Skip to main content

Metabolic Bone Diseases Other than Osteoporosis

  • Chapter
  • First Online:
Endocrinology and Diabetes

Abstract

Osteogenesis imperfecta is a hereditary disorder of the connective tissue caused by qualitative or quantitative abnormalities involving type I collagen, with varied phenotypic presentations. The diagnosis should be considered in any child with recurrent fractures from minimal trauma and the focus of treatment should be multidisciplinary in order to oversee early care and minimize complications. Osteomalacia is often neglected especially in its early stages because of the nonspecific nature of symptoms such as vague bone pain and muscle weakness. Symptoms include chronic bone and muscle pain, weakness, fatigue, difficulty in walking, and a high risk of fractures due to bone fragility. The most characteristic laboratory findings are a lower serum calcium level, a decrease in urinary calcium levels, hypophosphatemia, and increased levels of alkaline phosphatase. Vitamin D is effective in the treatment of nutritional osteomalacia, or for malabsorption. Tumor-induced osteomalacia is treated with a phosphate supplement, along with vitamin D, until the tumor has been identified and excised. Paget’s disease of bone is a chronic skeletal disease characterized by increased osteoclastic activity that leads to increased bone reabsorption. It is usually asymptomatic and discovered incidentally. The main clinical manifestations are bone pain, fractures, skeletal deformities, and secondary arthritis. The diagnosis can be made when high serum alkaline phosphatase activity is found, or by routine X-ray examination. The objective of treatment is to relieve pain, restore normal bone metabolism, decrease bone vascularization, and prevent future complications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rauch F, Glorieux FH. Osteogenesis imperfecta. Lancet. 2004;363:1377–85.

    Article  PubMed  CAS  Google Scholar 

  2. Gajko-Galicka A. Mutations in type I collagen genes resulting in osteogenesis imperfecta in humans. Acta Biochim Pol. 2002;49:433.

    PubMed  CAS  Google Scholar 

  3. Khandanpour N, Connolly D, Raghavan A, Griffiths PD, Hoggard N. Craniospinal abnormalities and neurologic complications of osteogenesis imperfecta: imaging overview. Radiographics. 2012;32:2101–12.

    Article  PubMed  Google Scholar 

  4. Alanay Y, Avaygan H, Camacho N, Utine EG, Boduroglu K, Aktas D, et al. Mutations in the gene encoding the RER protein FKBP65 cause autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86:551.

    Article  PubMed  CAS  Google Scholar 

  5. Schwarze U, Cundy T, Pyott SM, et al. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet. 2013;22(1):1–17. doi:10.1093/hmg/dds371.

    Article  PubMed  CAS  Google Scholar 

  6. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7(9):540–57.

    Article  PubMed  CAS  Google Scholar 

  7. Christiansen HE, Schwarze U, Pyott SM, AlSwaid A, Al Balwi M, Alrasheed S, et al. Homozygosity for a missense mutation in SERPINH1, which encodes the collagen chaperone protein HSP47, results in severe recessive osteogenesis imperfecta. Am J Hum Genet. 2010;86:389.

    Article  PubMed  CAS  Google Scholar 

  8. Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, et al. Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet. 2011;88:362.

    Article  PubMed  CAS  Google Scholar 

  9. Folkestad L, Hald JD, Hansen S, Gram J, Langdahl B, Abrahamsen B, et al. Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT. J Bone Miner Res. 2012;27:1405–12.

    Article  PubMed  Google Scholar 

  10. Chines A, Boniface A, McAlister W, Whyte M. Hypercalciuria in osteogenesis imperfecta: a follow-up study to assess renal effects. Bone. 1995;16:333.

    Article  PubMed  CAS  Google Scholar 

  11. Lund AM, Hansen M, Kollerup G, Juul A, Teisner B, Skovby F. Collagen-derived markers of bone metabolism in osteogenesis imperfecta. Acta Paediatr. 1998;87:1131.

    Article  PubMed  CAS  Google Scholar 

  12. Bulloch B, Schubert CJ, Brophy PD, Johnson N, Reed HM, Shapiro RA. Cause and clinical characteristics of rib fractures in infants. Pediatrics. 2000;105:E48.

    Article  PubMed  CAS  Google Scholar 

  13. Singh Kocher M, Dichtel L. Osteogenesis imperfecta misdiagnosed as child abuse. J Pediatr Orthop B. 2011;20(6):440–3.

    Article  PubMed  Google Scholar 

  14. Salehpour S, Tavakkoli S. Cyclic pamidronate therapy in children with osteogenesis imperfecta. J Pediatr Endocrinol Metab. 2010;23:73–5.

    Article  PubMed  CAS  Google Scholar 

  15. Pizones J, Plotkin H, Parra-Garcia JI, Alvarez P, Gutierrez P, Bueno A, et al. Bone healing in children with osteogenesis imperfecta treated with bisphosphonates. J Pediatr Orthop. 2005;25:332.

    Article  PubMed  Google Scholar 

  16. Rauch F, Glorieux FH. Bisphosphonate treatment of osteogenesis imperfecta: which drug, for whom, for how long? Ann Med. 2005;37:295–8.

    Article  PubMed  CAS  Google Scholar 

  17. Bradbury LA, Barlow S, Geoghegan F, Hannon RA, Stuckey SL, Wass JA, et al. Risedronate in adults with osteogenesis imperfecta type I: increased bone mineral density and decreased bone turnover, but high fracture rate persists. Osteoporos Int. 2012;23(1):285–94.

    Article  PubMed  CAS  Google Scholar 

  18. Bhan A, Rao AD, Rao DS. Osteomalacia as a result of vitamin D deficiency. Endocrinol Metab Clin North Am. 2010;39(2):321–31.

    Article  PubMed  CAS  Google Scholar 

  19. Thacher TD, Clarke BL. Vitamin D insufficiency. Mayo Clin Proc. 2011;86(1):50–60.

    Article  PubMed  CAS  Google Scholar 

  20. Khaliq W, Cheripalli P, Tangella K. Tumor-induced osteomalacia (TIO): atypical presentation. South Med J. 2011;104(5):348–50.

    Article  PubMed  Google Scholar 

  21. Ruppe MD, Jan de Beur SM. Tumor-induced osteomalacia. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2008.

    Google Scholar 

  22. Bandeira F, Griz L, Dreyer P, Eufrazino C, Bandeira C, Freese E. Vitamin D deficiency: a global perspective. Arq Bras Endocrinol Metabol. 2006;50:640–6.

    Article  PubMed  Google Scholar 

  23. Russell LA. Osteoporosis and osteomalacia. Rheum Dis Clin North Am. 2010;36(4):665–80.

    Article  PubMed  Google Scholar 

  24. Bingham CT, Fitzpatrick LA. Noninvasive testing in the diagnosis of osteomalacia. Am J Med. 1993;95:519.

    Article  PubMed  CAS  Google Scholar 

  25. Scharla S. Diagnosis of disorders of vitamin D-metabolism and osteomalacia. Clin Lab. 2008;54(11–12):451–9.

    PubMed  CAS  Google Scholar 

  26. Recker RR. Bone biopsy and histomorphometry in clinical practice. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 7th ed. Washington, DC: American Society of Bone and Mineral Research; 2008. p. 180.

    Chapter  Google Scholar 

  27. Chong WH, Molinolo AA, Chen CC, Collins MT. Tumor-induced osteomalacia. Endocr Relat Cancer. 2011;18:R53–77.

    Article  PubMed  CAS  Google Scholar 

  28. Andreopoulou P, Dumitrescu CE, Kelly MH, Brillante BA, Peck CMC, Wodajo FM, et al. Selective venous catheterization for the localization of phosphaturic mesenchymal tumors. J Bone Miner Res. 2011;26(6):1295–302.

    Article  PubMed  Google Scholar 

  29. Pepper KJ, Judd SE, Nanes MS, et al. Evaluation of vitamin D repletion regimens to correct vitamin D status in adults. Endocr Pract. 2009;15:95–103.

    Article  PubMed  Google Scholar 

  30. Tutton S, Olson E, King D, Shaker JL, et al. Successful treatment of tumor-induced osteomalacia with CT-guided percutaneous ethanol and cryoablation. J Clin Endocrinol Metab. 2012;97:3421–5.

    Article  PubMed  CAS  Google Scholar 

  31. Dickson D, Camp J, Ghormley R. Osteitis deformans: Paget’s disease of the bone. Radiology. 1945;44:449–70.

    Google Scholar 

  32. Griz L, Caldas G, Bandeira C, Assunção V, Bandeira F. Paget’s disease of bone. Arq Bras Endocrinol Metabol. 2006;50:814–22.

    Article  PubMed  Google Scholar 

  33. Whyte MP. Paget’s disease of bone, and genetic disorders of RANKL/OPG/NF-kappaB signaling. Ann N Y Acad Sci. 2006;1068:143.

    Article  PubMed  CAS  Google Scholar 

  34. Michou L, Collet C, Laplanche JL, Orcel P, Cornélis F. Genetics of Paget’s disease of bone. Joint Bone Spine. 2006;73:243.

    Article  PubMed  CAS  Google Scholar 

  35. Chung PY, Beyens G, Boonen S, et al. The majority of the genetic risk for Paget’s disease of bone is explained by genetic variants close to the CSF1, OPTN, TM7SF4, and TNFRSF11A genes. Hum Genet. 2010;128:615.

    Article  PubMed  Google Scholar 

  36. Chung PY, Van Hul W. Paget’s disease of bone: evidence for complex pathogenetic interactions. Semin Arthritis Rheum. 2012;41(5):619–41.

    Article  PubMed  CAS  Google Scholar 

  37. Bandeira F, Assunção V, Diniz ET, Lucena CS, Griz L. Characteristics of Paget’s disease of bone in the city of Recife, Brazil. Rheumatol Int. 2010;30(8):1055–61.

    Article  PubMed  Google Scholar 

  38. Reis RL, Poncell MF, Diniz ET, Bandeira F. Epidemiology of Paget’s disease of bone in the city of Recife, Brazil. Rheumatol Int. 2012;32(10):3087–91.

    Article  PubMed  Google Scholar 

  39. Naot D. Paget’s disease of bone: an update. Curr Opin Endocrinol Diabetes Obes. 2011;18(6):352–8.

    Article  PubMed  Google Scholar 

  40. Cortis K, Micallef K, Mizzi A. Imaging Paget’s disease of bone—from head to toe. Clin Radiol. 2011;66(7):662–72.

    Article  PubMed  CAS  Google Scholar 

  41. Ito A, Yajima A. Is bone biopsy necessary for the diagnosis of metabolic bone diseases? Necessity of bone biopsy. Clin Calcium. 2011;21(9):1388–92.

    PubMed  Google Scholar 

  42. Griz L, Colares V, Bandeira F. Treatment of Paget’s disease of bone: importance of the zoledronic acid. Arq Bras Endocrinol Metabol. 2006;50:845–51.

    Article  PubMed  Google Scholar 

  43. Siris ES, Lyles KW, Singer FR, Meunier PJ. Medical management of Paget’s disease of bone: indications for treatment and review of current therapies. J Bone Miner Res. 2006; 21 Suppl 2: P94.

    Google Scholar 

  44. Ferrugia MC, Summerlin DJ, Kroviak E, Huntley T, Freeman S, Borrowdale R, et al. Osteonecrosis of mandible/maxilla and use of new bisphosphonates. Laryngoscope. 2006; 115–20.

    Google Scholar 

  45. Siris ES, Weinstein RS, Altman R, Conte JM, Favus M, Lombardi A, et al. Comparative study of alendronate and etidronate for the treatment of Paget’s disease of bone. J Clin Endocrinol Metab. 1996;81:961–7.

    Article  PubMed  CAS  Google Scholar 

  46. Singuer FR, Clemens TL, Eusebio RA, Bekker PJ. Risedronate, a highly effective oral agent in the treatment of patients with severe Paget’s disease. J Clin Endocrinol Metab. 1998;83(6):1906–10.

    Article  Google Scholar 

  47. Walsh JP, Ward LC, Stewart GO, Will RK, Criddle RA, Prince RL, et al. A randomized clinical trial comparing oral alendronate and intravenous pamidronate for the treatment of Paget’s disease of bone. Bone. 2004;34:747.

    Article  PubMed  CAS  Google Scholar 

  48. Merlotti D, Gennari L, Martini G, Vallegi F, De Paola V, Avanzati A, et al. Comparison of different intravenous bisphosphonate regimens for Paget’s disease of bone. J Bone Miner Res. 2007;22:1510.

    Article  PubMed  CAS  Google Scholar 

  49. Reid IR, Lyles K, Su G, Brown JP, Walsh JP, Pino-Montes J, et al. A single infusion of zoledronic acid produces sustained remissions in Paget disease: data to 6.5 years. J Bone Miner Res. 2011;26: 2261–70.

    Article  PubMed  CAS  Google Scholar 

  50. Michou L, Brown JP. Emerging strategies and therapies for treatment of Paget’s disease of bone. Drug Des Devel Ther. 2011;5:225–39.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoel Aderson Soares Filho M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Filho, M.A.S., Leão, V., Bandeira, F. (2014). Metabolic Bone Diseases Other than Osteoporosis. In: Bandeira, F., Gharib, H., Golbert, A., Griz, L., Faria, M. (eds) Endocrinology and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8684-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8684-8_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8683-1

  • Online ISBN: 978-1-4614-8684-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics