Isolated Blood Vessel Models for Studying Trauma

  • Eugene V. Golanov
Part of the Springer Series in Translational Stroke Research book series (SSTSR, volume 5)


Abnormalities of cerebrovascular circulation are one of the salient consequences of traumatic brain injury. Severity of cerebral blood flow disregulation is associated with the negative clinical outcome. Regulation of cerebral blood flow is complex and differs from regulation of blood flow in other vascular beds. Basic vascular tone formed by interaction of vascular smooth muscle cells and endothelium provides background for other regulatory mechanisms. Understanding of traumatic brain injury-induced abnormalities of basic vascular tone formation and its adjustment using isolated brain vessel model is important for unveiling the pathophysiological mechanisms of brain trauma and development of new therapeutic approaches.


Traumatic Brain Injury Cerebral Blood Flow Vascular Smooth Muscle Cell Control Cortical Impact Myogenic Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Abate MG, Trivedi M, Fryer TD, Smielewski P, Chatfield DA, Williams GB, Aigbirhio F, Carpenter TA, Pickard JD, Menon DK, Coles JP (2008) Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care 9:319–325PubMedCrossRefGoogle Scholar
  2. 2.
    Aitken PG, Balestrino M, Somjen GG (1988) NMDA antagonists: lack of protective effect against hypoxic damage in CA1 region of hippocampal slices. Neurosci Lett 89:187–192PubMedCrossRefGoogle Scholar
  3. 3.
    Alexander MJ, Martin NA, Khanna R, Caron M, Becker DP (1994) Regional cerebral blood flow trends in head injured patients with focal contusions and cerebral edema. Acta Neurochir Suppl (Wien) 60:479–481Google Scholar
  4. 4.
    Arneric SP, Iadecola C, Honig MA, Underwood MD, Reis DJ (1986) Local cholinergic mechanisms mediate the cortical vasodilation elicited by electrical stimulation of the fastigial nucleus. Acta Physiol Scand Suppl 552:70–73PubMedGoogle Scholar
  5. 5.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243PubMedCrossRefGoogle Scholar
  6. 6.
    Avila MA, Sell SL, Hawkins BE, Hellmich HL, Boone DR, Crookshanks JM, Prough DS, Dewitt DS (2011) Cerebrovascular connexin expression: effects of traumatic brain injury. J Neurotrauma 28:1803–1811PubMedCrossRefGoogle Scholar
  7. 7.
    Bagher P, Segal SS (2011) Regulation of blood flow in the microcirculation: role of conducted vasodilation. Acta Physiol (Oxf) 202:271–284CrossRefGoogle Scholar
  8. 8.
    Barkhoudarian G, Hovda DA, Giza CC (2011) The molecular pathophysiology of concussive brain injury. Clin Sports Med 30:33PubMedCrossRefGoogle Scholar
  9. 9.
    Bouma GJ, Muizelaar JP (1990) Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation. J Neurosurg 73:368–374PubMedCrossRefGoogle Scholar
  10. 10.
    Bouma GJ, Muizelaar JP (1995) Cerebral blood flow in severe clinical head injury. New Horiz 3:384–394PubMedGoogle Scholar
  11. 11.
    Bukoski RD, Wang SN, Bian K, Dewitt DS (1997) Traumatic brain injury does not alter cerebral artery contractility. Am J Physiol 272:H1406–H1411PubMedGoogle Scholar
  12. 12.
    Cipolla MJ, Li R, Vitullo L (2004) Perivascular innervation of penetrating brain parenchymal arterioles. J Cardiovasc Pharmacol 44:1–8PubMedCrossRefGoogle Scholar
  13. 13.
    Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27:1829–1834PubMedCrossRefGoogle Scholar
  14. 14.
    Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA (2009) Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care 10:373–386PubMedCrossRefGoogle Scholar
  15. 15.
    Dalkara T, Gursoy-Ozdemir Y, Yemisci M (2011) Brain microvascular pericytes in health and disease. Acta Neuropathol 122:1–9PubMedCrossRefGoogle Scholar
  16. 16.
    De WC, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions—fact or fiction? Cell Commun Adhes 15:231–245CrossRefGoogle Scholar
  17. 17.
    Del Zoppo GJ (2008) Virchow’s triad: the vascular basis of cerebral injury. Rev Neurol Dis 5(Suppl 1):S12–S21PubMedGoogle Scholar
  18. 18.
    Dewitt DS, Prough DS (2003) Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma 20:795–825PubMedCrossRefGoogle Scholar
  19. 19.
    Dewitt DS, Prough DS (2009) Blast-Induced Brain Injury and Posttraumatic Hypotension and Hypoxemia. J Neurotrauma 26:877–887PubMedCrossRefGoogle Scholar
  20. 20.
    Edvinsson L, MacKenzie ET, McCulloch J (1993) Cerebral blood flow and metabolism. Raven, New YorkGoogle Scholar
  21. 21.
    Enevoldsen EM, Jensen FT (1978) Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 48:689–703PubMedCrossRefGoogle Scholar
  22. 22.
    Faraci FM (2011) Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol 300:H1566–H1582PubMedCrossRefGoogle Scholar
  23. 23.
    Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66:8–17PubMedCrossRefGoogle Scholar
  24. 24.
    Giri BK, Krishnappa IK, Bryan RM Jr, Robertson C, Watson J (2000) Regional cerebral blood flow after cortical impact injury complicated by a secondary insult in rats. Stroke 31:961–967PubMedCrossRefGoogle Scholar
  25. 25.
    Golanov EV, Ruggiero DA, Reis DJ (2000) A brainstem area mediating cerebrovascular and EEG responses to hypoxic excitation of rostral ventrolateral medulla in rat. J Physiol 529:413–429PubMedCrossRefGoogle Scholar
  26. 26.
    Golanov EV, Christensen JRC, Reis DJ (2001) Neurons of a limited subthalamic area mediate elevations in cortical cerebral blood flow evoked by hypoxia and excitation of neurons of the rostral ventrolateral medulla. J Neurosci 21:4032–4041PubMedGoogle Scholar
  27. 27.
    Golding EM, Contant CF Jr, Robertson CS, Bryan RM Jr (1998) Temporal effect of severe controlled cortical impact injury in the rat on the myogenic response of the middle cerebral artery. J Neurotrauma 15:973–984PubMedCrossRefGoogle Scholar
  28. 28.
    Golding EM, Steenberg ML, Cherian L, Marrelli SP, Robertson CS, Bryan RM Jr (1998) Endothelial-mediated dilations following severe controlled cortical impact injury in the rat middle cerebral artery. J Neurotrauma 15:635–644PubMedCrossRefGoogle Scholar
  29. 29.
    Golding EM, Steenberg ML, Contant CF Jr, Krishnappa I, Robertson CS, Bryan RM Jr (1999) Cerebrovascular reactivity to CO(2) and hypotension after mild cortical impact injury. Am J Physiol 277:H1457–H1466PubMedGoogle Scholar
  30. 30.
    Golding EM, Steenberg ML, Contant CF, Krishnappa I, Robertson CS, Bryan RM (1999) Cerebrovascular reactivity to CO2 and hypotension after mild cortical impact injury. Am J Physiol Heart Circ Physiol 277:H1457–H1466Google Scholar
  31. 31.
    Golding EM, Robertson CS, Bryan RM (2000) L-arginine partially restores the diminished CO2 reactivity after mild controlled cortical impact injury in the adult rat. J Cereb Blood Flow Metab 20:820–828PubMedCrossRefGoogle Scholar
  32. 32.
    Golding EM, You J, Robertson CS, Bryan RM Jr (2001) Potentiated endothelium-derived hyperpolarizing factor-mediated dilations in cerebral arteries following mild head injury. J Neurotrauma 18:691–697PubMedCrossRefGoogle Scholar
  33. 33.
    Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100:1059–1064PubMedCrossRefGoogle Scholar
  34. 34.
    Heistad DD, Kontos HA (1983) Cerebral circulation. In: Shepherd JT, Abboud FM (eds) Handbook of physiology. Circulation, vol III, Peripheral circulation and organ blood flow. American Physiological Society, BethesdaGoogle Scholar
  35. 35.
    Henrion D (2005) Pressure and flow-dependent tone in resistance arteries. Role of myogenic tone. Arch Mal Coeur Vaiss 98:913–921PubMedGoogle Scholar
  36. 36.
    Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360PubMedCrossRefGoogle Scholar
  37. 37.
    Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 2007(10/30):1369–1376CrossRefGoogle Scholar
  38. 38.
    Iadecola C, Yang G, Ebner TJ, Chen G (1997) Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J Neurophysiol 78:651–659PubMedGoogle Scholar
  39. 39.
    Iwama K (1950) The influence of oxygen lack on brain waves in man. Tohoku J Exp Med 52:63–68PubMedCrossRefGoogle Scholar
  40. 40.
    Jensen LJ, Holstein-Rathlou NH (2013) The vascular conducted response in cerebral blood flow regulation. J Cereb Blood Flow Metab 33:649–656PubMedCrossRefGoogle Scholar
  41. 41.
    Kauffenstein G, Laher I, Matrougui K, Guerineau NC, Henrion D (2012) Emerging role of G protein-coupled receptors in microvascular myogenic tone. Cardiovasc Res 95:223–232PubMedCrossRefGoogle Scholar
  42. 42.
    Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR (2008) Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 55:281–288PubMedCrossRefGoogle Scholar
  43. 43.
    Lipton P (1999) Ischemic cell death in brain neurons [Review]. Physiol Rev 79:1431–1568PubMedGoogle Scholar
  44. 44.
    Martin RL, Lloyd HG, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17:251–257PubMedCrossRefGoogle Scholar
  45. 45.
    Mathew BP, Dewitt DS, Bryan RM Jr, Bukoski RD, Prough DS (1999) Traumatic brain injury reduces myogenic responses in pressurized rodent middle cerebral arteries. J Neurotrauma 16:1177–1186PubMedCrossRefGoogle Scholar
  46. 46.
    Maxwell WL, Irvine A, Adams JH, Graham DI, Gennarelli TA (1988) Response of cerebral microvasculature to brain injury. J Pathol 155:327–335PubMedCrossRefGoogle Scholar
  47. 47.
    Mayevsky A, Chance B (1975) Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res 98:149–165PubMedCrossRefGoogle Scholar
  48. 48.
    Muizelaar JP, Ward JD, Marmarou A, Newlon PG, Wachi A (1989) Cerebral blood flow and metabolism in severely head-injured children. Part 2: Autoregulation. J Neurosurg 71:72–76PubMedCrossRefGoogle Scholar
  49. 49.
    Owman C (1986) Neurogenic control of the vascular system: focus on cerebral circulation. In: Bloom FE (ed) Handbook of physiology, vol 4, The nervous system. American Physiological Society, BethesdaGoogle Scholar
  50. 50.
    Perkins EN, Parent AD, Golanov EV (2003) Morphological analysis of the SVA as a major relay of medullary vasodilator signals. Soc Neurosci 922:18Google Scholar
  51. 51.
    Peterson EC, Wang Z, Britz G (2011) Regulation of cerebral blood flow. Int J Vasc Med 2011:823525PubMedGoogle Scholar
  52. 52.
    Poon WS, Ng SC, Chan MT, Lam JM, Lam WW (2005) Cerebral blood flow (CBF)-directed management of ventilated head-injured patients. Acta Neurochir Suppl 95:9–11PubMedCrossRefGoogle Scholar
  53. 53.
    Povlishock JT, Kontos HA, Wei EP, Rosenblum WI, Becker DP (1980) Changes in the cerebral vasculature after hypertension and trauma: a combined scanning and transmission electron microscopic analysis. Adv Exp Med Biol 131:227–241PubMedCrossRefGoogle Scholar
  54. 54.
    Sangiorgi S, DE Benedictis A, Protasoni M, Manelli A, Reguzzoni M, Cividini A, Dell’orbo C, Tomei G, Balbi S (2013) Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. J Neurosurg 118:763–774PubMedCrossRefGoogle Scholar
  55. 55.
    Schmidt VJ, Wolfle SE, Boettcher M, De Wit C (2008) Gap junctions synchronize vascular tone within the microcirculation. Pharmacol Rep 60:68–74PubMedGoogle Scholar
  56. 56.
    Soustiel JF, Glenn TC, Shik V, Boscardin J, Mahamid E, Zaaroor M (2005) Monitoring of cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma 22:955–965PubMedCrossRefGoogle Scholar
  57. 57.
    Sugar O, Gerard RW (1938) Anoxia and brain potential. J Neurosci 1:558–572Google Scholar
  58. 58.
    Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H (2012) The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 90:713–738PubMedCrossRefGoogle Scholar
  59. 59.
    Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774PubMedCrossRefGoogle Scholar
  60. 60.
    Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980) Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 46:37–47PubMedCrossRefGoogle Scholar
  61. 61.
    Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Feisntein Institute for Medical ResearchManhassetUSA

Personalised recommendations