graphs. Studia Univ. Babeş-Bolyai Math. 36(4), 3–43 (1991)MathSciNetMATHGoogle Scholar
  170. 170.
    Soltan, V., Chepoi, V.: Conditions for invariance of set diameter under d-convexification in a graph. Cyber. Syst. Anal. 19(6), 750–756 (1983)MathSciNetMATHGoogle Scholar
  171. 171.
    Tong, L.-D.: The forcing hull and forcing geodetic numbers of graphs. Discrete Appl. Math. 157(5), 1159–1163 (2009)MathSciNetMATHGoogle Scholar
  172. 172.
    Tong, L.-D.: Geodetic sets and Steiner sets in graphs. Discrete Math. 309(12), 4205–4207 (2009)MathSciNetMATHGoogle Scholar
  173. 173.
    Tong, L.-D.: The (a, b)-forcing geodetic graphs. Discrete Math. 309(6), 1623–1628 (2009)Google Scholar
  174. 174.
    Tong, L.-D., Yen, P.-L., Farrugia, A.: The convexity spectra of graphs. Discrete Appl. Math. 156(10), 1838–1845 (2008)MathSciNetMATHGoogle Scholar
  175. 175.
    Van de Vel, M.: Theory of Convex Structures. North-Holland, Amsterdam (1993)MATHGoogle Scholar
  176. 176.
    Wang, F.-H.: The lower and upper forcing geodetic numbers of complete n-partite graphs, n-dimensional meshes and tori. Int. J. Comput. Math. 87(12), 2677–2687 (2010)MathSciNetMATHGoogle Scholar
  177. 177.
    Wang, F.-H., Wang, Y.-L., Chang, J.-M.: The lower and upper forcing geodetic numbers of block: cactus graphs. Eur. J. Oper. Res. 175(1), 238–245 (2006)MathSciNetMATHGoogle Scholar
  178. 178.
    Ye, Y., Lu, C., Liu, Q.: The geodetic numbers of cartesian products of graphs. Math. Appl. (Wuhan) 20(1), 158–163 (2007)Google Scholar
  179. 179.
    Yen, P.-L.: A study of convexity spectra in directed graphs. Doctorate Dissertation, National Sun Yat-sen University, Taywan (2011)Google Scholar
  180. 180.
    Yero, I.G., Rodríguez-Velázquez, J.A.: Analogies between the geodetic number and the Steiner number of some classes of graphs. submittedGoogle Scholar
  181. 181.
    Zhang, P.: The upper forcing geodetic number of a graph. Ars Combin. 62, 3–15 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Ignacio M. Pelayo 2013

Authors and Affiliations

  • Ignacio M. Pelayo
    • 1
  1. 1.School of Agricultural Engineering of BarcelonaBarcelonaSpain

Personalised recommendations