Skip to main content

Mechanisms of Cerebral Edema Leading to Early Seizures After Traumatic Brain Injury

  • Chapter
  • First Online:

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

Abstract

Epidemiological data support a link between traumatic brain injury (TBI) and seizures. TBI accounts for approximately 16 % of acute symptomatic seizures which usually occur in the first week after trauma. Children are at higher risk for posttraumatic seizures than adults and experience greater morbidity and mortality from cerebral edema (CE). CE is responsible for half of the mortality associated with TBI. A recent book chapter summarizes the most important features of posttraumatic seizure. In this chapter we will summarize features relevant to the link between cerebral edema, cerebrovascular events and seizures after TBI. In addition, we will discuss the potential autoimmune implications of TBI.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hauser WA (2008) Epidemiology of acute symptomatic seizures. In: Engel G, Pedley TA (eds) Epilepsy: a comprehensive textbook. Lippincott Williams and Wilkins, Philadelphia, PA, pp 71–75

    Google Scholar 

  2. Hauser WA, Annegers JF, Kurland LT (1993) Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 34:453–468

    Article  PubMed  CAS  Google Scholar 

  3. Marmarou A (2003) Pathophysiology of traumatic brain edema: current concepts. Acta Neurochir Suppl 86:7–10

    PubMed  CAS  Google Scholar 

  4. Langendorf FG, Pedley TA, Temkin NR (2008) Posttraumatic seizures. In: Engel G, Pedley TA (eds) Epilepsy: a comprehensive textbook. Lippincott Williams and Wilkins, Philadelphia, PA, pp 2537–2542

    Google Scholar 

  5. Salazar AM, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD (1985) Epilepsy after penetrating head-injury.1. Clinical correlates—a report of the Vietnam Head-Injury Study. Neurology 35:1406–1414

    Article  PubMed  CAS  Google Scholar 

  6. Haltiner AM, Temkin NR, Dikmen SS (1997) Risk of seizure recurrence after the first late posttraumatic seizure. Arch Phys Med Rehabil 78:835–840

    Article  PubMed  CAS  Google Scholar 

  7. Hesdorffer DC, Benn EK, Cascino GD, Hauser WA (2009) Is a first acute symptomatic seizure epilepsy? Mortality and risk for recurrent seizure. Epilepsia 50:1102–1108

    Article  PubMed  Google Scholar 

  8. Pieracci FM, Moore EE, Beauchamp K, Tebockhorst S, Barnett CC, Bensard DD, Burlew CC, Biffl WL, Stoval RT, Johnson JL (2012) A cost-minimization analysis of phenytoin versus levetiracetam for early seizure pharmacoprophylaxis after traumatic brain injury. J Trauma Acute Care Surg 72:276–281

    PubMed  CAS  Google Scholar 

  9. Bullock MR, Povlishock JT (2007) Guidelines for the management of severe traumatic brain injury. Editor’s commentary. J Neurotrauma 24(Suppl 1):2

    PubMed  Google Scholar 

  10. Temkin NR, Dikmen SS, Anderson GD, Wilensky AJ, Holmes MD, Cohen W, Newell DW, Nelson P, Awan A, Winn HR (1999) Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 91:593–600

    Article  PubMed  CAS  Google Scholar 

  11. Daneman R (2012) The blood–brain barrier in health and disease. Ann Neurol 72:648–672

    Article  PubMed  CAS  Google Scholar 

  12. Cucullo L, Hossain M, Puvenna V, Marchi N, Janigro D (2011) The role of shear stress in blood–brain barrier endothelial physiology. BMC Neurosci 12:40

    Article  PubMed  CAS  Google Scholar 

  13. Fung C, Evans E, Shin D, Shin BC, Zhao Y, Sankar R, Chaudhuri G, Devaskar SU (2010) Hypoxic-ischemic brain injury exacerbates neuronal apoptosis and precipitates spontaneous seizures in glucose transporter isoform 3 heterozygous null mice. J Neurosci Res 88:3386–3398

    Article  PubMed  CAS  Google Scholar 

  14. Correale J, Villa A (2009) Cellular elements of the blood–brain barrier. Neurochem Res 34:2067–2077

    Article  PubMed  CAS  Google Scholar 

  15. Rubin LL, Staddon JM (1999) The cell biology of the blood–brain barrier. Annu Rev Neurosci 22:11–28

    Article  PubMed  CAS  Google Scholar 

  16. Janigro D (2012) Are you in or out? Leukocyte, ion, and neurotransmitter permeability across the epileptic blood–brain barrier. Epilepsia 53(Suppl 1):26–34

    Article  PubMed  CAS  Google Scholar 

  17. Seiffert E, Dreier JP, Ivens S, Bechmann I, Tomkins O, Heinemann U, Friedman A (2004) Lasting blood–brain barrier disruption induces epileptic focus in the rat somatosensory cortex. J Neurosci 24:7829–7836

    Article  PubMed  CAS  Google Scholar 

  18. Janigro D, Gasparini S, D’Ambrosio R, McKhann G, DiFrancesco D (1997) Reduction of K+ uptake in glia prevents long-term depression maintenance and causes epileptiform activity. J Neurosci 17:2813–2824

    PubMed  CAS  Google Scholar 

  19. Misonou H (2010) Homeostatic regulation of neuronal excitability by K(+) channels in normal and diseased brains. Neuroscientist 16:51–64

    Article  PubMed  CAS  Google Scholar 

  20. Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056

    Article  PubMed  CAS  Google Scholar 

  21. Altamirano AA, Russell JM (1987) Coupled Na/K/Cl efflux. “Reverse” unidirectional fluxes in squid giant axons. J Gen Physiol 89:669–686

    Article  PubMed  CAS  Google Scholar 

  22. Sweadner KJ (1979) Two molecular forms of (Na+ + K+)-stimulated ATPase in brain. Separation, and difference in affinity for strophanthidin. J Biol Chem 254:6060–6067

    PubMed  CAS  Google Scholar 

  23. Gloor SM (1997) Relevance of Na, K-ATPase to local extracellular potassium homeostasis and modulation of synaptic transmission. FEBS Lett 412:1–4

    Article  PubMed  CAS  Google Scholar 

  24. Kahle KT, Simard JM, Staley KJ, Nahed BV, Jones PS, Sun D (2009) Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 24:257–265

    Article  CAS  Google Scholar 

  25. Pannasch U, Vargova L, Reingruber J, Ezan P, Holcman D, Giaume C, Sykova E, Rouach N (2011) Astroglial networks scale synaptic activity and plasticity. Proc Natl Acad Sci U S A 108:8467–8472

    Article  PubMed  CAS  Google Scholar 

  26. Ohno Y, Hibino H, Lossin C, Inanobe A, Kurachi Y (2007) Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors. Brain Res 1178:44–51

    Article  PubMed  CAS  Google Scholar 

  27. Higashi K, Fujita A, Inanobe A, Tanemoto M, Doi K, Kubo T, Kurachi Y (2001) An inwardly rectifying K(+) channel, Kir4.1, expressed in astrocytes surrounds synapses and blood vessels in brain. Am J Physiol Cell Physiol 281:C922–C931

    PubMed  CAS  Google Scholar 

  28. Olsen ML, Sontheimer H (2008) Functional implications for Kir4.1 channels in glial biology: from K+ buffering to cell differentiation. J Neurochem 107:589–601

    Article  PubMed  CAS  Google Scholar 

  29. Medici V, Frassoni C, Tassi L, Spreafico R, Garbelli R (2011) Aquaporin 4 expression in control and epileptic human cerebral cortex. Brain Res 1367:330–339

    Article  PubMed  CAS  Google Scholar 

  30. Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP (1997) Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 17:171–180

    PubMed  CAS  Google Scholar 

  31. Rash JE, Yasumura T, Hudson CS, Agre P, Nielsen S (1998) Direct immunogold labeling of aquaporin-4 in square arrays of astrocyte and ependymocyte plasma membranes in rat brain and spinal cord. Proc Natl Acad Sci U S A 95:11981–11986

    Article  PubMed  CAS  Google Scholar 

  32. Dietzel I, Heinemann U, Hofmeier G, Lux HD (1980) Transient changes in the size of the extracellular space in the sensorimotor cortex of cats in relation to stimulus-induced changes in potassium concentration. Exp Brain Res 40:432–439

    Article  PubMed  CAS  Google Scholar 

  33. Ahn AH, Kunkel LM (1995) Syntrophin binds to an alternatively spliced exon of dystrophin. J Cell Biol 128:363–371

    Article  PubMed  CAS  Google Scholar 

  34. Connors NC, Kofuji P (2002) Dystrophin Dp71 is critical for the clustered localization of potassium channels in retinal glial cells. J Neurosci 22:4321–4327

    PubMed  CAS  Google Scholar 

  35. O’Kane RL, Martinez-Lopez I, DeJoseph MR, Vina JR, Hawkins RA (1999) Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood–brain barrier. A mechanism for glutamate removal. J Biol Chem 274:31891–31895

    Article  PubMed  Google Scholar 

  36. Hawkins RA (2009) The blood–brain barrier and glutamate. Am J Clin Nutr 90:867S–874S

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M, Takahashi K, Iwama H, Nishikawa T, Ichihara N, Kikuchi T, Okuyama S, Kawashima N, Hori S, Takimoto M, Wada K (1997) Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–1702

    Article  PubMed  CAS  Google Scholar 

  38. Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci U S A 89:10955–10959

    Article  PubMed  CAS  Google Scholar 

  39. Juge O (1982) Physiopathology of brain edema. Schweiz Med Wochenschr 112:956–959

    PubMed  CAS  Google Scholar 

  40. Nag S, Manias JL, Stewart DJ (2009) Pathology and new players in the pathogenesis of brain edema. Acta Neuropathol 118:197–217

    Article  PubMed  Google Scholar 

  41. Donkin JJ, Vink R (2010) Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 23:293–299

    Article  PubMed  CAS  Google Scholar 

  42. Unterberg AW, Stover J, Kress B, Kiening KL (2004) Edema and brain trauma. Neuroscience 129:1021–1029

    Article  PubMed  CAS  Google Scholar 

  43. Fishman RA (1992) Physiology of the cerebrospinal fluid. In: Mills LM (ed) Cerebrospinal fluid in diseases of the nervous system. W.B. Sauners Company, Philadelphia, pp 23–42

    Google Scholar 

  44. Asahi M, Wang X, Mori T, Sumii T, Jung JC, Moskowitz MA, Fini ME, Lo EH (2001) Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 21:7724–7732

    PubMed  CAS  Google Scholar 

  45. Liu W, Hendren J, Qin XJ, Shen J, Liu KJ (2009) Normobaric hyperoxia attenuates early blood–brain barrier disruption by inhibiting MMP-9-mediated occludin degradation in focal cerebral ischemia. J Neurochem 108:811–820

    Article  PubMed  CAS  Google Scholar 

  46. Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci 32:3044–3057

    Article  PubMed  CAS  Google Scholar 

  47. Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T (2006) Matrix metalloproteinase-9 is associated with blood–brain barrier opening and brain edema formation after cortical contusion in rats. Acta Neurochir Suppl 96:130–133

    Article  PubMed  CAS  Google Scholar 

  48. Plesnila N, Schulz J, Stoffel M, Eriskat J, Pruneau D, Baethmann A (2001) Role of bradykinin B2 receptors in the formation of vasogenic brain edema in rats. J Neurotrauma 18:1049–1058

    Article  PubMed  CAS  Google Scholar 

  49. Geppetti P, Bertrand C, Ricciardolo FL, Nadel JA (1995) New aspects on the role of kinins in neurogenic inflammation. Can J Physiol Pharmacol 73:843–847

    Article  PubMed  CAS  Google Scholar 

  50. Trabold R, Eros C, Zweckberger K, Relton J, Beck H, Nussberger J, Muller-Esterl W, Bader M, Whalley E, Plesnila N (2010) The role of bradykinin B(1) and B(2) receptors for secondary brain damage after traumatic brain injury in mice. J Cereb Blood Flow Metab 30:130–139

    Article  PubMed  CAS  Google Scholar 

  51. Zweckberger K, Plesnila N (2009) Anatibant, a selective non-peptide bradykinin B2 receptor antagonist, reduces intracranial hypertension and histopathological damage after experimental traumatic brain injury. Neurosci Lett 454:115–117

    Article  PubMed  CAS  Google Scholar 

  52. Shakur H, Andrews P, Asser T, Balica L, Boeriu C, Quintero JD, Dewan Y, Druwe P, Fletcher O, Frost C, Hartzenberg B, Mantilla JM, Murillo-Cabezas F, Pachl J, Ravi RR, Ratsep I, Sampaio C, Singh M, Svoboda P, Roberts I (2009) The BRAIN TRIAL: a randomised, placebo controlled trial of a Bradykinin B2 receptor antagonist (Anatibant) in patients with traumatic brain injury. Trials 10:109

    Article  PubMed  Google Scholar 

  53. Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R (2009) Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 29:1388–1398

    Article  PubMed  CAS  Google Scholar 

  54. Zacest AC, Vink R, Manavis J, Sarvestani GT, Blumbergs PC (2010) Substance P immunoreactivity increases following human traumatic brain injury. Acta Neurochir Suppl 106:211–216

    Article  PubMed  Google Scholar 

  55. Brain SD, Williams TJ (1985) Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol 86:855–860

    Article  PubMed  CAS  Google Scholar 

  56. Figaji AA, Zwane E, Fieggen AG, Argent AC, Le Roux PD, Siesjo P, Peter JC (2009) Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr 4:420–428

    Article  PubMed  Google Scholar 

  57. Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15:8223–8233

    PubMed  CAS  Google Scholar 

  58. Marchi N, Bazarian JJ, Puvenna V, Janigro M, Ghosh C, Zhong J, Zhu T, Blackman E, Stewart D, Ellis J, Butler R, Janigro D (2013) Consequences of repeated blood–brain barrier disruption in football players. PLoS One 8(3):e56805

    Article  PubMed  CAS  Google Scholar 

  59. Campbell M, Hanrahan F, Gobbo OL, Kelly ME, Kiang AS, Humphries MM, Nguyen AT, Ozaki E, Keaney J, Blau CW, Kerskens CM, Cahalan SD, Callanan JJ, Wallace E, Grant GA, Doherty CP, Humphries P (2012) Targeted suppression of claudin-5 decreases cerebral oedema and improves cognitive outcome following traumatic brain injury. Nat Commun 3:849

    Article  PubMed  Google Scholar 

  60. Garcia JH, Liu KF, Yoshida Y, Chen S, Lian J (1994) Brain microvessels: factors altering their patency after the occlusion of a middle cerebral artery (Wistar rat). Am J Pathol 145:728–740

    PubMed  CAS  Google Scholar 

  61. Liang D, Bhatta S, Gerzanich V, Simard JM (2007) Cytotoxic edema: mechanisms of pathological cell swelling. Neurosurg Focus 22:E2

    Article  PubMed  Google Scholar 

  62. Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V (2007) Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 6:258–268

    Article  PubMed  CAS  Google Scholar 

  63. Rumpel H, Nedelcu J, Aguzzi A, Martin E (1997) Late glial swelling after acute cerebral hypoxia-ischemia in the neonatal rat: a combined magnetic resonance and histochemical study. Pediatr Res 42:54–59

    Article  PubMed  CAS  Google Scholar 

  64. Su G, Kintner DB, Flagella M, Shull GE, Sun D (2002) Astrocytes from Na(+)-K(+)-Cl(−) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am J Physiol Cell Physiol 282:C1147–C1160

    Article  PubMed  CAS  Google Scholar 

  65. Rao VL, Baskaya MK, Dogan A, Rothstein JD, Dempsey RJ (1998) Traumatic brain injury down-regulates glial glutamate transporter (GLT-1 and GLAST) proteins in rat brain. J Neurochem 70:2020–2027

    PubMed  CAS  Google Scholar 

  66. Neusch C, Weishaupt JH, Bahr M (2003) Kir channels in the CNS: emerging new roles and implications for neurological diseases. Cell Tissue Res 311:131–138

    PubMed  CAS  Google Scholar 

  67. Obrenovitch TP, Urenjak J (1997) Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma 14:677–698

    Article  PubMed  CAS  Google Scholar 

  68. Kristian T, Siesjo BK (1998) Calcium in ischemic cell death. Stroke 29:705–718

    Article  PubMed  CAS  Google Scholar 

  69. Kauppinen RA, Enkvist K, Holopainen I, Akerman KE (1988) Glucose deprivation depolarizes plasma membrane of cultured astrocytes and collapses transmembrane potassium and glutamate gradients. Neuroscience 26:283–289

    Article  PubMed  CAS  Google Scholar 

  70. Manley GT, Fujimura M, Ma T, Noshita N, Filiz F, Bollen AW, Chan P, Verkman AS (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 6:159–163

    Article  PubMed  CAS  Google Scholar 

  71. Baraban SC, Schwartzkroin PA (1998) Effects of hyposmolar solutions on membrane currents of hippocampal interneurons and mossy cells in vitro. J Neurophysiol 79:1108–1112

    PubMed  CAS  Google Scholar 

  72. Fazio V, Bhudia SK, Marchi N, Aumayr B, Janigro D (2004) Peripheral detection of S100beta during cardiothoracic surgery: what are we really measuring? Ann Thorac Surg 78:46–52

    Article  PubMed  Google Scholar 

  73. Kanner AA, Marchi N, Fazio V, Mayberg MR, Koltz MT, Siomin V, Stevens GH, Masaryk T, Ayumar B, Vogelbaum MA, Barnett GH, Janigro D (2003) Serum S100beta: a noninvasive marker of blood–brain barrier function and brain lesions. Cancer 97:2806–2813

    Article  PubMed  CAS  Google Scholar 

  74. Vogelbaum MA, Masaryk T, Mazzone P, Mekhail T, Fazio V, McCartney S, Marchi N, Kanner A, Janigro D (2005) S100beta as a predictor of brain metastases: brain versus cerebrovascular damage. Cancer 104:817–824

    Article  PubMed  CAS  Google Scholar 

  75. Kapural M, Krizanac-Bengez L, Barnett G, Perl J, Masaryk T, apollo D, Rasmussen P, Mayberg MR, Janigro D (2002) Serum S-100beta as a possible marker of blood–brain barrier disruption. Brain Res 940:102–104

    Article  PubMed  CAS  Google Scholar 

  76. Begaz T, Kyriacou DN, Segal J, Bazarian JJ (2006) Serum biochemical markers for post-concussion syndrome in patients with mild traumatic brain injury. J Neurotrauma 23:1201–1210

    Article  PubMed  Google Scholar 

  77. Blyth B, Farahvar A, He H, Nayak A, Yang C, Shaw G, Bazarian JJ (2011) Elevated serum ubiquitin carboxy-terminal hydrolase L1 is associated with abnormal blood brain barrier function after traumatic brain injury. J Neurotrauma 28:2453–2462

    Article  PubMed  Google Scholar 

  78. Blyth BJ, Farhavar A, Gee C, Hawthorn B, He H, Nayak A, Stocklein V, Bazarian JJ (2009) Validation of serum markers for blood–brain barrier disruption in traumatic brain injury. J Neurotrauma 26:1497–1507

    Article  PubMed  Google Scholar 

  79. Biberthaler P, Mussack T, Wiedemann E, Kanz KG, Koelsch M, Gippner-Steppert C, Jochum M (2001) Evaluation of S-100b as a specific marker for neuronal damage due to minor head trauma. World J Surg 25:93–97

    Article  PubMed  CAS  Google Scholar 

  80. Bechmann I, Galea I, Perry VH (2007) What is the blood–brain barrier (not)? Trends Immunol 28:5–11

    Article  PubMed  CAS  Google Scholar 

  81. Galea I, Bechmann I, Perry VH (2007) What is immune privilege (not)? Trends Immunol 28:12–18

    Article  PubMed  CAS  Google Scholar 

  82. Chang GC, Young LH (2011) Sympathetic ophthalmia. Semin Ophthalmol 26:316–320

    Article  PubMed  Google Scholar 

  83. Gold M, Pul R, Bach JP, Stangel M, Dodel R (2012) Pathogenic and physiological autoantibodies in the central nervous system. Immunol Rev 248:68–86

    Article  PubMed  Google Scholar 

  84. Popovich PG, Stokes BT, Whitacre CC (1996) Concept of autoimmunity following spinal cord injury: possible roles for T lymphocytes in the traumatized central nervous system. J Neurosci Res 45:349–363

    Article  PubMed  CAS  Google Scholar 

  85. Fujinami RS, Oldstone MB (1985) Amino acid homology between the encephalitogenic site of myelin basic protein and virus: mechanism for autoimmunity. Science 230:1043–1045

    Article  PubMed  CAS  Google Scholar 

  86. Lang HL, Jacobsen H, Ikemizu S, Andersson C, Harlos K, Madsen L, Hjorth P, Sondergaard L, Svejgaard A, Wucherpfennig K, Stuart DI, Bell JI, Jones EY, Fugger L (2002) A functional and structural basis for TCR cross-reactivity in multiple sclerosis. Nat Immunol 3:940–943

    Article  PubMed  CAS  Google Scholar 

  87. Prochazka M, Voltnerova M, Stefan J (1971) Studies of immunologic reactions after brain injury. II. Antibodies against brain tissue lipids after blunt head injury in man. Int Surg 55:322–326

    PubMed  CAS  Google Scholar 

  88. Lopez-Escribano H, Minambres E, Labrador M, Bartolome MJ, Lopez-Hoyos M (2002) Induction of cell death by sera from patients with acute brain injury as a mechanism of production of autoantibodies. Arthritis Rheum 46:3290–3300

    Article  PubMed  Google Scholar 

  89. Skoda D, Kranda K, Bojar M, Glosova L, Baurle J, Kenney J, Romportl D, Pelichovska M, Cvachovec K (2006) Antibody formation against beta-tubulin class III in response to brain trauma. Brain Res Bull 68:213–216

    Article  PubMed  CAS  Google Scholar 

  90. Granata T, Gobbi G, Spreafico R, Vigevano F, Capovilla G, Ragona F, Freri E, Chiapparini L, Bernasconi P, Giordano L, Bertani G, Casazza M, Dalla BB, Fusco L (2003) Rasmussen’s encephalitis: early characteristics allow diagnosis. Neurology 60:422–425

    Article  PubMed  CAS  Google Scholar 

  91. Michalak Z, Lebrun A, Di Miceli M, Rousset MC, Crespel A, Coubes P, Henshall DC, Lerner-Natoli M, Rigau V (2012) IgG leakage may contribute to neuronal dysfunction in drug-refractory epilepsies with blood–brain barrier disruption. J Neuropathol Exp Neurol 71:826–838

    Article  PubMed  CAS  Google Scholar 

  92. Bargestock E, Puvenna V, Iffland P, Falcone T, Hossain M, Vetter S, Man S, Dickstein L, Carvalho-Tavares J, Marchi N, Janigro D (2013) Is peripheral immunity regulated by blood–brain barrier permeability changes? BMC Neurosci

    Google Scholar 

Download references

Acknowledgements

Supported by NIH R01NS43284, R41MH093302, R21NS077236, R42MH093302, and R21HD057256 awarded to DJ.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damir Janigro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Iffland, P.H., Grant, G.A., Janigro, D. (2014). Mechanisms of Cerebral Edema Leading to Early Seizures After Traumatic Brain Injury. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics