Skip to main content

The Effects of Intravascular Coagulation and Microthrombosis on Cerebral Perfusion After Brain Trauma

  • Chapter
  • First Online:
Book cover Vascular Mechanisms in CNS Trauma

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

  • 1433 Accesses

Abstract

Derangements in coagulation occur frequently after traumatic brain injury (TBI) and are associated with an increased risk of mortality or poor outcome. The coagulopathy after TBI is likely a variant of disseminated intravascular coagulation (DIC), composed of both hypocoagulable and hypercoagulable states with resultant hemorrhagic and thrombotic phenotypes. Much attention has been paid to the hemorrhagic phenotype of intravascular coagulation (IC) due to its association with progression of hemorrhagic injury. However, the coagulopathy after TBI also results in thrombosis, which may be responsible for compromised cerebral perfusion and thromboembolic phenomena as well as progression of injury. This chapter reviews the literature on intravascular coagulation after TBI, examines the effects of intravascular coagulation on microthrombosis, cerebral blood flow (CBF), and progression of injury, and reviews putative pathogenetic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sawada Y et al (1984) Lack of correlation between delayed traumatic intracerebral haematoma and disseminated intravascular coagulation. J Neurol Neurosurg Psychiatry 47(10):1125–1127

    PubMed  CAS  Google Scholar 

  2. Touho H et al (1986) Relationship between abnormalities of coagulation and fibrinolysis and postoperative intracranial hemorrhage in head injury. Neurosurgery 19(4):523–531

    PubMed  CAS  Google Scholar 

  3. Cortiana M et al (1986) Coagulation abnormalities in patients with head injury. J Neurosurg Sci 30(3):133–138

    PubMed  CAS  Google Scholar 

  4. Olson JD et al (1989) The incidence and significance of hemostatic abnormalities in patients with head injuries. Neurosurgery 24(6):825–832

    PubMed  CAS  Google Scholar 

  5. Stein SC et al (1992) Delayed brain injury after head trauma: significance of coagulopathy. Neurosurgery 30(2):160–165

    PubMed  CAS  Google Scholar 

  6. Sorensen JV et al (1993) Haemostatic activation in patients with head injury with and without simultaneous multiple trauma. Scand J Clin Lab Invest 53(7):659–665

    PubMed  CAS  Google Scholar 

  7. Selladurai BM et al (1997) Coagulopathy in acute head injury—a study of its role as a prognostic indicator. Br J Neurosurg 11(5):398–404

    PubMed  CAS  Google Scholar 

  8. Scherer RU, Spangenberg P (1998) Procoagulant activity in patients with isolated severe head trauma. Crit Care Med 26(1):149–156

    PubMed  CAS  Google Scholar 

  9. Piek J et al (1992) Extracranial complications of severe head injury. J Neurosurg 77(6):901–907

    PubMed  CAS  Google Scholar 

  10. Murshid WR, Gader AG (2002) The coagulopathy in acute head injury: comparison of cerebral versus peripheral measurements of haemostatic activation markers. Br J Neurosurg 16(4):362–369

    PubMed  CAS  Google Scholar 

  11. May AK et al (1997) Coagulopathy in severe closed head injury: is empiric therapy warranted? Am Surg 63(3):233–236, discussion 236–237

    PubMed  CAS  Google Scholar 

  12. Kushimoto S et al (2001) Implications of excessive fibrinolysis and alpha(2)-plasmin inhibitor deficiency in patients with severe head injury. Neurosurgery 49(5):1084–1089, discussion 1089–1090

    PubMed  CAS  Google Scholar 

  13. Jacoby RC et al (2001) Platelet activation and function after trauma. J Trauma 51(4):639–647

    PubMed  CAS  Google Scholar 

  14. Harhangi BS et al (2008) Coagulation disorders after traumatic brain injury. Acta Neurochir (Wien) 150(2):165–175, discussion 175

    CAS  Google Scholar 

  15. Gando S, Nanzaki S, Kemmotsu O (1999) Coagulofibrinolytic changes after isolated head injury are not different from those in trauma patients without head injury. J Trauma 46(6):1070–1076, discussion 1076–1077

    PubMed  CAS  Google Scholar 

  16. Lustenberger T et al (2010) Time course of coagulopathy in isolated severe traumatic brain injury. Injury 41(9):924–928

    PubMed  Google Scholar 

  17. Bredbacka S, Edner G (1994) Soluble fibrin and D-dimer as detectors of hypercoagulability in patients with isolated brain trauma. J Neurosurg Anesthesiol 6(2):75–82

    PubMed  CAS  Google Scholar 

  18. Van Beek JG et al (2007) Prognostic value of admission laboratory parameters in traumatic brain injury: results from the IMPACT study. J Neurotrauma 24(2):315–328

    PubMed  Google Scholar 

  19. Kumura E et al (1987) Coagulation disorders following acute head injury. Acta Neurochir (Wien) 85(1–2):23–28

    CAS  Google Scholar 

  20. Hulka F, Mullins RJ, Frank EH (1996) Blunt brain injury activates the coagulation process. Arch Surg 131(9):923–927, discussion 927–928

    PubMed  CAS  Google Scholar 

  21. Carrick MM et al (2005) Subsequent development of thrombocytopenia and coagulopathy in moderate and severe head injury: support for serial laboratory examination. J Trauma 58(4):725–729, discussion 729–730

    PubMed  Google Scholar 

  22. Brohi K et al (2003) Acute traumatic coagulopathy. J Trauma 54(6):1127–1130

    PubMed  Google Scholar 

  23. Tan JE et al (2004) Patients who talk and deteriorate: a new look at an old problem. Ann Acad Med Singapore 33(4):489–493

    PubMed  CAS  Google Scholar 

  24. Goodnight SH et al (1974) Defibrination after brain-tissue destruction: a serious complication of head injury. N Engl J Med 290(19):1043–1047

    PubMed  CAS  Google Scholar 

  25. McGehee WG, Rapaport SI (1968) Systemic hemostatic failure in the severely injured patient. Surg Clin North Am 48(6):1247–1256

    PubMed  CAS  Google Scholar 

  26. Druskin MS, Drijansky R (1972) Afibrinogenemia with severe head trauma. JAMA 219(6):755–756

    PubMed  CAS  Google Scholar 

  27. Levi M, de Jonge E, Meijers J (2002) The diagnosis of disseminated intravascular coagulation. Blood Rev 16(4):217–223

    PubMed  Google Scholar 

  28. Boisclair MD, Ireland H, Lane DA (1990) Assessment of hypercoagulable states by measurement of activation fragments and peptides. Blood Rev 4(1):25–40

    PubMed  CAS  Google Scholar 

  29. MacLeod JB et al (2003) Early coagulopathy predicts mortality in trauma. J Trauma 55(1):39–44

    PubMed  Google Scholar 

  30. Kunio NR et al (2012) Thrombelastography-identified coagulopathy is associated with increased morbidity and mortality after traumatic brain injury. Am J Surg 203(5):584–588

    PubMed  Google Scholar 

  31. Kaufmann H, Milkowitz K (1994) [Results of surgical treatment of Stilling-Turk-Duane retraction syndrome]. Klin Monbl Augenheilkd 204(2):90–97

    PubMed  CAS  Google Scholar 

  32. Ueda S et al (1985) Correlation between plasma fibrin-fibrinogen degradation product values and CT findings in head injury. J Neurol Neurosurg Psychiatry 48(1):58–60

    PubMed  CAS  Google Scholar 

  33. Kaufmann CR et al (1997) Usefulness of thrombelastography in assessment of trauma patient coagulation. J Trauma 42(4):716–720, discussion 720–722

    PubMed  CAS  Google Scholar 

  34. Taylor FB Jr et al (2001) Towards definition, clinical and laboratory criteria, and a scoring system for disseminated intravascular coagulation. Thromb Haemost 86(5):1327–1330

    PubMed  CAS  Google Scholar 

  35. Voves C, Wuillemin WA, Zeerleder S (2006) International Society on Thrombosis and Haemostasis score for overt disseminated intravascular coagulation predicts organ dysfunction and fatality in sepsis patients. Blood Coagul Fibrinolysis 17(6):445–451

    PubMed  CAS  Google Scholar 

  36. Sun Y et al (2011) Validating the incidence of coagulopathy and disseminated intravascular coagulation in patients with traumatic brain injury—analysis of 242 cases. Br J Neurosurg 25(3):363–368

    PubMed  Google Scholar 

  37. Osterud B, Bjorklid E (2006) Sources of tissue factor. Semin Thromb Hemost 32(1):11–23

    PubMed  Google Scholar 

  38. Lustenberger T et al (2010) Early coagulopathy after isolated severe traumatic brain injury: relationship with hypoperfusion challenged. J Trauma 69(6):1410–1414

    PubMed  Google Scholar 

  39. Halpern CH et al (2008) Traumatic coagulopathy: the effect of brain injury. J Neurotrauma 25(8):997–1001

    PubMed  Google Scholar 

  40. Cohen MJ et al (2007) Early coagulopathy after traumatic brain injury: the role of hypoperfusion and the protein C pathway. J Trauma 63(6):1254–1261, discussion 1261–1262

    PubMed  CAS  Google Scholar 

  41. Bredbacka S et al (1992) Disseminated intravascular coagulation in neurosurgical patients: diagnosis by new laboratory methods. J Neurosurg Anesthesiol 4(2):128–133

    PubMed  CAS  Google Scholar 

  42. Kuo JR, Chou TJ, Chio CC (2004) Coagulopathy as a parameter to predict the outcome in head injury patients—analysis of 61 cases. J Clin Neurosci 11(7):710–714

    PubMed  Google Scholar 

  43. Nekludov M et al (2007) Coagulation abnormalities associated with severe isolated traumatic brain injury: cerebral arterio-venous differences in coagulation and inflammatory markers. J Neurotrauma 24(1):174–180

    PubMed  Google Scholar 

  44. Kaufman HH (1984) Delayed traumatic intracerebral hematomas. Neurosurgery 14(6):784–785

    PubMed  CAS  Google Scholar 

  45. Levi M (2005) Pathogenesis and treatment of DIC. Thromb Res 115(Suppl 1):54–55

    PubMed  Google Scholar 

  46. Levi M, Ten Cate H (1999) Disseminated intravascular coagulation. N Engl J Med 341(8):586–592

    PubMed  CAS  Google Scholar 

  47. Roberts HR, Monroe DM III, Hoffman M (2004) Safety profile of recombinant factor VIIa. Semin Hematol 41(1 Suppl 1):101–108

    PubMed  CAS  Google Scholar 

  48. Stein SC, Spettell CM (1995) Delayed and progressive brain injury in children and adolescents with head trauma. Pediatr Neurosurg 23(6):299–304

    PubMed  CAS  Google Scholar 

  49. Stein SC et al (1993) Delayed and progressive brain injury in closed-head trauma: radiological demonstration. Neurosurgery 32(1):25–30, discussion 30–31

    PubMed  CAS  Google Scholar 

  50. Stein SC et al (2004) Association between intravascular microthrombosis and cerebral ischemia in traumatic brain injury. Neurosurgery 54(3):687–691, discussion 691

    PubMed  Google Scholar 

  51. Stein SC et al (2002) Intravascular coagulation: a major secondary insult in nonfatal traumatic brain injury. J Neurosurg 97(6):1373–1377

    PubMed  Google Scholar 

  52. Morales D et al (2006) Impaired fibrinolysis and traumatic brain injury in mice. J Neurotrauma 23(6):976–984

    PubMed  Google Scholar 

  53. Arvigo F et al (1985) Cerebral blood flow in minor cerebral contusion. Surg Neurol 24(2):211–217

    PubMed  CAS  Google Scholar 

  54. Dickman CA et al (1991) Continuous regional cerebral blood flow monitoring in acute craniocerebral trauma. Neurosurgery 28(3):467–472

    PubMed  CAS  Google Scholar 

  55. Hekmatpanah J, Hekmatpanah CR (1985) Microvascular alterations following cerebral contusion in rats. Light, scanning, and electron microscope study. J Neurosurg 62(6):888–897

    PubMed  CAS  Google Scholar 

  56. Graham DI, Adams JH, Doyle D (1978) Ischaemic brain damage in fatal non-missile head injuries. J Neurol Sci 39(2–3):213–234

    PubMed  CAS  Google Scholar 

  57. Graham DI et al (1989) Ischaemic brain damage is still common in fatal non-missile head injury. J Neurol Neurosurg Psychiatry 52(3):346–350

    PubMed  CAS  Google Scholar 

  58. Lafuente JV, Cervos-Navarro J (1999) Craniocerebral trauma induces hemorheological disturbances. J Neurotrauma 16(5):425–430

    PubMed  CAS  Google Scholar 

  59. van der Sande JJ, Emeis JJ, Lindeman J (1981) Intravascular coagulation: a common phenomenon in minor experimental head injury. J Neurosurg 54(1):21–25

    PubMed  Google Scholar 

  60. Maeda T et al (1997) Hemodynamic depression and microthrombosis in the peripheral areas of cortical contusion in the rat: role of platelet activating factor. Acta Neurochir Suppl 70:102–105

    PubMed  CAS  Google Scholar 

  61. Lu D et al (2004) Delayed thrombosis after traumatic brain injury in rats. J Neurotrauma 21(12):1756–1766

    PubMed  Google Scholar 

  62. Dietrich WD et al (1994) Photothrombotic infarction triggers multiple episodes of cortical spreading depression in distant brain regions. J Cereb Blood Flow Metab 14(1):20–28

    PubMed  CAS  Google Scholar 

  63. Schwarzmaier SM et al (2010) Temporal profile of thrombogenesis in the cerebral microcirculation after traumatic brain injury in mice. J Neurotrauma 27(1):121–130

    PubMed  Google Scholar 

  64. Lehr HA et al (1994) P-selectin mediates the interaction of circulating leukocytes with platelets and microvascular endothelium in response to oxidized lipoprotein in vivo. Lab Invest 71(3):380–386

    PubMed  CAS  Google Scholar 

  65. Kataoka H, Kim SW, Plesnila N (2004) Leukocyte-endothelium interactions during permanent focal cerebral ischemia in mice. J Cereb Blood Flow Metab 24(6):668–676

    PubMed  Google Scholar 

  66. Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9

    PubMed  CAS  Google Scholar 

  67. Engel DC et al (2008) Changes of cerebral blood flow during the secondary expansion of a cortical contusion assessed by 14C-iodoantipyrine autoradiography in mice using a non-invasive protocol. J Neurotrauma 25(7):739–753

    PubMed  Google Scholar 

  68. Zweckberger K et al (2006) Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma 23(7):1083–1093

    PubMed  Google Scholar 

  69. Ginsberg MD et al (1997) Uncoupling of local cerebral glucose metabolism and blood flow after acute fluid-percussion injury in rats. Am J Physiol 272(6 Pt 2):H2859–H2868

    PubMed  CAS  Google Scholar 

  70. Dietrich WD et al (1998) Posttraumatic cerebral ischemia after fluid percussion brain injury: an autoradiographic and histopathological study in rats. Neurosurgery 43(3):585–593, discussion 593–594

    PubMed  CAS  Google Scholar 

  71. Cherian L et al (1994) Lateral cortical impact injury in rats: cerebrovascular effects of varying depth of cortical deformation and impact velocity. J Neurotrauma 11(5):573–585

    PubMed  CAS  Google Scholar 

  72. Kochanek PM et al (1995) Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 12(6):1015–1025

    PubMed  CAS  Google Scholar 

  73. Bryan RM Jr, Cherian L, Robertson C (1995) Regional cerebral blood flow after controlled cortical impact injury in rats. Anesth Analg 80(4):687–695

    PubMed  Google Scholar 

  74. Plesnila N et al (2003) Relative cerebral blood flow during the secondary expansion of a cortical lesion in rats. Neurosci Lett 345(2):85–88

    PubMed  CAS  Google Scholar 

  75. Bouma GJ et al (1991) Cerebral circulation and metabolism after severe traumatic brain injury: the elusive role of ischemia. J Neurosurg 75(5):685–693

    PubMed  CAS  Google Scholar 

  76. von Oettingen G et al (2002) Blood flow and ischemia within traumatic cerebral contusions. Neurosurgery 50(4):781–788, discussion 788–790

    Google Scholar 

  77. Oertel M et al (2002) Can hyperventilation improve cerebral microcirculation in patients with high ICP? Acta Neurochir Suppl 81:71–72

    PubMed  CAS  Google Scholar 

  78. Tian HL et al (2010) D-dimer as a predictor of progressive hemorrhagic injury in patients with traumatic brain injury: analysis of 194 cases. Neurosurg Rev 33(3):359–365, discussion 365–366

    PubMed  Google Scholar 

  79. Servadei F et al (1995) Evolving brain lesions in the first 12 hours after head injury: analysis of 37 comatose patients. Neurosurgery 37(5):899–906, discussion 906–907

    PubMed  CAS  Google Scholar 

  80. Maas AI et al (2007) Prognosis and clinical trial design in traumatic brain injury: the IMPACT study. J Neurotrauma 24(2):232–238

    PubMed  Google Scholar 

  81. Leitgeb J et al (2007) Severe traumatic brain injury in Austria V: CT findings and surgical management. Wien Klin Wochenschr 119(1–2):56–63

    PubMed  Google Scholar 

  82. Siljander P et al (2001) Platelet adhesion enhances the glycoprotein VI-dependent procoagulant response: involvement of p38 MAP kinase and calpain. Arterioscler Thromb Vasc Biol 21(4):618–627

    PubMed  CAS  Google Scholar 

  83. Heemskerk JW et al (1997) Collagen but not fibrinogen surfaces induce bleb formation, exposure of phosphatidylserine, and procoagulant activity of adherent platelets: evidence for regulation by protein tyrosine kinase-dependent Ca2+ responses. Blood 90(7):2615–2625

    PubMed  CAS  Google Scholar 

  84. Dale GL, Remenyi G, Friese P (2005) Quantitation of microparticles released from coated-platelets. J Thromb Haemost 3(9):2081–2088

    PubMed  CAS  Google Scholar 

  85. Brown SB et al (2000) Constitutive death of platelets leading to scavenger receptor-mediated phagocytosis. A caspase-independent cell clearance program. J Biol Chem 275(8):5987–5996

    PubMed  CAS  Google Scholar 

  86. Fox JE et al (1990) Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. J Cell Biol 111(2):483–493

    PubMed  CAS  Google Scholar 

  87. Zhang J et al (2012) Traumatic brain injury-associated coagulopathy. J Neurotrauma 29(17):2597–2605

    PubMed  Google Scholar 

  88. Bevilacqua MP et al (1986) Regulation of the fibrinolytic system of cultured human vascular endothelium by interleukin 1. J Clin Invest 78(2):587–591

    PubMed  CAS  Google Scholar 

  89. Giesen PL et al (1999) Blood-borne tissue factor: another view of thrombosis. Proc Natl Acad Sci U S A 96(5):2311–2315

    PubMed  CAS  Google Scholar 

  90. Falati S et al (2003) Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J Exp Med 197(11):1585–1598

    PubMed  CAS  Google Scholar 

  91. Bianco F et al (2005) Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 174(11):7268–7277

    PubMed  CAS  Google Scholar 

  92. Morel N et al (2008) Generation of procoagulant microparticles in cerebrospinal fluid and peripheral blood after traumatic brain injury. J Trauma 64(3):698–704

    PubMed  Google Scholar 

  93. Aupeix K et al (1997) The significance of shed membrane particles during programmed cell death in vitro, and in vivo, in HIV-1 infection. J Clin Invest 99(7):1546–1554

    PubMed  CAS  Google Scholar 

  94. Sinauridze EI et al (2007) Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thromb Haemost 97(3):425–434

    PubMed  CAS  Google Scholar 

  95. Ruggeri ZM (2003) Von Willebrand factor. Curr Opin Hematol 10(2):142–149

    PubMed  CAS  Google Scholar 

  96. Sporn LA, Marder VJ, Wagner DD (1986) Inducible secretion of large, biologically potent von Willebrand factor multimers. Cell 46(2):185–190

    PubMed  CAS  Google Scholar 

  97. Brouland JP et al (1999) In vivo regulation of von Willebrand factor synthesis: von Willebrand factor production in endothelial cells after lung transplantation between normal pigs and von Willebrand factor-deficient pigs. Arterioscler Thromb Vasc Biol 19(12):3055–3062

    PubMed  CAS  Google Scholar 

  98. Furlan M (1996) Von Willebrand factor: molecular size and functional activity. Ann Hematol 72(6):341–348

    PubMed  CAS  Google Scholar 

  99. Tsai HM (1996) Physiologic cleavage of von Willebrand factor by a plasma protease is dependent on its conformation and requires calcium ion. Blood 87(10):4235–4244

    PubMed  CAS  Google Scholar 

  100. Levy GG et al (2001) Mutations in a member of the ADAMTS gene family cause thrombotic thrombocytopenic purpura. Nature 413(6855):488–494

    PubMed  CAS  Google Scholar 

  101. Dong JF et al (2002) ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 100(12):4033–4039

    PubMed  CAS  Google Scholar 

  102. Bernardo A et al (2005) Platelets adhered to endothelial cell-bound ultra-large von Willebrand factor strings support leukocyte tethering and rolling under high shear stress. J Thromb Haemost 3(3):562–570

    PubMed  CAS  Google Scholar 

  103. Tauchi R et al (2012) ADAMTS-13 is produced by glial cells and upregulated after spinal cord injury. Neurosci Lett 517(1):1–6

    PubMed  CAS  Google Scholar 

  104. De Oliveira CO et al (2007) Plasma von Willebrand factor levels correlate with clinical outcome of severe traumatic brain injury. J Neurotrauma 24(8):1331–1338

    PubMed  Google Scholar 

  105. Yokota H et al (2002) Cerebral endothelial injury in severe head injury: the significance of measurements of serum thrombomodulin and the von Willebrand factor. J Neurotrauma 19(9):1007–1015

    PubMed  Google Scholar 

  106. de Groot PG (2002) The role of von Willebrand factor in platelet function. Semin Thromb Hemost 28(2):133–138

    PubMed  Google Scholar 

  107. Rivera J et al (2009) Platelet receptors and signaling in the dynamics of thrombus formation. Haematologica 94(5):700–711

    PubMed  CAS  Google Scholar 

  108. Dietrich GV et al (1996) Platelet function and adrenoceptors during and after induced hypotension using nitroprusside. Anesthesiology 85(6):1334–1340

    PubMed  CAS  Google Scholar 

  109. Fang W et al (2011) Platelet activating factor induces blood brain barrier permeability alteration in vitro. J Neuroimmunol 230(1–2):42–47

    PubMed  CAS  Google Scholar 

  110. Henson PM (1970) Release of vasoactive amines from rabbit platelets induced by sensitized mononuclear leukocytes and antigen. J Exp Med 131(2):287–306

    PubMed  CAS  Google Scholar 

  111. Benveniste J, Henson PM, Cochrane CG (1972) Leukocyte-dependent histamine release from rabbit platelets. The role of IgE, basophils, and a platelet-activating factor. J Exp Med 136(6):1356–1377

    PubMed  CAS  Google Scholar 

  112. Nishida K, Markey SP (1996) Platelet-activating factor in brain regions after transient ischemia in gerbils. Stroke 27(3):514–518, discussion 518–519

    PubMed  CAS  Google Scholar 

  113. Armstead WM et al (1988) Platelet activating factor: a potent constrictor of cerebral arterioles in newborn pigs. Circ Res 62(1):1–7

    PubMed  CAS  Google Scholar 

  114. Frerichs KU et al (1990) Platelet-activating factor and progressive brain damage following focal brain injury. J Neurosurg 73(2):223–233

    PubMed  CAS  Google Scholar 

  115. Kochanek PM et al (1988) Cerebrovascular and cerebrometabolic effects of intracarotid infused platelet-activating factor in rats. J Cereb Blood Flow Metab 8(4):546–551

    PubMed  CAS  Google Scholar 

  116. Feuerstein G, Yue TL, Lysko PG (1990) Platelet-activating factor. A putative mediator in central nervous system injury? Stroke 21(11 Suppl):III90–III94

    PubMed  CAS  Google Scholar 

  117. Satoh K et al (1992) Increased levels of blood platelet-activating factor (PAF) and PAF-like lipids in patients with ischemic stroke. Acta Neurol Scand 85(2):122–127

    PubMed  CAS  Google Scholar 

  118. Pettigrew LC et al (1995) Delayed elevation of platelet activating factor in ischemic hippocampus. Brain Res 691(1–2):243–247

    PubMed  CAS  Google Scholar 

  119. Rink C, Khanna S (2011) Significance of brain tissue oxygenation and the arachidonic acid cascade in stroke. Antioxid Redox Signal 14(10):1889–1903

    PubMed  CAS  Google Scholar 

  120. Lindsberg PJ et al (1990) Evidence for platelet-activating factor as a novel mediator in experimental stroke in rabbits. Stroke 21(10):1452–1457

    PubMed  CAS  Google Scholar 

  121. Faden AI, Tzendzalian PA (1992) Platelet-activating factor antagonists limit glycine changes and behavioral deficits after brain trauma. Am J Physiol 263(4 Pt 2):R909–R914

    PubMed  CAS  Google Scholar 

  122. Tokutomi T et al (1994) Effect of platelet-activating factor antagonist on brain injury in rats. Acta Neurochir Suppl (Wien) 60:508–510

    CAS  Google Scholar 

  123. Wong DK, Lurie F, Wong LL (2008) The effects of clopidogrel on elderly traumatic brain injured patients. J Trauma 65(6):1303–1308

    PubMed  CAS  Google Scholar 

  124. Brohi K et al (2007) Acute traumatic coagulopathy: initiated by hypoperfusion: modulated through the protein C pathway? Ann Surg 245(5):812–818

    PubMed  Google Scholar 

  125. Esmon CT (2003) The protein C pathway. Chest 124(3 Suppl):26S–32S

    PubMed  CAS  Google Scholar 

  126. Knudson MM et al (1992) Thromboembolism following multiple trauma. J Trauma 32(1):2–11

    PubMed  CAS  Google Scholar 

  127. Laroche M et al (2012) Coagulopathy after traumatic brain injury. Neurosurgery 70(6):1334–1345

    PubMed  Google Scholar 

  128. Spiess BD (1995) Thromboelastography and cardiopulmonary bypass. Semin Thromb Hemost 21(Suppl 4):27–33

    PubMed  Google Scholar 

  129. McNicol PL et al (1994) Patterns of coagulopathy during liver transplantation: experience with the first 75 cases using thrombelastography. Anaesth Intensive Care 22(6):659–665

    PubMed  CAS  Google Scholar 

  130. Cimmino G, Golino P, Badimon JJ (2011) Pathophysiological role of blood-borne tissue factor: should the old paradigm be revistited. Intern Emerg Med 6:29–34

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas H. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kumar, M.A., Smith, D.H., Stein, S.C. (2014). The Effects of Intravascular Coagulation and Microthrombosis on Cerebral Perfusion After Brain Trauma. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics