Skip to main content

Isolated Blood Vessel Models for Studying Trauma

  • Chapter
  • First Online:
  • 1411 Accesses

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

Abstract

Abnormalities of cerebrovascular circulation are one of the salient consequences of traumatic brain injury. Severity of cerebral blood flow disregulation is associated with the negative clinical outcome. Regulation of cerebral blood flow is complex and differs from regulation of blood flow in other vascular beds. Basic vascular tone formed by interaction of vascular smooth muscle cells and endothelium provides background for other regulatory mechanisms. Understanding of traumatic brain injury-induced abnormalities of basic vascular tone formation and its adjustment using isolated brain vessel model is important for unveiling the pathophysiological mechanisms of brain trauma and development of new therapeutic approaches.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abate MG, Trivedi M, Fryer TD, Smielewski P, Chatfield DA, Williams GB, Aigbirhio F, Carpenter TA, Pickard JD, Menon DK, Coles JP (2008) Early derangements in oxygen and glucose metabolism following head injury: the ischemic penumbra and pathophysiological heterogeneity. Neurocrit Care 9:319–325

    Article  PubMed  CAS  Google Scholar 

  2. Aitken PG, Balestrino M, Somjen GG (1988) NMDA antagonists: lack of protective effect against hypoxic damage in CA1 region of hippocampal slices. Neurosci Lett 89:187–192

    Article  PubMed  CAS  Google Scholar 

  3. Alexander MJ, Martin NA, Khanna R, Caron M, Becker DP (1994) Regional cerebral blood flow trends in head injured patients with focal contusions and cerebral edema. Acta Neurochir Suppl (Wien) 60:479–481

    CAS  Google Scholar 

  4. Arneric SP, Iadecola C, Honig MA, Underwood MD, Reis DJ (1986) Local cholinergic mechanisms mediate the cortical vasodilation elicited by electrical stimulation of the fastigial nucleus. Acta Physiol Scand Suppl 552:70–73

    PubMed  CAS  Google Scholar 

  5. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  PubMed  CAS  Google Scholar 

  6. Avila MA, Sell SL, Hawkins BE, Hellmich HL, Boone DR, Crookshanks JM, Prough DS, Dewitt DS (2011) Cerebrovascular connexin expression: effects of traumatic brain injury. J Neurotrauma 28:1803–1811

    Article  PubMed  Google Scholar 

  7. Bagher P, Segal SS (2011) Regulation of blood flow in the microcirculation: role of conducted vasodilation. Acta Physiol (Oxf) 202:271–284

    Article  CAS  Google Scholar 

  8. Barkhoudarian G, Hovda DA, Giza CC (2011) The molecular pathophysiology of concussive brain injury. Clin Sports Med 30:33

    Article  PubMed  Google Scholar 

  9. Bouma GJ, Muizelaar JP (1990) Relationship between cardiac output and cerebral blood flow in patients with intact and with impaired autoregulation. J Neurosurg 73:368–374

    Article  PubMed  CAS  Google Scholar 

  10. Bouma GJ, Muizelaar JP (1995) Cerebral blood flow in severe clinical head injury. New Horiz 3:384–394

    PubMed  CAS  Google Scholar 

  11. Bukoski RD, Wang SN, Bian K, Dewitt DS (1997) Traumatic brain injury does not alter cerebral artery contractility. Am J Physiol 272:H1406–H1411

    PubMed  CAS  Google Scholar 

  12. Cipolla MJ, Li R, Vitullo L (2004) Perivascular innervation of penetrating brain parenchymal arterioles. J Cardiovasc Pharmacol 44:1–8

    Article  PubMed  CAS  Google Scholar 

  13. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke 27:1829–1834

    Article  PubMed  CAS  Google Scholar 

  14. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA (2009) Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care 10:373–386

    Article  PubMed  Google Scholar 

  15. Dalkara T, Gursoy-Ozdemir Y, Yemisci M (2011) Brain microvascular pericytes in health and disease. Acta Neuropathol 122:1–9

    Article  PubMed  Google Scholar 

  16. De WC, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions—fact or fiction? Cell Commun Adhes 15:231–245

    Article  Google Scholar 

  17. Del Zoppo GJ (2008) Virchow’s triad: the vascular basis of cerebral injury. Rev Neurol Dis 5(Suppl 1):S12–S21

    PubMed  Google Scholar 

  18. Dewitt DS, Prough DS (2003) Traumatic cerebral vascular injury: the effects of concussive brain injury on the cerebral vasculature. J Neurotrauma 20:795–825

    Article  PubMed  Google Scholar 

  19. Dewitt DS, Prough DS (2009) Blast-Induced Brain Injury and Posttraumatic Hypotension and Hypoxemia. J Neurotrauma 26:877–887

    Article  PubMed  Google Scholar 

  20. Edvinsson L, MacKenzie ET, McCulloch J (1993) Cerebral blood flow and metabolism. Raven, New York

    Google Scholar 

  21. Enevoldsen EM, Jensen FT (1978) Autoregulation and CO2 responses of cerebral blood flow in patients with acute severe head injury. J Neurosurg 48:689–703

    Article  PubMed  CAS  Google Scholar 

  22. Faraci FM (2011) Protecting against vascular disease in brain. Am J Physiol Heart Circ Physiol 300:H1566–H1582

    Article  PubMed  CAS  Google Scholar 

  23. Faraci FM, Heistad DD (1990) Regulation of large cerebral arteries and cerebral microvascular pressure. Circ Res 66:8–17

    Article  PubMed  CAS  Google Scholar 

  24. Giri BK, Krishnappa IK, Bryan RM Jr, Robertson C, Watson J (2000) Regional cerebral blood flow after cortical impact injury complicated by a secondary insult in rats. Stroke 31:961–967

    Article  PubMed  CAS  Google Scholar 

  25. Golanov EV, Ruggiero DA, Reis DJ (2000) A brainstem area mediating cerebrovascular and EEG responses to hypoxic excitation of rostral ventrolateral medulla in rat. J Physiol 529:413–429

    Article  PubMed  CAS  Google Scholar 

  26. Golanov EV, Christensen JRC, Reis DJ (2001) Neurons of a limited subthalamic area mediate elevations in cortical cerebral blood flow evoked by hypoxia and excitation of neurons of the rostral ventrolateral medulla. J Neurosci 21:4032–4041

    PubMed  CAS  Google Scholar 

  27. Golding EM, Contant CF Jr, Robertson CS, Bryan RM Jr (1998) Temporal effect of severe controlled cortical impact injury in the rat on the myogenic response of the middle cerebral artery. J Neurotrauma 15:973–984

    Article  PubMed  CAS  Google Scholar 

  28. Golding EM, Steenberg ML, Cherian L, Marrelli SP, Robertson CS, Bryan RM Jr (1998) Endothelial-mediated dilations following severe controlled cortical impact injury in the rat middle cerebral artery. J Neurotrauma 15:635–644

    Article  PubMed  CAS  Google Scholar 

  29. Golding EM, Steenberg ML, Contant CF Jr, Krishnappa I, Robertson CS, Bryan RM Jr (1999) Cerebrovascular reactivity to CO(2) and hypotension after mild cortical impact injury. Am J Physiol 277:H1457–H1466

    PubMed  CAS  Google Scholar 

  30. Golding EM, Steenberg ML, Contant CF, Krishnappa I, Robertson CS, Bryan RM (1999) Cerebrovascular reactivity to CO2 and hypotension after mild cortical impact injury. Am J Physiol Heart Circ Physiol 277:H1457–H1466

    CAS  Google Scholar 

  31. Golding EM, Robertson CS, Bryan RM (2000) L-arginine partially restores the diminished CO2 reactivity after mild controlled cortical impact injury in the adult rat. J Cereb Blood Flow Metab 20:820–828

    Article  PubMed  CAS  Google Scholar 

  32. Golding EM, You J, Robertson CS, Bryan RM Jr (2001) Potentiated endothelium-derived hyperpolarizing factor-mediated dilations in cerebral arteries following mild head injury. J Neurotrauma 18:691–697

    Article  PubMed  CAS  Google Scholar 

  33. Hamel E (2006) Perivascular nerves and the regulation of cerebrovascular tone. J Appl Physiol 100:1059–1064

    Article  PubMed  Google Scholar 

  34. Heistad DD, Kontos HA (1983) Cerebral circulation. In: Shepherd JT, Abboud FM (eds) Handbook of physiology. Circulation, vol III, Peripheral circulation and organ blood flow. American Physiological Society, Bethesda

    Google Scholar 

  35. Henrion D (2005) Pressure and flow-dependent tone in resistance arteries. Role of myogenic tone. Arch Mal Coeur Vaiss 98:913–921

    PubMed  CAS  Google Scholar 

  36. Iadecola C (2004) Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 5:347–360

    Article  PubMed  CAS  Google Scholar 

  37. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 2007(10/30):1369–1376

    Article  Google Scholar 

  38. Iadecola C, Yang G, Ebner TJ, Chen G (1997) Local and propagated vascular responses evoked by focal synaptic activity in cerebellar cortex. J Neurophysiol 78:651–659

    PubMed  CAS  Google Scholar 

  39. Iwama K (1950) The influence of oxygen lack on brain waves in man. Tohoku J Exp Med 52:63–68

    Article  PubMed  CAS  Google Scholar 

  40. Jensen LJ, Holstein-Rathlou NH (2013) The vascular conducted response in cerebral blood flow regulation. J Cereb Blood Flow Metab 33:649–656

    Article  PubMed  Google Scholar 

  41. Kauffenstein G, Laher I, Matrougui K, Guerineau NC, Henrion D (2012) Emerging role of G protein-coupled receptors in microvascular myogenic tone. Cardiovasc Res 95:223–232

    Article  PubMed  CAS  Google Scholar 

  42. Kulik T, Kusano Y, Aronhime S, Sandler AL, Winn HR (2008) Regulation of cerebral vasculature in normal and ischemic brain. Neuropharmacology 55:281–288

    Article  PubMed  CAS  Google Scholar 

  43. Lipton P (1999) Ischemic cell death in brain neurons [Review]. Physiol Rev 79:1431–1568

    PubMed  CAS  Google Scholar 

  44. Martin RL, Lloyd HG, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17:251–257

    Article  PubMed  CAS  Google Scholar 

  45. Mathew BP, Dewitt DS, Bryan RM Jr, Bukoski RD, Prough DS (1999) Traumatic brain injury reduces myogenic responses in pressurized rodent middle cerebral arteries. J Neurotrauma 16:1177–1186

    Article  PubMed  CAS  Google Scholar 

  46. Maxwell WL, Irvine A, Adams JH, Graham DI, Gennarelli TA (1988) Response of cerebral microvasculature to brain injury. J Pathol 155:327–335

    Article  PubMed  CAS  Google Scholar 

  47. Mayevsky A, Chance B (1975) Metabolic responses of the awake cerebral cortex to anoxia hypoxia spreading depression and epileptiform activity. Brain Res 98:149–165

    Article  PubMed  CAS  Google Scholar 

  48. Muizelaar JP, Ward JD, Marmarou A, Newlon PG, Wachi A (1989) Cerebral blood flow and metabolism in severely head-injured children. Part 2: Autoregulation. J Neurosurg 71:72–76

    Article  PubMed  CAS  Google Scholar 

  49. Owman C (1986) Neurogenic control of the vascular system: focus on cerebral circulation. In: Bloom FE (ed) Handbook of physiology, vol 4, The nervous system. American Physiological Society, Bethesda

    Google Scholar 

  50. Perkins EN, Parent AD, Golanov EV (2003) Morphological analysis of the SVA as a major relay of medullary vasodilator signals. Soc Neurosci 922:18

    Google Scholar 

  51. Peterson EC, Wang Z, Britz G (2011) Regulation of cerebral blood flow. Int J Vasc Med 2011:823525

    PubMed  Google Scholar 

  52. Poon WS, Ng SC, Chan MT, Lam JM, Lam WW (2005) Cerebral blood flow (CBF)-directed management of ventilated head-injured patients. Acta Neurochir Suppl 95:9–11

    Article  PubMed  CAS  Google Scholar 

  53. Povlishock JT, Kontos HA, Wei EP, Rosenblum WI, Becker DP (1980) Changes in the cerebral vasculature after hypertension and trauma: a combined scanning and transmission electron microscopic analysis. Adv Exp Med Biol 131:227–241

    Article  PubMed  CAS  Google Scholar 

  54. Sangiorgi S, DE Benedictis A, Protasoni M, Manelli A, Reguzzoni M, Cividini A, Dell’orbo C, Tomei G, Balbi S (2013) Early-stage microvascular alterations of a new model of controlled cortical traumatic brain injury: 3D morphological analysis using scanning electron microscopy and corrosion casting. J Neurosurg 118:763–774

    Article  PubMed  Google Scholar 

  55. Schmidt VJ, Wolfle SE, Boettcher M, De Wit C (2008) Gap junctions synchronize vascular tone within the microcirculation. Pharmacol Rep 60:68–74

    PubMed  CAS  Google Scholar 

  56. Soustiel JF, Glenn TC, Shik V, Boscardin J, Mahamid E, Zaaroor M (2005) Monitoring of cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma 22:955–965

    Article  PubMed  Google Scholar 

  57. Sugar O, Gerard RW (1938) Anoxia and brain potential. J Neurosci 1:558–572

    Google Scholar 

  58. Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H (2012) The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 90:713–738

    Article  PubMed  CAS  Google Scholar 

  59. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, Glenn TC, McArthur DL, Hovda DA (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

    Article  PubMed  CAS  Google Scholar 

  60. Wei EP, Dietrich WD, Povlishock JT, Navari RM, Kontos HA (1980) Functional, morphological, and metabolic abnormalities of the cerebral microcirculation after concussive brain injury in cats. Circ Res 46:37–47

    Article  PubMed  CAS  Google Scholar 

  61. Winkler EA, Bell RD, Zlokovic BV (2011) Central nervous system pericytes in health and disease. Nat Neurosci 14(11):1398–1405

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene V. Golanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Golanov, E.V. (2014). Isolated Blood Vessel Models for Studying Trauma. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_19

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics