Skip to main content

Biomaterials for CNS Injury

  • Chapter
  • First Online:
Vascular Mechanisms in CNS Trauma

Part of the book series: Springer Series in Translational Stroke Research ((SSTSR,volume 5))

  • 1435 Accesses

Abstract

Given the complexity of the tissue environment after CNS injury, appropriate delivery and deployment of therapeutic agents (e.g. small molecules, nucleic acids, proteins and cells) are as critical as the identification of the therapeutic agents themselves. Biomaterials are non-viable materials devised to interact with biological systems. Taking a plethora of forms ranging from nanoparticles, microspheres, porous scaffolds and hydrogels, biomaterials can be designed to interact with the injured CNS on a molecular, cellular or even tissue level. They have naturally emerged as powerful tools that can navigate therapeutic agents through the spatial and temporal challenges of the ever-evolving milieu in the injured CNS. This chapter highlights the roles that biomaterials play in neuroprotection, repair and regeneration (by protecting molecules and targeting them toward the CNS, sustaining long-term release of drugs and providing structural support for endogenous/transplanted cells) and details the strategies they employ in each of these roles. Overall, the numerous applications of biomaterials in the injured CNS not only illustrate the state of the art but also reflect the trend of biomaterials becoming increasingly engaged in an intimate partnership with therapeutic agents to ultimately materialize effective treatment for CNS injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reddy MK, Labhasetwar V (2009) Nanoparticle-mediated delivery of superoxide dismutase to the brain: an effective strategy to reduce ischemia-reperfusion injury. FASEB J 23(5):1384–1395. doi:10.1096/fj.08-116947

    Article  CAS  PubMed  Google Scholar 

  2. Chen H, Spagnoli F, Burris M, Rolland WB, Fajilan A, Dou HY, Tang JP, Zhang JH (2012) Nanoerythropoietin is 10-times more effective than regular erythropoietin in neuroprotection in a neonatal rat model of hypoxia and ischemia. Stroke 43(3):884–887. doi:10.1161/Strokeaha.111.637090

    Article  CAS  PubMed  Google Scholar 

  3. Kawaguchi AT, Fukumoto D, Haida M, Ogata Y, Yamano M, Tsukada H (2007) Liposome-encapsulated hemoglobin reduces the size of cerebral infarction in the rat: evaluation with photochemically induced thrombosis of the middle cerebral artery. Stroke 38(5):1626–1632. doi:10.1161/STROKEAHA.106.467290

    Article  CAS  PubMed  Google Scholar 

  4. Chen CL, Chang SF, Lee D, Yang LY, Lee YH, Hsu CY, Lin SJ, Liaw J (2008) Bioavailability effect of methylprednisolone by polymeric micelles. Pharm Res 25(1):39–47. doi:10.1007/s11095-007-9484-0

    Article  PubMed  Google Scholar 

  5. Alconcel SNS, Baas AS, Maynard HD (2011) FDA-approved poly(ethylene glycol)-protein conjugate drugs. Polym Chem 2(7):1442–1448. doi:10.1039/C1py00034a

    Article  CAS  Google Scholar 

  6. Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307(1):93–102. doi:10.1016/J.Ijpharm.2005.10.010

    Article  CAS  PubMed  Google Scholar 

  7. Calvo P, Gouritin B, Chacun H, Desmaele D, D’Angelo J, Noel JP, Georgin D, Fattal E, Andreux JP, Couvreur P (2001) Long-circulating PEGylated polycyanoacrylate nanoparticles as new drug carrier for brain delivery. Pharm Res 18(8):1157–1166. doi:10.1023/A:1010931127745

    Article  CAS  PubMed  Google Scholar 

  8. Nance EA, Woodworth GF, Sailor KA, Shih TY, Xu QG, Swaminathan G, Xiang D, Eberhart C, Hanes J (2012) A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Sci Transl Med 4(149):149ra119

    Article  PubMed  Google Scholar 

  9. Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3–4):301–313

    Article  CAS  PubMed  Google Scholar 

  10. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, Kiwada H (2006) Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release 112(1):15–25. doi:10.1016/j.jconrel.2006.01.005

    Article  CAS  PubMed  Google Scholar 

  11. Ishihara T, Maeda T, Sakamoto H, Takasaki N, Shigyo M, Ishida T, Kiwada H, Mizushima Y, Mizushima T (2010) Evasion of the accelerated blood clearance phenomenon by coating of nanoparticles with various hydrophilic polymers. Biomacromolecules 11(10):2700–2706. doi:10.1021/Bm100754e

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Chi N, Tang X (2008) Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting. Eur J Pharm Biopharm 70(3):735–740. doi:10.1016/j.ejpb.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  13. Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL (2010) Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci 99(4):1745–1761. doi:10.1002/jps.21939

    CAS  PubMed  Google Scholar 

  14. Karatas H, Aktas Y, Gursoy-Ozdemir Y, Bodur E, Yemisci M, Caban S, Vural A, Pinarbasli O, Capan Y, Fernandez-Megia E, Novoa-Carballal R, Riguera R, Andrieux K, Couvreur P, Dalkara T (2009) A nanomedicine transports a peptide caspase-3 inhibitor across the blood–brain barrier and provides neuroprotection. J Neurosci 29(44):13761–13769. doi:10.1523/JNEUROSCI.4246-09.2009

    Article  CAS  PubMed  Google Scholar 

  15. Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, Ling EA, Moochhala S, Yang YY (2008) Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood–brain barrier. Biomaterials 29(10):1509–1517. doi:10.1016/j.biomaterials.2007.11.014

    Article  CAS  PubMed  Google Scholar 

  16. Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F (2005) Peptide-derivatized biodegradable nanoparticles able to cross the blood–brain barrier. J Control Release 108(1):84–96. doi:10.1016/j.jconrel.2005.07.013

    Article  CAS  PubMed  Google Scholar 

  17. Ke W, Shao K, Huang R, Han L, Liu Y, Li J, Kuang Y, Ye L, Lou J, Jiang C (2009) Gene delivery targeted to the brain using an Angiopep-conjugated polyethyleneglycol-modified polyamidoamine dendrimer. Biomaterials 30(36):6976–6985. doi:10.1016/j.biomaterials.2009.08.049

    Article  CAS  PubMed  Google Scholar 

  18. Goppert TM, Muller RH (2005) Polysorbate-stabilized solid lipid nanoparticles as colloidal carriers for intravenous targeting of drugs to the brain: comparison of plasma protein adsorption patterns. J Drug Target 13(3):179–187. doi:10.1080/10611860500071292

    Article  PubMed  Google Scholar 

  19. Gao X, Tao W, Lu W, Zhang Q, Zhang Y, Jiang X, Fu S (2006) Lectin-conjugated PEG-PLA nanoparticles: preparation and brain delivery after intranasal administration. Biomaterials 27(18):3482–3490. doi:10.1016/j.biomaterials.2006.01.038

    Article  CAS  PubMed  Google Scholar 

  20. Gao X, Chen J, Tao W, Zhu J, Zhang Q, Chen H, Jiang X (2007) UEA I-bearing nanoparticles for brain delivery following intranasal administration. Int J Pharm 340(1–2):207–215. doi:10.1016/j.ijpharm.2007.03.039

    Article  CAS  PubMed  Google Scholar 

  21. Heffernan C, Sumer H, Guillemin GJ, Manuelpillai U, Verma PJ (2012) Design and screening of a glial cell-specific, cell penetrating peptide for therapeutic applications in multiple sclerosis. PLoS One 7(9):e45501. doi:10.1371/journal.pone.0045501

    Article  CAS  PubMed  Google Scholar 

  22. Liu JK, Teng Q, Garrity-Moses M, Federici T, Tanase D, Imperiale MJ, Boulis NM (2005) A novel peptide defined through phage display for therapeutic protein and vector neuronal targeting. Neurobiol Dis 19(3):407–418. doi:10.1016/j.nbd.2005.01.022

    Article  PubMed  Google Scholar 

  23. Lanza GM, Marsh JN, Hu G, Scott MJ, Schmieder AH, Caruthers SD, Pan D, Wickline SA (2010) Rationale for a nanomedicine approach to thrombolytic therapy. Stroke 41(10 suppl):S42–S44. doi:10.1161/STROKEAHA.110.598656

    Article  PubMed  Google Scholar 

  24. Takamiya M, Miyamoto Y, Yamashita T, Deguchi K, Ohta Y, Abe K (2012) Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice. Neuroscience 221:47–55. doi:10.1016/j.neuroscience.2012.06.060

    Article  CAS  PubMed  Google Scholar 

  25. Bitner BR, Marcano DC, Berlin JM, Fabian RH, Cherian L, Culver JC, Dickinson ME, Robertson CS, Pautler RG, Kent TA, Tour JM (2012) Antioxidant carbon particles improve cerebrovascular dysfunction following traumatic brain injury. ACS Nano 6(9):8007–8014. doi:10.1021/N0302615f

    Article  CAS  PubMed  Google Scholar 

  26. Pavinatto FJ, Pavinatto A, Caseli L, dos Santos DS, Nobre TM, Zaniquelli MED, Oliveira ON (2007) Interaction of chitosan with cell membrane models at the air-water interface. Biomacromolecules 8(5):1633–1640. doi:10.1021/Bm0701550

    Article  CAS  PubMed  Google Scholar 

  27. Cho Y, Shi R, Ben Borgens R (2010) Chitosan nanoparticle-based neuronal membrane sealing and neuroprotection following acrolein-induced cell injury. J Biol Eng 4(1):2. doi:10.1186/1754-1611-4-2

    Article  PubMed  Google Scholar 

  28. Gupta D, Tator CH, Shoichet MS (2006) Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials 27(11):2370–2379. doi:10.1016/J.Biomaterials.2005.11.015

    Article  CAS  PubMed  Google Scholar 

  29. Kang CE, Poon PC, Tator CH, Shoichet MS (2009) A new paradigm for local and sustained release of therapeutic molecules to the injured spinal cord for neuroprotection and tissue repair. Tissue Eng Part A 15(3):595–604. doi:10.1089/Ten.Tea.2007.0349

    Article  CAS  PubMed  Google Scholar 

  30. Cooke MJ, Wang YF, Morshead CM, Shoichet MS (2011) Controlled epi-cortical delivery of epidermal growth factor for the stimulation of endogenous neural stem cell proliferation in stroke-injured brain. Biomaterials 32(24):5688–5697. doi:10.1016/J.Biomaterials.2011.04.032

    Article  CAS  PubMed  Google Scholar 

  31. Wang YF, Cooke MJ, Morshead CM, Shoichet MS (2012) Hydrogel delivery of erythropoietin to the brain for endogenous stem cell stimulation after stroke injury. Biomaterials 33(9):2681–2692. doi:10.1016/J.Biomaterials.2011.12.031

    Article  CAS  PubMed  Google Scholar 

  32. Pean JM, Menei P, Morel O, Montero-Menei CN, Benoit JP (2000) Intraseptal implantation of NGF-releasing microspheres promote the survival of axotomized cholinergic neurons. Biomaterials 21(20):2097–2101. doi:10.1016/S0142-9612(00)00141-1

    Article  CAS  PubMed  Google Scholar 

  33. Lee H, McKeon RJ, Bellamkonda RV (2010) Sustained delivery of thermostabilized chABC enhances axonal sprouting and functional recovery after spinal cord injury. Proc Natl Acad Sci U S A 107(8):3340–3345. doi:10.1073/Pnas.0905437106

    Article  CAS  PubMed  Google Scholar 

  34. Ikada Y, Tabata Y (1998) Protein release from gelatin matrices. Adv Drug Deliv Rev 31(3):287–301

    Article  PubMed  Google Scholar 

  35. Nakaguchi K, Jinnou H, Kaneko N, Sawada M, Hikita T, Saitoh S, Tabata Y, Sawamoto K (2012) Growth factors released from gelatin hydrogel microspheres increase new neurons in the adult mouse brain. Stem Cells Int 2012:915160. doi:10.1155/2012/915160

    PubMed  Google Scholar 

  36. Sakiyama-Elbert SE, Hubbell JA (2000) Development of fibrin derivatives for controlled release of heparin-binding growth factors. J Control Release 65(3):389–402

    Article  CAS  PubMed  Google Scholar 

  37. Taylor SJ, Rosenzweig ES, McDonald JW III, Sakiyama-Elbert SE (2006) Delivery of neurotrophin-3 from fibrin enhances neuronal fiber sprouting after spinal cord injury. J Control Release 113(3):226–235. doi:10.1016/j.jconrel.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  38. Ma J, Tian WM, Hou SP, Xu QY, Spector M, Cui FZ (2007) An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomed Mater 2(4):233–240. doi:10.1088/1748-6041/2/4/005

    Article  CAS  PubMed  Google Scholar 

  39. Wei YT, He Y, Xu CL, Wang Y, Liu BF, Wang XM, Sun XD, Cui FZ, Xu QY (2010) Hyaluronic acid hydrogel modified with nogo-66 receptor antibody and poly-L-lysine to promote axon regrowth after spinal cord injury. J Biomed Mater Res B Appl Biomater 95(1):110–117. doi:10.1002/jbm.b.31689

    PubMed  Google Scholar 

  40. Yano A, Shingo T, Takeuchi A, Yasuhara T, Kobayashi K, Takahashi K, Muraoka K, Matsui T, Miyoshi Y, Hamada H, Date I (2005) Encapsulated vascular endothelial growth factor-secreting cell grafts have neuroprotective and angiogenic effects on focal cerebral ischemia. J Neurosurg 103(1):104–114. doi:10.3171/jns.2005.103.1.0104

    Article  CAS  PubMed  Google Scholar 

  41. Tobias CA, Dhoot NO, Wheatley MA, Tessler A, Murray M, Fischer I (2001) Grafting of encapsulated BDNF-producing fibroblasts into the injured spinal cord without immune suppression in adult rats. J Neurotrauma 18(3):287–301. doi:10.1089/08977150151070937

    Article  CAS  PubMed  Google Scholar 

  42. Winn SR, Lindner MD, Lee A, Haggett G, Francis JM, Emerich DF (1996) Polymer-encapsulated genetically modified cells continue to secrete human nerve growth factor for over one year in rat ventricles: behavioral and anatomical consequences. Exp Neurol 140(2):126–138. doi:10.1006/exnr.1996.0123

    Article  CAS  PubMed  Google Scholar 

  43. Baumann MD, Kang CE, Stanwick JC, Wang Y, Kim H, Lapitsky Y, Shoichet MS (2009) An injectable drug delivery platform for sustained combination therapy. J Control Release 138(3):205–213. doi:10.1016/j.jconrel.2009.05.009

    Article  CAS  PubMed  Google Scholar 

  44. Perale G, Rossi F, Santoro M, Peviani M, Papa S, Llupi D, Torriani P, Micotti E, Previdi S, Cervo L, Sundstrom E, Boccaccini AR, Masi M, Forloni G, Veglianese P (2012) Multiple drug delivery hydrogel system for spinal cord injury repair strategies. J Control Release 159(2):271–280. doi:10.1016/j.jconrel.2011.12.025

    Article  CAS  PubMed  Google Scholar 

  45. Wang Y, Wei YT, Zu ZH, Ju RK, Guo MY, Wang XM, Xu QY, Cui FZ (2011) Combination of hyaluronic acid hydrogel scaffold and PLGA microspheres for supporting survival of neural stem cells. Pharm Res 28(6):1406–1414. doi:10.1007/s11095-011-0452-3

    Article  CAS  PubMed  Google Scholar 

  46. Lin CC, Metters AT (2008) Bifunctional monolithic affinity hydrogels for dual-protein delivery. Biomacromolecules 9(3):789–795. doi:10.1021/bm700940w

    Article  CAS  PubMed  Google Scholar 

  47. Tauro JR, Gemeinhart RA (2005) Matrix metalloprotease triggered delivery of cancer chemotherapeutics from hydrogel matrixes. Bioconjug Chem 16(5):1133–1139. doi:10.1021/bc0501303

    Article  CAS  PubMed  Google Scholar 

  48. Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, Gorostiza O, Wang X, Greenberg DA (2010) Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30(3):534–544. doi:10.1038/jcbfm.2009.219

    Article  PubMed  Google Scholar 

  49. Hejcl A, Sedy J, Kapcalova M, Toro DA, Amemori T, Lesny P, Likavcanova-Masinova K, Krumbholcova E, Pradny M, Michalek J, Burian M, Hajek M, Jendelova P, Sykova E (2010) HPMA-RGD hydrogels seeded with mesenchymal stem cells improve functional outcome in chronic spinal cord injury. Stem Cells Dev 19(10):1535–1546. doi:10.1089/scd.2009.0378

    Article  CAS  PubMed  Google Scholar 

  50. Ellis-Behnke RG, Liang YX, You SW, Tay DK, Zhang S, So KF, Schneider GE (2006) Nano neuro knitting: peptide nanofiber scaffold for brain repair and axon regeneration with functional return of vision. Proc Natl Acad Sci U S A 103(13):5054–5059. doi:10.1073/pnas.0600559103

    Article  CAS  PubMed  Google Scholar 

  51. Huang KF, Hsu WC, Chiu WT, Wang JY (2012) Functional improvement and neurogenesis after collagen-GAG matrix implantation into surgical brain trauma. Biomaterials 33(7):2067–2075. doi:10.1016/j.biomaterials.2011.11.040

    Article  CAS  PubMed  Google Scholar 

  52. Park KI, Teng YD, Snyder EY (2002) The injured brain interacts reciprocally with neural stem cells supported by scaffolds to reconstitute lost tissue. Nat Biotechnol 20(11):1111–1117. doi:10.1038/nbt751

    Article  CAS  PubMed  Google Scholar 

  53. Elias PZ, Spector M (2012) Implantation of a collagen scaffold seeded with adult rat hippocampal progenitors in a rat model of penetrating brain injury. J Neurosci Methods 209(1):199–211. doi:10.1016/j.jneumeth.2012.06.003

    Article  CAS  PubMed  Google Scholar 

  54. Cholas RH, Hsu HP, Spector M (2012) The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model. Biomaterials 33(7):2050–2059. doi:10.1016/j.biomaterials.2011.11.028

    Article  CAS  PubMed  Google Scholar 

  55. Zeng X, Zeng YS, Ma YH, Lu LY, Du BL, Zhang W, Li Y, Chan WY (2011) Bone marrow mesenchymal stem cells in a three dimensional gelatin sponge scaffold attenuate inflammation. Promote angiogenesis and reduce cavity formation in experimental spinal cord injury. Cell Transplant 20(11–12):1881–1899. doi:10.3727/096368911X566181

    Article  PubMed  Google Scholar 

  56. Tate CC, Shear DA, Tate MC, Archer DR, Stein DG, LaPlaca MC (2009) Laminin and fibronectin scaffolds enhance neural stem cell transplantation into the injured brain. J Tissue Eng Regen Med 3(3):208–217. doi:10.1002/term.154

    Article  CAS  PubMed  Google Scholar 

  57. Hou S, Xu Q, Tian W, Cui F, Cai Q, Ma J, Lee IS (2005) The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Methods 148(1):60–70. doi:10.1016/j.jneumeth.2005.04.016

    Article  CAS  PubMed  Google Scholar 

  58. Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M (2001) Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel). Biomaterials 22(10):1095–1111

    Article  CAS  PubMed  Google Scholar 

  59. Wei YT, Tian WM, Yu X, Cui FZ, Hou SP, Xu QY, Lee IS (2007) Hyaluronic acid hydrogels with IKVAV peptides for tissue repair and axonal regeneration in an injured rat brain. Biomed Mater 2(3):S142–S146

    Article  CAS  PubMed  Google Scholar 

  60. Fukushima K, Enomoto M, Tomizawa S, Takahashi M, Wakabayashi Y, Itoh S, Kuboki Y, Shinomiya K (2008) The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord. J Med Dent Sci 55(1):71–79

    PubMed  Google Scholar 

  61. Aota S, Nomizu M, Yamada KM (1994) The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269(40):24756–24761

    CAS  PubMed  Google Scholar 

  62. Potter W, Kalil RE, Kao WJ (2008) Biomimetic material systems for neural progenitor cell-based therapy. Front Biosci 13:806–821

    Article  CAS  PubMed  Google Scholar 

  63. Prang P, Muller R, Eljaouhari A, Heckmann K, Kunz W, Weber T, Faber C, Vroemen M, Bogdahn U, Weidner N (2006) The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27(19):3560–3569. doi:10.1016/j.biomaterials.2006.01.053

    CAS  PubMed  Google Scholar 

  64. Stokols S, Sakamoto J, Breckon C, Holt T, Weiss J, Tuszynski MH (2006) Templated agarose scaffolds support linear axonal regeneration. Tissue Eng 12(10):2777–2787. doi:10.1089/ten.2006.12.2777

    Article  CAS  PubMed  Google Scholar 

  65. Chen BK, Knight AM, de Ruiter GCW, Spinner RJ, Yaszemski MJ, Currier BL, Windebank AJ (2009) Axon regeneration through scaffold into distal spinal cord after transection. J Neurotrauma 26(10):1759–1771. doi:10.1089/Neu.2008.0610

    Article  PubMed  Google Scholar 

  66. Chow WN, Simpson DG, Bigbee JW, Colello RJ (2007) Evaluating neuronal and glial growth on electrospun polarized matrices: bridging the gap in percussive spinal cord injuries. Neuron Glia Biol 3:119–126. doi:10.1017/S1740925x07000580

    Article  PubMed  Google Scholar 

  67. Hurtado A, Cregg JM, Wang HB, Wendell DF, Oudega M, Gilbert RJ, McDonald JW (2011) Robust CNS regeneration after complete spinal cord transection using aligned poly-L-lactic acid microfibers. Biomaterials 32(26):6068–6079. doi:10.1016/J.Biomaterials.2011.05.006

    CAS  PubMed  Google Scholar 

  68. Stokols S, Tuszynski MH (2004) The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25(27):5839–5846. doi:10.1016/j.biomaterials.2004.01.041

    Article  CAS  PubMed  Google Scholar 

  69. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, Langer R, Snyder EY (2002) Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 99(5):3024–3029. doi:10.1073/pnas.052678899

    Article  CAS  PubMed  Google Scholar 

  70. Wong DY, Krebsbach PH, Hollister SJ (2008) Brain cortex regeneration affected by scaffold architectures. J Neurosurg 109(4):715–722. doi:10.3171/JNS/2008/109/10/0715

    Article  PubMed  Google Scholar 

  71. Nisbet DR, Rodda AE, Horne MK, Forsythe JS, Finkelstein DI (2009) Neurite infiltration and cellular response to electrospun polycaprolactone scaffolds implanted into the brain. Biomaterials 30(27):4573–4580

    Article  CAS  PubMed  Google Scholar 

  72. Miller C, Jeftinija S, Mallapragada S (2002) Synergistic effects of physical and chemical guidance cues on neurite alignment and outgrowth on biodegradable polymer substrates. Tissue Eng 8(3):367–378. doi:10.1089/107632702760184646

    Article  CAS  PubMed  Google Scholar 

  73. Mahoney MJ, Chen RR, Tan J, Saltzman WM (2005) The influence of microchannels on neurite growth and architecture. Biomaterials 26(7):771–778. doi:10.1016/j.biomaterials.2004.03.015

    Article  CAS  PubMed  Google Scholar 

  74. Dowell-Mesfin NM, Abdul-Karim MA, Turner AM, Schanz S, Craighead HG, Roysam B, Turner JN, Shain W (2004) Topographically modified surfaces affect orientation and growth of hippocampal neurons. J Neural Eng 1(2):78–90. doi:10.1088/1741-2560/1/2/003

    Article  CAS  PubMed  Google Scholar 

  75. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  76. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95(9):4426–4438. doi:10.1529/biophysj.108.132217

    Article  CAS  PubMed  Google Scholar 

  77. Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30(36):6867–6878. doi:10.1016/j.biomaterials.2009.09.002

    Article  CAS  PubMed  Google Scholar 

  78. Lee YS, Arinzeh TL (2012) The influence of piezoelectric scaffolds on neural differentiation of human neural stem/progenitor cells. Tissue Eng Part A 18(19–20):2063–2072. doi:10.1089/ten.TEA.2011.0540

    Article  CAS  PubMed  Google Scholar 

  79. Cellot G, Cilia E, Cipollone S, Rancic V, Sucapane A, Giordani S, Gambazzi L, Markram H, Grandolfo M, Scaini D, Gelain F, Casalis L, Prato M, Giugliano M, Ballerini L (2009) Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat Nanotechnol 4(2):126–133. doi:10.1038/nnano.2008.374

    Article  CAS  PubMed  Google Scholar 

  80. Cellot G, Toma FM, Varley ZK, Laishram J, Villari A, Quintana M, Cipollone S, Prato M, Ballerini L (2011) Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial-tissue interactions. J Neurosci 31(36):12945–12953. doi:10.1523/JNEUROSCI.1332-11.2011

    Article  CAS  PubMed  Google Scholar 

  81. Lim TC, Toh WS, Wang LS, Kurisawa M, Spector M (2012) The effect of injectable gelatin-hydroxyphenylpropionic acid hydrogel matrices on the proliferation, migration, differentiation and oxidative stress resistance of adult neural stem cells. Biomaterials 33(12):3446–3455. doi:10.1016/j.biomaterials.2012.01.037

    Article  CAS  PubMed  Google Scholar 

  82. Bencherif SA, Sands RW, Bhatta D, Arany P, Verbeke CS, Edwards DA, Mooney DJ (2012) Injectable preformed scaffolds with shape-memory properties. Proc Natl Acad Sci U S A 109(48):19590–19595. doi:10.1073/pnas.1211516109

    Article  CAS  PubMed  Google Scholar 

  83. Johnson PJ, Tatara A, Shiu A, Sakiyama-Elbert SE (2010) Controlled release of neurotrophin-3 and platelet-derived growth factor from fibrin scaffolds containing neural progenitor cells enhances survival and differentiation into neurons in a subacute model of SCI. Cell Transplant 19(1):89–101. doi:10.3727/096368909X477273

    Article  PubMed  Google Scholar 

  84. Bible E, Qutachi O, Chau DY, Alexander MR, Shakesheff KM, Modo M (2012) Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials 33(30):7435–7446. doi:10.1016/j.biomaterials.2012.06.085

    Article  CAS  PubMed  Google Scholar 

  85. Cholas R, Hsu HP, Spector M (2012) Collagen scaffolds incorporating select therapeutic agents to facilitate a reparative response in a standardized hemiresection defect in the rat spinal cord. Tissue Eng Part A 18(19–20):2158–2172. doi:10.1089/ten.TEA.2011.0577

    Article  CAS  PubMed  Google Scholar 

  86. Guo X, Zahir T, Mothe A, Shoichet MS, Morshead CM, Katayama Y, Tator CH (2012) The effect of growth factors and soluble nogo-66 receptor protein on transplanted neural stem/progenitor survival and axonal regeneration after complete transection of rat spinal cord. Cell Transplant 21(6):1177–1197. doi:10.3727/096368911X612503

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron Spector .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lim, T.C., Spector, M. (2014). Biomaterials for CNS Injury. In: Lo, E., Lok, J., Ning, M., Whalen, M. (eds) Vascular Mechanisms in CNS Trauma. Springer Series in Translational Stroke Research, vol 5. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8690-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8690-9_18

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8689-3

  • Online ISBN: 978-1-4614-8690-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics