Stem Cells for Neurovascular Repair in CNS Trauma

  • Mibel M. Pabón
  • Travis Dailey
  • Naoki Tajiri
  • Kazutaka Shinozuka
  • Hiroto Ishikawa
  • Sandra Acosta
  • Yuji Kaneko
  • Cesar V. Borlongan
Chapter
Part of the Springer Series in Translational Stroke Research book series (SSTSR, volume 5)

Abstract

Stem cells exert therapeutic effects for central nervous system (CNS) trauma. Accumulating evidence reveals that stem cell-based therapies for CNS trauma can be achieved via transplantation of exogenous stem cells or stimulation of endogenous stem cells from the neurogenic niches of subventricular zone and subgranular zone, or recruited from the bone marrow through peripheral circulation. In this chapter, we review the different sources of stem cells that have been tested in animal models of CNS trauma, highlighting the research progress on stem cell-based therapeutics in stroke and their extension to traumatic brain injury (TBI). In addition, we discuss specific mechanisms of action, in particular neurovascular repair by endothelial progenitor cells, as key translational research for advancing the clinical applications of stem cells for CNS trauma.

Keywords

Permeability Migration Ischemia Lactate Superoxide 

Notes

Disclosures/Conflict of Interests: CVB is supported by NIH NINDS 5U01NS055914-04 and NIH NINDS R01NS071956-01, James and Esther King Foundation for Biomedical Research Program, and receives research grant support for his projects on bone marrow stem cell therapy for stroke from SanBio Inc., Celgene Cellular Therapeutics, KMPHC and NeuralStem Inc.

References

  1. 1.
    Faul M, Xu L, Wald MM, Coronado VG (2010) Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Centers for Disease Control and Prevention, National Center for Injury Prevention and Control, Atlanta, GAGoogle Scholar
  2. 2.
    Centers for Disease Control and Prevention (CDC), National Center for Injury Prevention and Control (2003) Report to Congress on mild traumatic brain injury in the United States: steps to prevent a serious public health problem. Centers for Disease Control and Prevention, Atlanta, GAGoogle Scholar
  3. 3.
    Brooks A, Lindstrom J, McCray J et al (1995) Cost of medical care for a population-based sample of persons surviving traumatic brain injury. J Head Trauma Rehabil 10:1–13Google Scholar
  4. 4.
    Oladunjoye AO, Schrot RJ, Zwienenberg-Lee M, Muizelaar JP, Shahlaie K (2013) Decompressive craniectomy using gelatin film and future bone flap replacement. J Neurosurg 118(4):776–782PubMedGoogle Scholar
  5. 5.
    Swadron SP, LeRoux P, Smith WS, Weingart SD (2012) Emergency neurological life support: traumatic brain injury. Neurocrit Care 17:S112–S121PubMedGoogle Scholar
  6. 6.
    Farahvar A, Gerber LM, Chiu YL, Carney N, Hartl R, Ghajar J (2012) Increased mortality in patients with severe traumatic brain injury treated without intracranial pressure monitoring. J Neurosurg 117:729–734PubMedGoogle Scholar
  7. 7.
    Bor-Seng-Shu E, Figueiredo EG, Amorim RL, Teixeira MJ, Valbuza JS, de Oliveira MM, Panerai RB (2012) Decompressive craniectomy: a meta-analysis of influences on intracranial pressure and cerebral perfusion pressure in the treatment of traumatic brain injury. J Neurosurg 117:589–596PubMedGoogle Scholar
  8. 8.
    Bor-Seng-Shu E, Figueiredo EG, Fonoff ET, Fujimoto Y, Panerai RB, Teixeira MJ (2013) Decompressive craniectomy and head injury: brain morphometry, ICP, cerebral hemodynamics, cerebral microvascular reactivity, and neurochemistry. Neurosurg Rev 36(3):361–370PubMedGoogle Scholar
  9. 9.
    Brasure M, Lamberty GJ, Sayer NA, Nelson NW, MacDonald R, Ouellette J, Tacklind J, Grove M, Rutks IR, Butler ME, Kane RL, Wilt TJ (2012) Multidisciplinary postacute rehabilitation for moderate to severe traumatic brain injury in adults [internet]. Agency for Healthcare Research and Quality (US), Rockville, MDGoogle Scholar
  10. 10.
    Brasure M, Lamberty GJ, Sayer NA, Nelson NW, Macdonald R, Ouellette J, Wilt TJ (2013) Participation after multidisciplinary rehabilitation for moderate to severe traumatic brain injury in adults: a systematic review. Arch Phys Med Rehabil 94(7):1398–1420PubMedGoogle Scholar
  11. 11.
    Krawczyk DC, Marquez de la Plata C, Schauer GF, Vas AK, Keebler M, Tuthill S, Gardner C, Jantz T, Yu W, Chapman SB (2013) Evaluating the effectiveness of reasoning training in military and civilian chronic traumatic brain injury patients: study protocol. Trials 14:29PubMedGoogle Scholar
  12. 12.
    Brown JM, Deriso DM, Tansey KE (2012) From contemporary rehabilitation to restorative neurology. Clin Neurol Neurosurg 114:471–474PubMedGoogle Scholar
  13. 13.
    Ploughman M (2008) Exercise is brain food: the effects of physical activity on cognitive function. Dev Neurorehabil 11:236–240PubMedGoogle Scholar
  14. 14.
    Zafonte RD, Bagiella E, Ansel BM, Novack TA, Friedewald WT, Hesdorffer DC, Timmons SD, Jallo J, Eisenberg H, Hart T, Ricker JH, Diaz-Arrastia R, Merchant RE, Temkin NR, Melton S, Dikmen SS (2012) Effect of citicoline on functional and cognitive status among patients with traumatic brain injury: citicoline brain injury treatment trial (COBRIT). JAMA 308:1993–2000PubMedGoogle Scholar
  15. 15.
    Sánchez-Aguilar M, Tapia-Pérez JH, Sánchez-Rodríguez JJ, Viñas-Ríos JM, Martínez-Pérez P, de la Cruz-Mendoza E, Sánchez-Reyna M, Torres-Corzo JG, Gordillo-Moscoso A (2013) Effect of rosuvastatin on cytokines after traumatic head injury. J Neurosurg 118:669–675PubMedGoogle Scholar
  16. 16.
    McConeghy KW, Hatton J, Hughes L, Cook AM (2012) A review of neuroprotection pharmacology and therapies in patients with acute traumatic brain injury. CNS Drugs 26:613–636PubMedGoogle Scholar
  17. 17.
    Stein DG (2013) A clinical/translational perspective: can a developmental hormone play a role in the treatment of traumatic brain injury? Horm Behav 63:291–300PubMedGoogle Scholar
  18. 18.
    Stein SC et al (2009) Erythrocyte-bound tissue plasminogen activator is neuroprotective in experimental traumatic brain injury. J Neurotrauma 26:1585–1592PubMedGoogle Scholar
  19. 19.
    Fox JL, Vu EN, Doyle-Waters M, Brubacher JR, Abu-Laban R, Hu Z (2010) Prophylactic hypothermia for traumatic brain injury: a quantitative systematic review. CJEM 12:355–364PubMedGoogle Scholar
  20. 20.
    Joan Abbott N, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37:13–25PubMedGoogle Scholar
  21. 21.
    Gaetz M (2004) The neurophysiology of brain injury. Clin Neurophysiol 115(1):4–18PubMedGoogle Scholar
  22. 22.
    Zweckberger K et al (2006) Effect of early and delayed decompressive craniectomy on secondary brain damage after controlled cortical impact in mice. J Neurotrauma 23:1083–1093PubMedGoogle Scholar
  23. 23.
    Rhodes J (2011) Peripheral immune cells in the pathology of traumatic brain injury? Curr Opin Crit Care 17:122–130PubMedGoogle Scholar
  24. 24.
    Beaumont A et al (2006) Bolus tracer delivery measured by MRI confirms edema without blood–brain barrier permeability in diffuse traumatic brain injury. Acta Neurochir Suppl 96:171–174PubMedGoogle Scholar
  25. 25.
    Soares HD, Hicks RR, Smith D, McIntosh TK (1995) Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. J Neurosci 15:8223–8233PubMedGoogle Scholar
  26. 26.
    Toda H, Takahashi J, Iwakami N (2001) Grafting neural cells improved the impaired spatial recognition in ischemic rats. Neurosci Lett 31:9–12Google Scholar
  27. 27.
    Ferrari A, Ehler E, Nitsch RM, Gotz J (2000) Immature human NT2 cells grafted into mouse brain differentiate into neuronal and glial cell types. FEBS Lett 486:121–125PubMedGoogle Scholar
  28. 28.
    Borlongan CV, Tajima Y, Trojanowski JQ, Lee VM, Sanberg PR (1998) Transplantation of cryopreserved human embryonal carcinoma-derived neurons (NT2N cells) promotes functional recovery in ischemic rats. Exp Neurol 149:310–321PubMedGoogle Scholar
  29. 29.
    Veizovic T, Beech JS, Stroemer PR, Watson WP, Hodges H (2001) Resolution of stroke deficits following contralateral grafts of conditionally immortal neuroepithelial stem cells. Stroke 32:1012–1019PubMedGoogle Scholar
  30. 30.
    Modo M, Stroemer RP, Tang E, Veizovic T, Sowniski P, Hodges H (2000) Neurological sequelae and long-term behavioural assessment of rats with transient middle cerebral artery occlusion. J Neurosci Methods 104:99–109PubMedGoogle Scholar
  31. 31.
    Englund U, Bjorklund A, Wictorin K, Lindvall O, Kokaia M (2002) Grafted neural stem cells develop into functional pyramidal neurons and integrate into host cortical circuitry. Proc Natl Acad Sci U S A 99:17089–17094PubMedGoogle Scholar
  32. 32.
    Kopen GC, Prockop DJ, Phinney DG (1999) Marrow stromal cells migrate through out forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci U S A 96:10711–10716PubMedGoogle Scholar
  33. 33.
    Chen J, Li Y, Chopp M (2000) Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 39:711–716PubMedGoogle Scholar
  34. 34.
    Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu XY, Zhang Z (2000) Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20:1311–1319PubMedGoogle Scholar
  35. 35.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370PubMedGoogle Scholar
  36. 36.
    Munoz-Elias G, Marcus AJ, Coyne M, Woodbury D, Black IB (2004) Adult bone marrow stromal cells in the embryonic brain: engraftment, migration, differentiation, and long-term survival. J Neurosci 24:4585–4595PubMedGoogle Scholar
  37. 37.
    Borlongan CV, Hadman M, Davis C, Sanberg PR (2004) CNS entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385–2389PubMedGoogle Scholar
  38. 38.
    Eglitis MA, Mezey E (1997) Hematopoietic cell differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci U S A 94:4080–4085PubMedGoogle Scholar
  39. 39.
    Li Y, Chen J, Wang L, Lu M, Chopp M (2001) Treatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology 56:1666–1672PubMedGoogle Scholar
  40. 40.
    Chen J, Sanberg PR, Li Y, Wang L, Lu M, Willing AE, Sanchez-Ramos J, Chopp M (2001) Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke 32:2682–2688PubMedGoogle Scholar
  41. 41.
    Hess DC, Hill WD, Martin-Studdard A, Carroll J, Brailer J, Carothers J (2002) Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke. Stroke 33:1362–1368PubMedGoogle Scholar
  42. 42.
    Willing AE, Milliken M, Poulos S, Zigova T, Song S, Davis CD et al (2003) Intravenous versus intrastriatal cord blood administration in a rodent model of stroke. J Neurosci Res 73:296–307PubMedGoogle Scholar
  43. 43.
    Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC et al (2003) Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 92:692–699PubMedGoogle Scholar
  44. 44.
    Ma H et al (2012) Neural stem cells over-expressing brain-derived neurotrophic factor (BDNF) stimulate synaptic protein expression and promote functional recovery following transplantation in rat model of traumatic brain injury. Neurochem Res 37:69–83PubMedGoogle Scholar
  45. 45.
    Mahmood A et al (2006) Long-term recovery after bone marrow stromal cell treatment of traumatic brain injury in rats. J Neurosurg 104:272–277PubMedGoogle Scholar
  46. 46.
    Qu C et al (2008) Treatment of traumatic brain injury in mice with marrow stromal cells. Brain Res 1208:234–239PubMedGoogle Scholar
  47. 47.
    Lu D et al (2007) Collagen scaffolds populated with human marrow stromal cells reduce lesion volume and improve functional outcome after traumatic brain injury. Neurosurgery 61:596–602PubMedGoogle Scholar
  48. 48.
    Harting MT et al (2009) Intravenous mesenchymal stem cell therapy for traumatic brain injury. J Neurosurg 110:1189–1197PubMedGoogle Scholar
  49. 49.
    Riess P et al (2002) Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1054PubMedGoogle Scholar
  50. 50.
    Hattiangady B, Shetty AK (2012) Neural stem cell grafting counteracts hippocampal injury-mediated impairments in mood, memory, and neurogenesis. Stem Cells Transl Med 1:696–708PubMedGoogle Scholar
  51. 51.
    Nichols JE et al (2013) Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2 + CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res Ther 4:3PubMedGoogle Scholar
  52. 52.
    Yan ZJ et al (2013) Neural stem-like cells derived from human amnion tissue are effective in treating traumatic brain injury in rat. Neurochem Res 38(5):1022–1033PubMedGoogle Scholar
  53. 53.
    Wallenquist U et al (2012) Ibuprofen attenuates the inflammatory response and allows formation of migratory neuroblasts from grafted stem cells after traumatic brain injury. Restor Neurol Neurosci 30:9–19PubMedGoogle Scholar
  54. 54.
    Shear DA et al (2011) Stem cell survival and functional outcome after traumatic brain injury is dependent on transplant timing and location. Restor Neurol Neurosci 29:215–225PubMedGoogle Scholar
  55. 55.
    Lee DH et al (2013) Functional recovery after injury of motor cortex in rats: effects of rehabilitation and stem cell transplantation in a traumatic brain injury model of cortical resection. Childs Nerv Syst 29:403–411PubMedGoogle Scholar
  56. 56.
    Giraldi-Guimaraes A et al (2012) Bone marrow mononuclear cells and mannose receptor expression in focal cortical ischemia. Brain Res 1452:173–184PubMedGoogle Scholar
  57. 57.
    Chuang TJ et al (2012) Effects of secretome obtained from normoxia-preconditioned human mesenchymal stem cells in traumatic brain injury rats. J Trauma Acute Care Surg 73:1161–1167PubMedGoogle Scholar
  58. 58.
    Walker PA et al (2012) Bone marrow-derived stromal cell therapy for traumatic brain injury is neuroprotective via stimulation of non-neurologic organ systems. Surgery 152:790–793PubMedGoogle Scholar
  59. 59.
    Tu Y et al (2012) Combination of temperature-sensitive stem cells and mild hypothermia: a new potential therapy for severe traumatic brain injury. J Neurotrauma 29:2393–2403PubMedGoogle Scholar
  60. 60.
    Antonucci I et al (2012) Amniotic fluid stem cells: a promising therapeutic resource for cell-based regenerative therapy. Curr Pharm Des 18:1846–1863PubMedGoogle Scholar
  61. 61.
    Joo KM et al (2012) Trans-differentiation of neural stem cells: a therapeutic mechanism against the radiation induced brain damage. PLoS One 7:e25936PubMedGoogle Scholar
  62. 62.
    Shi W et al (2012) BDNF blended chitosan scaffolds for human umbilical cord MSC transplants in traumatic brain injury therapy. Biomaterials 33:3119–3126PubMedGoogle Scholar
  63. 63.
    Yang L et al (2011) Transplantation of Schwann cells differentiated from adipose-derived stem cells modifies reactive gliosis after contusion brain injury in rats. J Int Med Res 39:1344–1357PubMedGoogle Scholar
  64. 64.
    Skardelly M et al (2011) Long-term benefit of human fetal neuronal progenitor cell transplantation in a clinically adapted model after traumatic brain injury. J Neurotrauma 28:401–414PubMedGoogle Scholar
  65. 65.
    Reiss P, Zhang C, Saatman KE (2002) Transplanted neural cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury. Neurosurgery 51:1043–1052Google Scholar
  66. 66.
    Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WC (2002) Human bone marrow cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol 174:11–20PubMedGoogle Scholar
  67. 67.
    Peled A, Kollet O, Ponomaryov T, Petit I, Frantza S, Grabovsky V et al (2000) The chemokine SDF-1 activated the integrins LFA-1, VLA-4, and VLA-5 on immature CD34+ cells: role in transendothelial/stromal migration and engraftment of NOD/SCID mice. Blood 95:3289–3296PubMedGoogle Scholar
  68. 68.
    Yamaguichi J, Kusano K, Masuo O, Kawamoto A, Silver M, Murasawa S et al (2003) Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation 107:1322–1328Google Scholar
  69. 69.
    Reyes M, Dudek A, Jahagirdar B, Koodie L, Marker PH, Verfaillie CM (2002) Origin of endothelial progenitors in human postnatal bone marrow. J Clin Invest 109:337–346PubMedGoogle Scholar
  70. 70.
    Rajantie L, Llmonen M, Alminaite A, Ozer U, Alitalo K, Salven P (2004) Adult bone marrow-derived cells recruited during angiogenesis comprise precursors for periendothelial vascular mural cells. Blood 104:2084–2086PubMedGoogle Scholar
  71. 71.
    Lu D, Mahmood A, Qu C, Goussev A, Schallert T, Chopp M (2005) Erythropoietin enhances neurogenesis and restores spatial memory in rats after traumatic brain injury. J Neurotrauma 22:1011–1017PubMedGoogle Scholar
  72. 72.
    Sun D, Mcginn MJ, Zhou Z, Harvey HB, Bullock MR, Colello RJ (2007) Anatomical integration of newly generated dentate granule neurons following traumatic brain injury in adult rats and its association to cognitive recovery. Exp Neurol 204:264–272PubMedGoogle Scholar
  73. 73.
    Guo X, Liu L, Zhang M, Bergeron A, Cui Z, Dong JF, Zhang J (2009) Correlation of CD34+ cells with tissue angiogenesis after traumatic brain injury in a rat model. J Neurotrauma 26:1337–1344PubMedGoogle Scholar
  74. 74.
    Madeddu P (2005) Therapeutic angiogenesis and vasculogenesis for tissue regeneration. Exp Physiol 90:315–326PubMedGoogle Scholar
  75. 75.
    Besler C, Doerries C, Giannotti G, Lüscher TF, Landmesser U (2008) Pharmacological approaches to improve endothelial repair mechanisms. Expert Rev Cardiovasc Ther 6:1071–1082PubMedGoogle Scholar
  76. 76.
    Mahmoud A, Lu D, Chopp M (2004) Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors after traumatic brain injury. J Neurotrauma 21:33–39Google Scholar
  77. 77.
    Suarez-Monteagudo C, Hernandez-Ramirez P, Alvarez-Gonzalez L, Garcia-Maeso I, de la Cuetara-Bernal K, Castillo-Diaz L et al (2009) Autologous bone marrow stem cell neurotransplantation in stroke patients. An open study. Restor Neurol Neurosci 27:151–161PubMedGoogle Scholar
  78. 78.
    Borlongan CV (2009) Cell therapy for stroke: remaining issues to address before embarking on clinical trials. Stroke 40:146–148Google Scholar
  79. 79.
    Feuerstein GZ, Zaleska MM, Krams M, Wang X, Day M, Rutkowski JL et al (2008) Missing steps in the STAIR case: a translational medicine perspective on the development of NXY-059 for treatment of acute ischemic stroke. J Cereb Blood Flow Metab 28:217–219PubMedGoogle Scholar
  80. 80.
    Santiago LA, Oh BC, Dash PK, Holcomb JB, Wade CE (2012) A clinical comparison of penetrating and blunt traumatic brain injuries. Brain Inj 26:107–125PubMedGoogle Scholar
  81. 81.
    Manley GT, Diaz-Arrastia R, Brophy M, Engel D, Goodman C, Gwinn K, Veenstra TD, Ling G, Ottens AK, Tortella F, Hayes RL (2010) Common data elements for traumatic brain injury: recommendations from the biospecimens and biomarkers working group. Arch Phys Med Rehabil 91:1667–1672PubMedGoogle Scholar
  82. 82.
    Keene CD, Ortiz-Gonzalez XR, Jiang Y, Largaespada DA, Verfaillie CM, Low WC (2003) Neural differentiation and incorporation of bone marrow-derived multipotent adult progenitor cells after single cell transplantation into blastocyst stage mouse embryos. Cell Transplant 2:201–213Google Scholar
  83. 83.
    Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al (2002) Human bone marrow stromal cells suppress T lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 99:3838–3843PubMedGoogle Scholar
  84. 84.
    Jorgensen C, Djouad F, Apparailly F (2003) Engineering mesenchymal stem cells for immunotherapy. Gene Ther 10:928–931PubMedGoogle Scholar
  85. 85.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE et al (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the MHC. Scand J Immunol 57:11–20PubMedGoogle Scholar
  86. 86.
    McIntosh K, Bartholomew A (2000) Stromal cell modulation of the immune system: a potential role for mesenchymal stem cells. Graft 3:324–328Google Scholar
  87. 87.
    Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105:1815–1822PubMedGoogle Scholar
  88. 88.
    Tse WT, Pendleton JD, Beyer WM, Egalka MC, Guinan EC (2003) Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications for transplantation. Transplantation 75:389–397PubMedGoogle Scholar
  89. 89.
    Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M, Ringden O (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1411–1412Google Scholar
  90. 90.
    Reyes M, Verfaillie CM (2001) Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann N Y Acad Sci 938:231–233, discussion; 233–5PubMedGoogle Scholar
  91. 91.
    Ayata C, Ropper AH (2002) Ischaemic brain edema. J Clin Neurosci 9:113–124PubMedGoogle Scholar
  92. 92.
    Busch E, Kruger K, Fritze K, Allegrini PR, Hoehn-Berlage M, Hossmann KA (1997) Blood–brain barrier disturbances after rt-PA treatment of thromboembolic stroke in the rat. Acta Neurochir Suppl 70:206–208PubMedGoogle Scholar
  93. 93.
    Kaur J, Zhao Z, Klein GM, Lo EH, Buchan AM (2004) The neurotoxicity of tissue plasminogen activator? J Cereb Blood Flow Metab 24:945–963PubMedGoogle Scholar
  94. 94.
    De Brouns R, Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111:483–495PubMedGoogle Scholar
  95. 95.
    Aoki T, Sumii T, Mori T, Wang X, Lo EH (2002) Blood–brain barrier disruption and matrix metalloproteinase-9 expression during reperfusion injury: mechanical versus embolic focal ischemia in spontaneously hypertensive rats. Stroke 33:2711–2717PubMedGoogle Scholar
  96. 96.
    Subramaniam S, Hill MD (2009) Decompressive hemicraniectomy for malignant middle cerebral artery infarction: an update. Neurologist 15:178–184PubMedGoogle Scholar
  97. 97.
    Chang CF, Lin SZ, Chiang YH, Morales M, Chou J, Lein P et al (2003) Intravenous administration of bone morphogenetic protein-7 after ischemia improves motor function in stroke rats. Stroke 34:558–564PubMedGoogle Scholar
  98. 98.
    Castillo J, Alvarez-Sabin J, Martinez-Vila E, Montaner J, Sobrino T, Vivancos J (2009) MITICO study investigators. Inflammation markers and prediction of post-stroke vascular disease recurrence: the MITICO study. J Neurol 256:217–224PubMedGoogle Scholar
  99. 99.
    Vila N, Castillo J, Davalos A, Chamorro A (2000) Proinflammatory cytokines and early neurological worsening in ischemic stroke. Stroke 31:2325–2329PubMedGoogle Scholar
  100. 100.
    Castillo J, Leira R (2002) Predictors of deteriorating cerebral infarct: role of inflammatory mechanisms. Would its early treatment be useful? Cerebrovasc Dis 1:40–48Google Scholar
  101. 101.
    Doyle KP, Simon RP, Stenzel-Poore MP (2008) Mechanisms of ischemic brain damage. Neuropharmacology 55:310–318PubMedGoogle Scholar
  102. 102.
    Wang GJ, Deng HY, Maier CM, Sun GH, Yenari MA (2002) Mild hypothermia reduces ICAM-1 expression, neutrophil infiltration and microglia/monocyte accumulation following experimental stroke. Neuroscience 114:1081–1090PubMedGoogle Scholar
  103. 103.
    Tang Y, Xu H, Du X, Lit L, Walker W, Lu A et al (2006) Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab 26:1089–1102PubMedGoogle Scholar
  104. 104.
    Tomkins O, Feintuch A, Benifla M, Cohen A, Friedman A, Shelef I (2011) Blood–brain barrier breakdown following traumatic brain injury: a possible role in posttraumatic epilepsy. Cardiovasc Psychiatry Neurol 2011:765923PubMedGoogle Scholar
  105. 105.
    Dietrich WD, Alonso O, Halley M (1994) Early microvascular and neuronal consequences of traumatic brain injury: a light and electron microscopic study in rats. J Neurotrauma 11:289–301PubMedGoogle Scholar
  106. 106.
    Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR (2010) Vascular endothelial growth factor increases neurogenesis after traumatic brain injury. J Cereb Blood Flow Metab 30:1008–1016PubMedGoogle Scholar
  107. 107.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967PubMedGoogle Scholar
  108. 108.
    Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, Mann MJ et al (2003) Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vascular therapy. Circulation 108:2710–2715PubMedGoogle Scholar
  109. 109.
    Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936PubMedGoogle Scholar
  110. 110.
    Masuda H, Asahara T (2003) Post-natal endothelial progenitor cells for neovascularization in tissue regeneration. Cardiovasc Res 58:390–398PubMedGoogle Scholar
  111. 111.
    Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A et al (1998) Evidence for circulating bone marrow-derived endothelial cells. Blood 92:362–367PubMedGoogle Scholar
  112. 112.
    Bompais H, Chagraoui J, Canron X, Crisan M, Liu XH, Anjo A et al (2004) Human endothelial cells derived from circulating progenitors display specific functional properties compared with mature vessel wall endothelial cells. Blood 103:2577–2584PubMedGoogle Scholar
  113. 113.
    Fadini GP (2008) An underlying principle for the study of circulating progenitor cells in diabetes and its complications. Diabetologia 51:1091–1094PubMedGoogle Scholar
  114. 114.
    Chen JZ, Zhang FR, Tao QM, Wang XX, Zhu JH (2004) Number and activity of endothelial progenitor cells from peripheral blood in patients with hypercholesterolaemia. Clin Sci 107:273–280PubMedGoogle Scholar
  115. 115.
    Pirro M, Schillaci G, Menecali C, Bagaglia F, Paltriccia R, Vaudo G et al (2007) Reduced number of circulating endothelial progenitors and HOXA9 expression in CD34+ cells of hypertensive patients. J Hypertens 25:2093–2099PubMedGoogle Scholar
  116. 116.
    Umemura T, Soga J, Hidaka T, Takemoto H, Nakamura S, Jitsuiki D et al (2008) Aging and hypertension are independent risk factors for reduced number of circulating endothelial progenitor cells. Am J Hypertens 21:1203–1209PubMedGoogle Scholar
  117. 117.
    Del Papa N, Quirici N, Soligo D, Scavullo C, Cortiana M, Borsotti C et al (2006) Bone marrow endothelial progenitors are defective in systemic sclerosis. Arthritis Rheum 54:2605–2615PubMedGoogle Scholar
  118. 118.
    Kuwana M, Okazaki Y, Yasuoka H, Kawakami Y, Ikeda Y (2004) Defective vasculogenesis in systemic sclerosis. Lancet 364:603–610PubMedGoogle Scholar
  119. 119.
    Heiss C, Keymel S, Niesler U, Ziemann J, Kelm M, Kalka C (2005) Impaired progenitor cell activity in age-related endothelial dysfunction. J Am Coll Cardiol 45:1441–1448PubMedGoogle Scholar
  120. 120.
    Kondo T, Hayashi M, Takeshita K, Numaguchi Y, Kobayashi K, Iino S et al (2004) Smoking cessation rapidly increases circulating progenitor cells in peripheral blood in chronic smokers. Arterioscler Thromb Vasc Biol 24:1442–1447PubMedGoogle Scholar
  121. 121.
    Michaud SE, Dussault S, Haddad P, Groleau J, Rivard A (2006) Circulating endothelial progenitor cells from healthy smokers exhibit impaired functional activities. Atherosclerosis 187:423–432PubMedGoogle Scholar
  122. 122.
    Botta R, Gao E, Stassi G, Bonci D, Pelosi E, Zwas D et al (2004) Heart infarct in NOD-SCID mice: therapeutic vasculogenesis by transplantation of human CD34+ cells and low dose CD34 + KDR + cells. FASEB J 18:1392–1394PubMedGoogle Scholar
  123. 123.
    Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 103:634–637PubMedGoogle Scholar
  124. 124.
    Madeddu P, Emanueli C, Pelosi E, Salis MB, Cerio AM, Bonanno G et al (2004) Transplantation of low dose CD34 + KDR + cells promotes vascular and muscular regeneration in ischemic limbs. FASEB J 18:1737–1739PubMedGoogle Scholar
  125. 125.
    van Rouhl RP, Oostenbrugge RJ, Damoiseaux J, Cohen Tervaert JW, Lodder J (2008) Endothelial progenitor cell research in stroke: a potential shift in pathophysiological and therapeutical concepts. Stroke 39:2158–2165PubMedGoogle Scholar
  126. 126.
    Erbs S, Linke A, Adams V, Lenk K, Thiele H, Diederich KW, Emmrich F et al (2005) Transplantation of blood-derived progenitor cells after recanalization of chronic coronary artery occlusion: first randomized and placebo-controlled study. Circ Res 97:756–762PubMedGoogle Scholar
  127. 127.
    Li ZQ, Zhang M, Jing YZ, Zhang WW, Liu Y, Cui LJ et al (2007) The clinical study of autologous peripheral blood stem cell transplantation by intracoronary infusion in patients with acute myocardial infarction (AMI). Int J Cardiol 115:52–56PubMedGoogle Scholar
  128. 128.
    Fernandez-Aviles F, San Roman JA, Garcia-Frade J, Fernandez ME, de la Penarrubia MJ, Fuente L et al (2004) Experimental and clinical regenerative capability of human bone marrow cells after myocardial infarction. Circ Res 95:742–748PubMedGoogle Scholar
  129. 129.
    Meluzin J, Janousek S, Mayer J, Groch L, Hornacek I, Hlinomaz O et al (2008) Three-, 6-, and 12-month results of autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction. Int J Cardiol 128:185–192PubMedGoogle Scholar
  130. 130.
    Meluzin J, Mayer J, Groch L, Janousek S, Hornacek I, Hlinomaz O et al (2006) Autologous transplantation of mononuclear bone marrow cells in patients with acute myocardial infarction: the effect of the dose of transplanted cells on myocardial function. Am Heart J 152:975PubMedGoogle Scholar
  131. 131.
    Mocini D, Staibano M, Mele L, Giannantoni P, Menichella G, Colivicchi F et al (2006) Autologous bone marrow mononuclear cell transplantation in patients undergoing coronary artery bypass grafting. Am Heart J 151:192–197PubMedGoogle Scholar
  132. 132.
    Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Mesquita CT et al (2003) Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation 107:2294–2302PubMedGoogle Scholar
  133. 133.
    Perin EC, Dohmann HF, Borojevic R, Silva SA, Sousa AL, Silva GV et al (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110:213–218Google Scholar
  134. 134.
    Strauer BE, Brehm M, Zeus T, Bartsch T, Schannwell C, Antke C et al (2005) Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: the IACT study. J Am Coll Cardiol 46:1651–1658PubMedGoogle Scholar
  135. 135.
    Strauer BE, Brehm M, Zeus T, Kostering M, Hernandez A, Sorg RV et al (2002) Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 106:1913–1918PubMedGoogle Scholar
  136. 136.
    Numaguchi Y, Sone T, Okumura K, Ishii M, Morita Y, Kubota R et al (2006) The impact of the capability of circulating progenitor cell to differentiate on myocardial salvage in patients with primary acute myocardial infarction. Circulation 114:114–119Google Scholar
  137. 137.
    Dobert N, Britten M, Assmus B, Berner U, Menzel C, Lehmann R et al (2004) Transplantation of progenitor cells after reperfused acute myocardial infarction: evaluation of perfusion and myocardial viability with fdg-pet and thallium spect. Eur J Nucl Med Mol Imaging 31:1146–1151PubMedGoogle Scholar
  138. 138.
    Lev EI, Kleiman NS, Birnbaum Y, Harris D, Korbling M, Estrov Z (2005) Circulating endothelial progenitor cells and coronary collaterals in patients with non-st segment elevation myocardial infarction. J Vasc Res 42:408–414PubMedGoogle Scholar
  139. 139.
    Hristov M, Heussen N, Schober A, Weber C (2006) Intracoronary infusion of autologous bone marrow cells and left ventricular function after acute myocardial infarction: a meta-analysis. J Cell Mol Med 10:727–733PubMedGoogle Scholar
  140. 140.
    Dimmeler S, Zeiher AM, Schneider MD (2005) Unchain my heart: the scientific foundations of cardiac repair. J Clin Invest 115:572–583PubMedGoogle Scholar
  141. 141.
    Higashi Y, Kimura M, Hara K, Noma K, Jitsuiki D, Nakagawa K et al (2004) Autologous bone-marrow mononuclear cell implantation improves endothelium-dependent vasodilation in patients with limb ischemia. Circulation 109:1215–1218PubMedGoogle Scholar
  142. 142.
    Tateishi-Yuyama E, Matsubara H, Murohara T, Ikeda U, Shintani S, Masaki H, Amano K et al (2002) Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone marrow cells: a pilot study and a randomised controlled trial. Lancet 360:427–435PubMedGoogle Scholar
  143. 143.
    Taguchi A, Matsuyama T, Moriwaki H, Hayashi T, Hayashida K, Nagatsuka K et al (2004) Circulating cd34-positive cells provide an index of cerebrovascular function. Circulation 109:2972–2975PubMedGoogle Scholar
  144. 144.
    Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T et al (2005) Endothelial progenitor cells during cerebrovascular disease. Stroke 36:151–153PubMedGoogle Scholar
  145. 145.
    Menge T, Zhao Y, Zhao J, Wataha K, Gerber M, Zhang J, Letourneau P, Redell J, Shen L, Wang J, Peng Z, Xue H, Kozar R, Cox CS, Khakoo AY, Holcomb JB, Dash PK, Pati S (2012) Mesenchymal stem cells regulate blood–brain barrier integrity through timp3 release after traumatic brain injury. Sci Transl Med 4:161ra150PubMedGoogle Scholar
  146. 146.
    Jujo K, Ii M, Losordo DW (2008) Endothelial progenitor cells in neovascularization of infarcted myocardium. J Mol Cell Cardiol 45:530–544PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mibel M. Pabón
    • 2
  • Travis Dailey
    • 2
  • Naoki Tajiri
    • 2
  • Kazutaka Shinozuka
    • 2
  • Hiroto Ishikawa
    • 2
  • Sandra Acosta
    • 2
  • Yuji Kaneko
    • 2
  • Cesar V. Borlongan
    • 1
  1. 1.Department of Neurosurgery and Brain RepairUniversity of South Florida College of MedicineTampaUSA
  2. 2.Department of Neurosurgery and Brain RepairUniversity of South Florida College of MedicineTampaUSA

Personalised recommendations