Skip to main content

Angiogenesis and Functional Recovery After Traumatic Brain Injury

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

Abstract

Brain injuries caused by trauma remain a major cause of death and serious long-term disability worldwide, especially in children and young adults. However, nearly all Phase III traumatic brain injury (TBI) clinical trials have failed to provide safe and effective treatment for improving functional recovery after TBI. This review discusses recent promising preclinical and clinical data indicating that TBI promotes angiogenesis (formation of new blood vessels from preexisting endothelial cells), which couples with neurogenesis (generation of new neurons) and oligodendrogenesis (generation of new oligodendrocytes), in concert, contributing to spontaneous functional recovery. Selected cell-based and pharmacological therapies that can amplify these endogenous neurorestorative effects to enhance cognitive and neurological functional recovery after TBI are discussed. Perspectives for further investigation of angiogenesis after TBI and associated therapeutic treatments are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davis AE (2000) Mechanisms of traumatic brain injury: biomechanical, structural and cellular considerations. Crit Care Nurs Q 23:1–13

    PubMed  CAS  Google Scholar 

  2. Kwon BK, Okon E, Hillyer J et al (2011) A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J Neurotrauma 28:1545–1588

    PubMed  Google Scholar 

  3. Kwon BK, Okon EB, Plunet W et al (2011) A systematic review of directly applied biologic therapies for acute spinal cord injury. J Neurotrauma 28:1589–1610

    PubMed  Google Scholar 

  4. Xiong Y, Mahmood A, Chopp M (2010) Neurorestorative treatments for traumatic brain injury. Discov Med 10:434–442

    PubMed  Google Scholar 

  5. Hawryluk GW, Rowland J, Kwon BK et al (2008) Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 25:E14

    PubMed  Google Scholar 

  6. Narayan RK, Michel ME, Ansell B et al (2002) Clinical trials in head injury. J Neurotrauma 19:503–557

    PubMed  Google Scholar 

  7. Correale J, Villa A (2009) Cellular elements of the blood–brain barrier. Neurochem Res 34:2067–2077

    PubMed  CAS  Google Scholar 

  8. Polverini PJ (2002) Angiogenesis in health and disease: insights into basic mechanisms and therapeutic opportunities. J Dent Educ 66:962–975

    PubMed  Google Scholar 

  9. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    PubMed  CAS  Google Scholar 

  10. Carmeliet P (2000) VEGF gene therapy: stimulating angiogenesis or angioma-genesis? Nat Med 6:1102–1103

    PubMed  CAS  Google Scholar 

  11. Morgan R, Kreipke CW, Roberts G et al (2007) Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res 29:375–381

    PubMed  CAS  Google Scholar 

  12. Zhang ZG, Zhang L, Jiang Q et al (2000) VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J Clin Invest 106:829–838

    PubMed  CAS  Google Scholar 

  13. Jiang Q, Zhang ZG, Ding GL et al (2005) Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI. Neuroimage 28:698–707

    PubMed  Google Scholar 

  14. Palmer TD, Schwartz PH, Taupin P et al (2001) Cell culture. Progenitor cells from human brain after death. Nature 411:42–43

    PubMed  CAS  Google Scholar 

  15. Li L, Chopp M, Ding GL et al (2012) MRI measurement of angiogenesis and the therapeutic effect of acute marrow stromal cell administration on traumatic brain injury. J Cereb Blood Flow Metab 32:2023–2032

    PubMed  Google Scholar 

  16. Wu H, Jiang H, Lu D et al (2011) Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery 68:1363–1371, discussion 1371

    PubMed  Google Scholar 

  17. Lu D, Qu C, Goussev A et al (2007) Statins increase neurogenesis in the dentate gyrus, reduce delayed neuronal death in the hippocampal CA3 region, and improve spatial learning in rat after traumatic brain injury. J Neurotrauma 24:1132–1146

    PubMed  Google Scholar 

  18. Immonen R, Heikkinen T, Tahtivaara L et al (2010) Cerebral blood volume alterations in the perilesional areas in the rat brain after traumatic brain injury–comparison with behavioral outcome. J Cereb Blood Flow Metab 30:1318–1328

    PubMed  Google Scholar 

  19. Yancopoulos GD, Klagsbrun M, Folkman J (1998) Vasculogenesis, angiogenesis, and growth factors: ephrins enter the fray at the border. Cell 93:661–664

    PubMed  CAS  Google Scholar 

  20. Skold MK, von Gertten C, Sandberg-Nordqvist AC et al (2005) VEGF and VEGF receptor expression after experimental brain contusion in rat. J Neurotrauma 22:353–367

    PubMed  Google Scholar 

  21. Xiong Y, Zhang Y, Mahmood A et al (2011) Erythropoietin mediates neurobehavioral recovery and neurovascular remodeling following traumatic brain injury in rats by increasing expression of vascular endothelial growth factor. Transl Stroke Res 2:619–632

    PubMed  CAS  Google Scholar 

  22. Mellergard P, Sjogren F, Hillman J (2010) Release of VEGF and FGF in the extracellular space following severe subarachnoidal haemorrhage or traumatic head injury in humans. Br J Neurosurg 24:261–267

    PubMed  Google Scholar 

  23. Gong D, Zhang S, Liu L et al (2011) Dynamic changes of vascular endothelial growth factor and angiopoietin-1 in association with circulating endothelial progenitor cells after severe traumatic brain injury. J Trauma 70:1480–1484

    PubMed  CAS  Google Scholar 

  24. Lukasz A, Hellpap J, Horn R et al (2008) Circulating angiopoietin-1 and angiopoietin-2 in critically ill patients: development and clinical application of two new immunoassays. Crit Care 12:R94

    PubMed  Google Scholar 

  25. Nadar SK, Blann A, Beevers DG et al (2005) Abnormal angiopoietins 1&2, angiopoietin receptor Tie-2 and vascular endothelial growth factor levels in hypertension: relationship to target organ damage [a sub-study of the Anglo-Scandinavian Cardiac Outcomes Trial (ASCOT)]. J Intern Med 258:336–343

    PubMed  CAS  Google Scholar 

  26. Kusumanto YH, Dam WA, Hospers GA et al (2003) Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis 6:283–287

    PubMed  CAS  Google Scholar 

  27. Padberg JS, Wiesinger A, Kumpers P (2011) Platelet activation accounts for excessive angiopoietin-1 levels in patients’ sera. J Trauma 71:1480–1481

    PubMed  Google Scholar 

  28. Kumpers P, Nickel N, Lukasz A et al (2010) Circulating angiopoietins in idiopathic pulmonary arterial hypertension. Eur Heart J 31:2291–2300

    PubMed  Google Scholar 

  29. Frontczak-Baniewicz M, Walski M, Madejska G et al (2009) MMP2 and MMP9 in immature endothelial cells following surgical injury of rat cerebral cortex—a preliminary study. Folia Neuropathol 47:338–346

    PubMed  CAS  Google Scholar 

  30. Wang X, Jung J, Asahi M et al (2000) Effects of matrix metalloproteinase-9 gene knock-out on morphological and motor outcomes after traumatic brain injury. J Neurosci 20:7037–7042

    PubMed  CAS  Google Scholar 

  31. Yamaguchi M, Jadhav V, Obenaus A et al (2007) Matrix metalloproteinase inhibition attenuates brain edema in an in vivo model of surgically-induced brain injury. Neurosurgery 61:1067–1075, discussion 1075–1066

    PubMed  Google Scholar 

  32. Shigemori Y, Katayama Y, Mori T et al (2006) Matrix metalloproteinase-9 is associated with blood–brain barrier opening and brain edema formation after cortical contusion in rats. Acta Neurochir Suppl 96:130–133

    PubMed  CAS  Google Scholar 

  33. Gong D, Hao M, Liu L et al (2012) Prognostic relevance of circulating endothelial progenitor cells for severe traumatic brain injury. Brain Inj 26:291–297

    PubMed  Google Scholar 

  34. Anderson DE, Hinds MT (2012) Extracellular matrix production and regulation in micropatterned endothelial cells. Biochem Biophys Res Commun 427:159–164

    PubMed  CAS  Google Scholar 

  35. Schnaper HW, Grant DS, Stetler-Stevenson WG et al (1993) Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol 156:235–246

    PubMed  CAS  Google Scholar 

  36. Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8:491–500

    PubMed  Google Scholar 

  37. Teng H, Zhang ZG, Wang L et al (2008) Coupling of angiogenesis and neurogenesis in cultured endothelial cells and neural progenitor cells after stroke. J Cereb Blood Flow Metab 28:764–771

    PubMed  CAS  Google Scholar 

  38. Gage FH (2002) Neurogenesis in the adult brain. J Neurosci 22:612–613

    PubMed  CAS  Google Scholar 

  39. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132:645–660

    PubMed  CAS  Google Scholar 

  40. Richardson RM, Sun D, Bullock MR (2007) Neurogenesis after traumatic brain injury. Neurosurg Clin N Am 18:169–181, xi

    PubMed  Google Scholar 

  41. Sun D, Bullock MR, McGinn MJ et al (2009) Basic fibroblast growth factor-enhanced neurogenesis contributes to cognitive recovery in rats following traumatic brain injury. Exp Neurol 216:56–65

    PubMed  CAS  Google Scholar 

  42. Xiong Y, Lu D, Qu C et al (2008) Effects of erythropoietin on reducing brain damage and improving functional outcome after traumatic brain injury in mice. J Neurosurg 109:510–521

    PubMed  Google Scholar 

  43. Xiong Y, Mahmood A, Meng Y et al (2010) Delayed administration of erythropoietin reducing hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome following traumatic brain injury in rats: comparison of treatment with single and triple dose. J Neurosurg 113:598–608

    PubMed  CAS  Google Scholar 

  44. Sun D, Colello RJ, Daugherty WP et al (2005) Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma 22:95–105

    PubMed  Google Scholar 

  45. Cameron HA, Woolley CS, McEwen BS et al (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344

    PubMed  CAS  Google Scholar 

  46. Sun D, McGinn MJ, Zhou Z et al (2007) Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204:264–272

    PubMed  Google Scholar 

  47. Lok J, Gupta P, Guo S et al (2007) Cell-cell signaling in the neurovascular unit. Neurochem Res 32:2032–2045

    PubMed  CAS  Google Scholar 

  48. Guo S, Lo EH (2009) Dysfunctional cell-cell signaling in the neurovascular unit as a paradigm for central nervous system disease. Stroke 40:S4–S7

    PubMed  Google Scholar 

  49. Ohab JJ, Fleming S, Blesch A et al (2006) A neurovascular niche for neurogenesis after stroke. J Neurosci 26:13007–13016

    PubMed  CAS  Google Scholar 

  50. Zhang Y, Chopp M, Mahmood A et al (2012) Impact of inhibition of erythropoietin treatment-mediated neurogenesis in the dentate gyrus of the hippocampus on restoration of spatial learning after traumatic brain injury. Exp Neurol 235:336–344

    PubMed  CAS  Google Scholar 

  51. Meng Y, Xiong Y, Mahmood A et al (2011) Dose-dependent neurorestorative effects of delayed treatment of traumatic brain injury with recombinant human erythropoietin in rats. J Neurosurg 115:550–560

    PubMed  CAS  Google Scholar 

  52. Xiong Y, Zhang Y, Mahmood A et al (2012) Neuroprotective and neurorestorative effects of thymosin beta4 treatment initiated 6 hours after traumatic brain injury in rats. J Neurosurg 116:1081–1092

    PubMed  CAS  Google Scholar 

  53. Xiong Y, Mahmood A, Zhang Y et al (2011) Effects of posttraumatic carbamylated erythropoietin therapy on reducing lesion volume and hippocampal cell loss, enhancing angiogenesis and neurogenesis, and improving functional outcome in rats following traumatic brain injury. J Neurosurg 114:549–559

    PubMed  CAS  Google Scholar 

  54. McTigue DM, Tripathi RB (2008) The life, death, and replacement of oligodendrocytes in the adult CNS. J Neurochem 107:1–19

    PubMed  CAS  Google Scholar 

  55. Carroll WM, Jennings AR (1994) Early recruitment of oligodendrocyte precursors in CNS demyelination. Brain 117(Pt 3):563–578

    PubMed  Google Scholar 

  56. Gensert JM, Goldman JE (1997) Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19:197–203

    PubMed  CAS  Google Scholar 

  57. Xiong Y, Mahmood A, Meng Y et al (2011) Treatment of traumatic brain injury with thymosin beta(4) in rats. J Neurosurg 114:102–115

    PubMed  CAS  Google Scholar 

  58. Oshima T, Lee S, Sato A et al (2009) TNF-alpha contributes to axonal sprouting and functional recovery following traumatic brain injury. Brain Res 1290:102–110

    PubMed  CAS  Google Scholar 

  59. Abdel Baki SG, Schwab B, Haber M et al (2010) Minocycline synergizes with N-acetylcysteine and improves cognition and memory following traumatic brain injury in rats. PLoS One 5:e12490

    PubMed  Google Scholar 

  60. Huebner EA, Strittmatter SM (2009) Axon regeneration in the peripheral and central nervous systems. Results Probl Cell Differ 48:339–351

    PubMed  CAS  Google Scholar 

  61. Pham LD, Hayakawa K, Seo JH et al (2012) Crosstalk between oligodendrocytes and cerebral endothelium contributes to vascular remodeling after white matter injury. Glia 60:875–881

    PubMed  Google Scholar 

  62. Arai K, Lo EH (2009) An oligovascular niche: cerebral endothelial cells promote the survival and proliferation of oligodendrocyte precursor cells. J Neurosci 29:4351–4355

    PubMed  CAS  Google Scholar 

  63. Hayakawa K, Seo JH, Pham LD et al (2012) Cerebral endothelial derived vascular endothelial growth factor promotes the migration but not the proliferation of oligodendrocyte precursor cells in vitro. Neurosci Lett 513:42–46

    PubMed  CAS  Google Scholar 

  64. Wu H, Mahmood A, Qu C et al (2012) Simvastatin attenuates axonal injury after experimental traumatic brain injury and promotes neurite outgrowth of primary cortical neurons. Brain Res 1486:121–130

    PubMed  CAS  Google Scholar 

  65. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4:267–274

    PubMed  CAS  Google Scholar 

  66. Javazon EH, Colter DC, Schwarz EJ et al (2001) Rat marrow stromal cells are more sensitive to plating density and expand more rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 19:219–225

    PubMed  CAS  Google Scholar 

  67. Lennon DP, Haynesworth SE, Young RG et al (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp Cell Res 219:211–222

    PubMed  CAS  Google Scholar 

  68. Dennis JE, Merriam A, Awadallah A et al (1999) A quadripotential mesenchymal progenitor cell isolated from the marrow of an adult mouse. J Bone Miner Res 14:700–709

    PubMed  CAS  Google Scholar 

  69. Pittenger MF, Mackay AM, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    PubMed  CAS  Google Scholar 

  70. Azizi SA, Stokes D, Augelli BJ et al (1998) Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats–similarities to astrocyte grafts. Proc Natl Acad Sci U S A 95:3908–3913

    PubMed  CAS  Google Scholar 

  71. Woodbury D, Schwarz EJ, Prockop DJ et al (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    PubMed  CAS  Google Scholar 

  72. Sanchez-Ramos J, Song S, Cardozo-Pelaez F et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164:247–256

    PubMed  CAS  Google Scholar 

  73. Mahmood A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. J Neurotrauma 21:33–39

    PubMed  Google Scholar 

  74. Chen X, Katakowski M, Li Y et al (2002) Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts: growth factor production. J Neurosci Res 69:687–691

    PubMed  CAS  Google Scholar 

  75. Mahmood A, Lu D, Wang L et al (2002) Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. J Neurotrauma 19:1609–1617

    PubMed  Google Scholar 

  76. Lu D, Mahmood A, Wang L et al (2001) Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome. Neuroreport 12:559–563

    PubMed  CAS  Google Scholar 

  77. Mahmood A, Lu D, Wang L et al (2001) Treatment of traumatic brain injury in female rats with intravenous administration of bone marrow stromal cells. Neurosurgery 49:1196–1203, discussion 1203–1194

    PubMed  CAS  Google Scholar 

  78. Jiang Q, Qu C, Chopp M et al (2011) MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury. NMR Biomed 24:1119–1128

    PubMed  Google Scholar 

  79. Mahmood A, Lu D, Lu M et al (2003) Treatment of traumatic brain injury in adult rats with intravenous administration of human bone marrow stromal cells. Neurosurgery 53:697–702, discussion 702–693

    PubMed  Google Scholar 

  80. Mahmood A, Lu D, Chopp M (2004) Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 55:1185–1193

    PubMed  Google Scholar 

  81. Qu C, Xiong Y, Mahmood A et al (2009) Treatment of traumatic brain injury in mice with bone marrow stromal cell-impregnated collagen scaffolds. J Neurosurg 111:658–665

    PubMed  Google Scholar 

  82. Qu C, Mahmood A, Liu XS et al (2011) The treatment of TBI with human marrow stromal cells impregnated into collagen scaffold: functional outcome and gene expression profile. Brain Res 1371:129–139

    PubMed  CAS  Google Scholar 

  83. Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266

    PubMed  CAS  Google Scholar 

  84. Alvarez-Buylla A, Lois C (1995) Neuronal stem cells in the brain of adult vertebrates. Stem Cells 13:263–272

    PubMed  CAS  Google Scholar 

  85. Hong SQ, Zhang HT, You J et al (2011) Comparison of transdifferentiated and untransdifferentiated human umbilical mesenchymal stem cells in rats after traumatic brain injury. Neurochem Res 36:2391–2400

    PubMed  CAS  Google Scholar 

  86. Wallenquist U, Brannvall K, Clausen F et al (2009) Grafted neural progenitors migrate and form neurons after experimental traumatic brain injury. Restor Neurol Neurosci 27:323–334

    PubMed  CAS  Google Scholar 

  87. Gao J, Prough DS, McAdoo DJ et al (2006) Transplantation of primed human fetal neural stem cells improves cognitive function in rats after traumatic brain injury. Exp Neurol 201:281–292

    PubMed  CAS  Google Scholar 

  88. Boockvar JA, Schouten J, Royo N et al (2005) Experimental traumatic brain injury modulates the survival, migration, and terminal phenotype of transplanted epidermal growth factor receptor-activated neural stem cells. Neurosurgery 56:163–171, discussion 171

    PubMed  Google Scholar 

  89. Harting MT, Sloan LE, Jimenez F et al (2009) Subacute neural stem cell therapy for traumatic brain injury. J Surg Res 153:188–194

    PubMed  CAS  Google Scholar 

  90. Shear DA, Tate CC, Tate MC et al (2011) Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restor Neurol Neurosci 29:215–225

    PubMed  Google Scholar 

  91. Skardelly M, Gaber K, Burdack S et al (2011) Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J Neurotrauma 28:401–414

    PubMed  Google Scholar 

  92. Grasso G, Sfacteria A, Cerami A et al (2004) Erythropoietin as a tissue-protective cytokine in brain injury: what do we know and where do we go? Neuroscientist 10:93–98

    PubMed  CAS  Google Scholar 

  93. Wang L, Chopp M, Gregg SR et al (2008) Neural progenitor cells treated with EPO induce angiogenesis through the production of VEGF. J Cereb Blood Flow Metab 28:1361–1368

    PubMed  CAS  Google Scholar 

  94. Zhang Y, Xiong Y, Mahmood A et al (2010) Sprouting of corticospinal tract axons from the contralateral hemisphere into the denervated side of the spinal cord is associated with functional recovery in adult rat after traumatic brain injury and erythropoietin treatment. Brain Res 1353:249–257

    PubMed  CAS  Google Scholar 

  95. Xiong Y, Mahmood A, Qu C et al (2010) Erythropoietin improves histological and functional outcomes after traumatic brain injury in mice in the absence of the neural erythropoietin receptor. J Neurotrauma 27:205–215

    PubMed  Google Scholar 

  96. Mahmood A, Lu D, Qu C et al (2007) Treatment of traumatic brain injury in rats with erythropoietin and carbamylated erythropoietin. J Neurosurg 107:392–397

    PubMed  CAS  Google Scholar 

  97. Lu D, Mahmood A, Goussev A et al (2004) Atorvastatin reduction of intravascular thrombosis, increase in cerebral microvascular patency and integrity, and enhancement of spatial learning in rats subjected to traumatic brain injury. J Neurosurg 101:813–821

    PubMed  CAS  Google Scholar 

  98. Lu D, Goussev A, Chen J et al (2004) Atorvastatin reduces neurological deficit and increases synaptogenesis, angiogenesis, and neuronal survival in rats subjected to traumatic brain injury. J Neurotrauma 21:21–32

    PubMed  Google Scholar 

  99. Wang B, Sun L, Tian Y et al (2012) Effects of atorvastatin in the regulation of circulating EPCs and angiogenesis in traumatic brain injury in rats. J Neurol Sci 319:117–123

    PubMed  CAS  Google Scholar 

  100. Yarmola EG, Klimenko ES, Fujita G et al (2007) Thymosin beta4: actin regulation and more. Ann N Y Acad Sci 1112:76–85

    PubMed  CAS  Google Scholar 

  101. Malinda KM, Sidhu GS, Mani H et al (1999) Thymosin beta4 accelerates wound healing. J Invest Dermatol 113:364–368

    PubMed  CAS  Google Scholar 

  102. Huff T, Muller CS, Otto AM et al (2001) beta-Thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33:205–220

    PubMed  CAS  Google Scholar 

  103. Smart N, Dube KN, Riley PR (2013) Epicardial progenitor cells in cardiac regeneration and neovascularisation. Vascul Pharmacol 58(3):164–173. doi:10.1016/j.vph.2012.08.001

    PubMed  CAS  Google Scholar 

  104. Wei C, Kumar S, Kim IK et al (2012) Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes. PLoS One 7:e42586

    PubMed  CAS  Google Scholar 

  105. Crockford D (2007) Development of thymosin beta4 for treatment of patients with ischemic heart disease. Ann N Y Acad Sci 1112:385–395

    PubMed  CAS  Google Scholar 

  106. Qiu FY, Song XX, Zheng H et al (2009) Thymosin beta4 induces endothelial progenitor cell migration via PI3K/Akt/eNOS signal transduction pathway. J Cardiovasc Pharmacol 53:209–214

    PubMed  CAS  Google Scholar 

  107. Santra M, Chopp M, Zhang ZG et al (2012) Thymosin beta 4 mediates oligodendrocyte differentiation by upregulating p38 MAPK. Glia 60:1826–1838

    PubMed  Google Scholar 

  108. Thau-Zuchman O, Shohami E, Alexandrovich AG et al (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30:1008–1016

    PubMed  CAS  Google Scholar 

  109. Thau-Zuchman O, Shohami E, Alexandrovich AG et al (2012) Subacute treatment with vascular endothelial growth factor after traumatic brain injury increases angiogenesis and gliogenesis. Neuroscience 202:334–341

    PubMed  CAS  Google Scholar 

  110. Thau-Zuchman O, Shohami E, Alexandrovich AG et al (2012) Combination of vascular endothelial and fibroblast growth factor 2 for induction of neurogenesis and angiogenesis after traumatic brain injury. J Mol Neurosci 47:166–172

    PubMed  CAS  Google Scholar 

  111. Siddiq I, Park E, Liu E et al (2012) Treatment of traumatic brain injury using zinc-finger protein gene therapy targeting VEGF-A. J Neurotrauma 29:2647–2659

    PubMed  Google Scholar 

  112. Ma Y, Liu W, Wang Y et al (2011) VEGF protects rat cortical neurons from mechanical trauma injury induced apoptosis via the MEK/ERK pathway. Brain Res Bull 86:441–446

    PubMed  CAS  Google Scholar 

  113. Dore-Duffy P, Wang X, Mehedi A et al (2007) Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res 29:395–403

    PubMed  CAS  Google Scholar 

  114. Mizuno S, Matsumoto K, Kurosawa T et al (2000) Reciprocal balance of hepatocyte growth factor and transforming growth factor-beta 1 in renal fibrosis in mice. Kidney Int 57:937–948

    PubMed  CAS  Google Scholar 

  115. Shang J, Deguchi K, Ohta Y et al (2011) Strong neurogenesis, angiogenesis, synaptogenesis, and antifibrosis of hepatocyte growth factor in rats brain after transient middle cerebral artery occlusion. J Neurosci Res 89:86–95

    PubMed  CAS  Google Scholar 

  116. Takeuchi S, Wang W, Li Q et al (2012) Dual inhibition of Met kinase and angiogenesis to overcome HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Am J Pathol 181:1034–1043

    PubMed  CAS  Google Scholar 

  117. Cuevas P, Gimenez-Gallego G, Martinez-Murillo R et al (1991) Immunohistochemical localization of basic fibroblast growth factor in ependymal cells of the rat lateral and third ventricles. Acta Anat (Basel) 141:307–310

    CAS  Google Scholar 

  118. Takamiya M, Fujita S, Saigusa K et al (2007) Simultaneous detections of 27 cytokines during cerebral wound healing by multiplexed bead-based immunoassay for wound age estimation. J Neurotrauma 24:1833–1844

    PubMed  Google Scholar 

  119. Lee ST, Chu K, Jung KH et al (2005) Granulocyte colony-stimulating factor enhances angiogenesis after focal cerebral ischemia. Brain Res 1058:120–128

    PubMed  CAS  Google Scholar 

  120. Sharma HS, Zimmermann-Meinzingen S, Johanson CE (2010) Cerebrolysin reduces blood-cerebrospinal fluid barrier permeability change, brain pathology, and functional deficits following traumatic brain injury in the rat. Ann N Y Acad Sci 1199:125–137

    PubMed  CAS  Google Scholar 

  121. Anton Alvarez X, Fuentes P (2011) Cerebrolysin in Alzheimer’s disease. Drugs Today (Barc) 47:487–513

    CAS  Google Scholar 

  122. Zhang C, Chopp M, Cui Y et al (2010) Cerebrolysin enhances neurogenesis in the ischemic brain and improves functional outcome after stroke. J Neurosci Res 88:3275–3281

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants RO1 NS062002 (Y.X.), RO1AG037506 (M.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Chopp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zhang, Y., Xiong, Y., Mahmood, A., Zhang, Z.G., Chopp, M. (2014). Angiogenesis and Functional Recovery After Traumatic Brain Injury. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_8

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics