Skip to main content

Osteoporosis in Men

  • Chapter
  • First Online:
Endocrinology and Diabetes

Abstract

Osteoporosis is characterized by bone loss with microarchitectural deterioration, reduced bone strength, and increased risk of fracture (Kanis et al., J Bone Miner Res 9:1137–41, 1994; NIH Consensus Development Panel on Osteoporosis Prevention, South Med J 94:569–73, 2001). It is, in part, a disorder of the aging skeleton and, thus, as the world population ages, it is inevitable that the incidence of this disease will also increase. For example, in the USA during the first quarter of this century, the population greater than 50 years old will increase by 60 % (Day, Population projections of the USA by age, sex, race, and hispanic origin: 1995 to 2050. US Bureau of the Census, Current Population Reports, US Government Printing Office, Washington, DC, P25-1130, 1996; Cummings and Melton, Lancet 359:1761–7, 2002). With that increase in the older population will come a greater incidence of osteoporosis. This disease has traditionally been considered to be a disease of postmenopausal women but men now constitute nearly 1/4 of all osteoporotic patients (Burge et al., J Bone Miner Res 22(3):465–75, 2007; Center et al., JAMA 297:387–94, 2007). Hip fracture, which accounts for at least 1/3 of all fractures in men (Gullberg et al., Osteoporos Int 7:407–13, 1997), is associated with a threefold higher mortality rate in men than in women (Center et al., Lancet 353:878–82, 1999). Data from Trombetti et al. (Osteoporos Int. 13:731–7, 2002) show that more years of life are lost in men than in women after a hip fracture. This may be due, at least in part, to the impression that men are typically older when they sustain a hip fracture and are, therefore, more likely to suffer from serious comorbid events when they fracture. Data from the classic study of Johnell and Kanis (Osteoporos Int 17:1726–33, 2006), however, indicates that worldwide, the peak number of hip fractures occurs at a similar age for men and women, between the ages of 75 and 79.

Moreover, similar to women, the absolute risk of a subsequent fracture in men increases substantially after the first fragility fracture (Center et al., JAMA 297:387–94, 2007). The Australian Dubbo Osteoporosis Study noted that the relative risk of a second fracture after an initial osteoporotic fracture in a cohort of community-dwelling men > 60 years old was 3.47 (CI 95 %: 2.69–4.48) while for women, the relative risk of the second fragility fracture was 1.97 (CI 95 %: 1.71–2.26). Mortality risk was also greater when the second fracture occurred, again with men showing greater mortality [11.3 per 100 person-years (95 % CI, 9.8–13.0)] than women [7.8 per 100 person-years (95 % CI, 7.1–8.5)] (Bliuc et al., JAMA 301:513–21, 2009). The cohort in the ongoing, large epidemiologic study of male skeletal health known as MrOs (The Osteoporotic Fractures in Men Study) included a large international sample of men > 65 years old. In MrOs, the advent of a rib fracture resulted in a twofold increased risk of future rib, hip, or wrist fracture, independent of BMD or other factors (Barrett-Connor et al., BMJ 340: c1069, 2010).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kanis JA et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9(8):1137–41.

    Article  PubMed  CAS  Google Scholar 

  2. NIH Consensus Development Panel on Osteoporosis Prevention. Diagnosis, and therapy, March 7–29, 2000: highlights of the conference. South Med J. 2001;94(6):569–73.

    Google Scholar 

  3. Day JC, Population projections of the United States by age, sex, race, and hispanic origin: 1995 to 2050. Washington, DC: U.S. Bureau of the Census, Current Population Reports, U.S. Government Printing Office; 1996. p. P25–1130.

    Google Scholar 

  4. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002; 359(9319):1761–7.

    Article  PubMed  Google Scholar 

  5. Burge R et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22(3):465–75.

    Article  PubMed  Google Scholar 

  6. Center JR et al. Risk of subsequent fracture after low-trauma fracture in men and women. JAMA. 2007;297(4):387–94.

    Article  PubMed  CAS  Google Scholar 

  7. Gullberg B, Johnell O, Kanis JA. World-wide projections for hip fracture. Osteoporos Int. 1997;7(5): 407–13.

    Article  PubMed  CAS  Google Scholar 

  8. Center JR et al. Mortality after all major types of osteoporotic fracture in men and women: an observational study. Lancet. 1999;353(9156):878–82.

    Article  PubMed  CAS  Google Scholar 

  9. Trombetti A et al. Survival and potential years of life lost after hip fracture in men and age-matched women. Osteoporos Int. 2002;13(9):731–7.

    Article  PubMed  CAS  Google Scholar 

  10. Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteoporotic fractures. Osteoporos Int. 2006;17(12):1726–33.

    Article  PubMed  CAS  Google Scholar 

  11. Bliuc D et al. Mortality risk associated with low-trauma osteoporotic fracture and subsequent fracture in men and women. JAMA. 2009;301(5):513–21.

    Article  PubMed  CAS  Google Scholar 

  12. Barrett-Connor E et al. Epidemiology of rib fractures in older men: Osteoporotic Fractures in Men (MrOS) prospective cohort study. BMJ. 2010;340:c1069.

    Article  PubMed  Google Scholar 

  13. Orwoll ES. Osteoporosis in men. In: Rosen CJ, editor. Primer of the metabolic bone diseases and disorders of mineral metabolism. Washington, DC: The American Society for Bone and Mineral Research; 2008. p. 286–9.

    Chapter  Google Scholar 

  14. Watts NB et al. Osteoporosis in men: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97(6):1802–22.

    Article  PubMed  CAS  Google Scholar 

  15. Orwoll ES. Overall approach to the evaluation and treatment of osteoporosis in men. In: Orwoll ES, Bilezikian JP, Vanderschueren D, editors. Osteoporosis in men: the effects of gender on skeletal health. Boston: Elsevier Academic Press; 2010. p. xv. 741, 5 p. of plates.

    Chapter  Google Scholar 

  16. Geusens P, Sambrook P, Lems W. Fracture prevention in men. Nat Rev Rheumatol. 2009;5(9):497–504.

    Article  PubMed  Google Scholar 

  17. Mackey DC et al. High-trauma fractures and low bone mineral density in older women and men. JAMA. 2007;298(20):2381–8.

    Article  PubMed  CAS  Google Scholar 

  18. Binkley N. A perspective on male osteoporosis. Best Pract Res Clin Rheumatol. 2009;23(6):755–68.

    Article  PubMed  Google Scholar 

  19. Khosla S, Amin S, Orwoll E. Osteoporosis in men. Endocr Rev. 2008;29(4):441–64.

    Article  PubMed  CAS  Google Scholar 

  20. Kanis JA et al. A reference standard for the description of osteoporosis. Bone. 2008;42(3):467–75.

    Article  PubMed  CAS  Google Scholar 

  21. Lewiecki EM et al. The official positions of the International Society for Clinical Densitometry: perceptions and commentary. J Clin Densitom. 2009; 12(3):267–71.

    Article  PubMed  Google Scholar 

  22. Kanis JA et al. Diagnostic thresholds for osteoporosis in men. In: Orwoll ES, Bilezikian JP, Vanderschueren D, editors. Osteoporosis in men. Boston: Elsevier/Academic; 2010. p. 605–12.

    Chapter  Google Scholar 

  23. Kanis JA et al. FRAX and its applications to clinical practice. Bone. 2009;44(5):734–43.

    Article  PubMed  Google Scholar 

  24. Kanis JA on behalf of the World Health Organization Scientific Group. Assessment of osteoporosis at the primary health-care level. Technical report. World Health Organization Collaborating Centre for Metabolic Bone Diseases, University of Sheffield, 2007.

    Google Scholar 

  25. Costa AG, et al. (2012) Osteoporosis in men. In: Arinoviche R; Arriagada M, editors. Temas de Osteoporosis y otras Enfermedades Oseas (Topics in osteoporosis and other bone diseases). Chilean Foundation of Osteoporosis. p. 163–177

    Google Scholar 

  26. Bilezikian JP. Osteoporosis in men. J Clin Endocrinol Metab. 1999;84(10):3431–4.

    Article  PubMed  CAS  Google Scholar 

  27. Gennari L, Bilezikian JP. Osteoporosis in men. Endocrinol Metab Clin North Am. 2007;36(2): 399–419.

    Article  PubMed  CAS  Google Scholar 

  28. Mitchell BD, Yerges-Armstrong LM. The genetics of bone loss: challenges and prospects. J Clin Endocrinol Metab. 2011;96(5):1258–68.

    Article  PubMed  CAS  Google Scholar 

  29. Bilezikian JP et al. Increased bone mass as a result of estrogen therapy in a man with aromatase deficiency. N Engl J Med. 1998;339(9):599–603.

    Article  PubMed  CAS  Google Scholar 

  30. Gennari L, Nuti R, Bilezikian JP. Aromatase activity and bone homeostasis in men. J Clin Endocrinol Metab. 2004;89(12):5898–907.

    Article  PubMed  CAS  Google Scholar 

  31. Khosla S. Idiopathic osteoporosis—is the osteoblast to blame? J Clin Endocrinol Metab. 1997;82(9): 2792–4.

    Article  PubMed  CAS  Google Scholar 

  32. Kurland ES et al. Insulin-like growth factor-I in men with idiopathic osteoporosis. J Clin Endocrinol Metab. 1997;82(9):2799–805.

    Article  PubMed  CAS  Google Scholar 

  33. Fratzl-Zelman N et al. Fragility fractures in men with idiopathic osteoporosis are associated with undermineralization of the bone matrix without evidence of increased bone turnover. Calcif Tissue Int. 2011;88(5): 378–87.

    Article  PubMed  CAS  Google Scholar 

  34. Shimon I et al. Alendronate for osteoporosis in men with androgen-repleted hypogonadism. Osteoporos Int. 2005;16(12):1591–6.

    Article  PubMed  CAS  Google Scholar 

  35. Millonig G et al. Alendronate in combination with calcium and vitamin D prevents bone loss after orthotopic liver transplantation: a prospective single-center study. Liver Transpl. 2005;11(8):960–6.

    Article  PubMed  Google Scholar 

  36. Shane E et al. Alendronate versus calcitriol for the prevention of bone loss after cardiac transplantation. N Engl J Med. 2004;350(8):767–76.

    Article  PubMed  CAS  Google Scholar 

  37. de Nijs RN et al. Alendronate or alfacalcidol in glucocorticoid-induced osteoporosis. N Engl J Med. 2006;355(7):675–84.

    Article  PubMed  Google Scholar 

  38. Ringe JD et al. Efficacy of risedronate in men with primary and secondary osteoporosis: results of a 1-year study. Rheumatol Int. 2006;26(5):427–31.

    Article  PubMed  CAS  Google Scholar 

  39. Johnson DA et al. Zoledronic acid treatment of osteoporosis: effects in men. Endocr Pract. 2010;16(6): 960–7.

    Article  PubMed  Google Scholar 

  40. Gonnelli S et al. Alendronate treatment in men with primary osteoporosis: a three-year longitudinal study. Calcif Tissue Int. 2003;73(2):133–9.

    Article  PubMed  CAS  Google Scholar 

  41. Smith MR. Management of treatment-related osteoporosis in men with prostate cancer. Cancer Treat Rev. 2003;29(3):211–8.

    Article  PubMed  Google Scholar 

  42. Reid DM et al. Zoledronic acid and risedronate in the prevention and treatment of glucocorticoid-induced osteoporosis (HORIZON): a multicentre, double-blind, double-dummy, randomised controlled trial. Lancet. 2009;373(9671):1253–63.

    Article  PubMed  CAS  Google Scholar 

  43. Warner Chilcott. Actonel® prescribing information. Acessed 22 June 2012.

    Google Scholar 

  44. McClung MR et al. Efficacy and safety of a novel delayed-release risedronate 35 mg once-a-week tablet. Osteoporos Int. 2012;23(1):267–76.

    Article  PubMed  CAS  Google Scholar 

  45. Orwoll E et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med. 2000;343(9):604–10.

    Article  PubMed  CAS  Google Scholar 

  46. Miller PD et al. Weekly oral alendronic acid in male osteoporosis. Clin Drug Investig. 2004;24(6): 333–41.

    Article  PubMed  CAS  Google Scholar 

  47. Sawka AM et al. Does alendronate reduce the risk of fracture in men? A meta-analysis incorporating prior knowledge of anti-fracture efficacy in women. BMC Musculoskelet Disord. 2005;6:39.

    Article  PubMed  Google Scholar 

  48. Ringe JD et al. Sustained efficacy of risedronate in men with primary and secondary osteoporosis: results of a 2-year study. Rheumatol Int. 2009;29(3):311–5.

    Article  PubMed  CAS  Google Scholar 

  49. Boonen S et al. Once-weekly risedronate in men with osteoporosis: results of a 2-year, placebo-controlled, double-blind, multicenter study. J Bone Miner Res. 2009;24(4):719–25.

    Article  PubMed  CAS  Google Scholar 

  50. Boonen S et al. Evidence for safety and efficacy of risedronate in men with osteoporosis over 4 years of treatment: results from the 2-year, open-label, extension study of a 2-year, randomized, double-blind, placebo-controlled study. Bone. 2012;51(3):383–8.

    Article  PubMed  CAS  Google Scholar 

  51. Sato Y et al. Risedronate sodium therapy for prevention of hip fracture in men 65 years or older after stroke. Arch Intern Med. 2005;165(15):1743–8.

    Article  PubMed  CAS  Google Scholar 

  52. Orwoll ES et al. Efficacy and safety of a once-yearly i.v. Infusion of zoledronic acid 5 mg versus a once-weekly 70-mg oral alendronate in the treatment of male osteoporosis: a randomized, multicenter, double-blind, active-controlled study. J Bone Miner Res. 2010;25(10):2239–50.

    Article  PubMed  CAS  Google Scholar 

  53. Sambrook PN et al. Bisphosphonates and glucocorticoid osteoporosis in men: results of a randomized controlled trial comparing zoledronic acid with risedronate. Bone. 2012;50(1):289–95.

    Article  PubMed  CAS  Google Scholar 

  54. Boonen S et al. Once-yearly zoledronic acid in older men compared with women with recent hip fracture. J Am Geriatr Soc. 2011;59(11):2084–90.

    Article  PubMed  Google Scholar 

  55. Boonen S et al. Fracture risk and zoledronic acid therapy in men with osteoporosis. N Engl J Med. 2012;367(18):1714–23.

    Article  PubMed  CAS  Google Scholar 

  56. Orwoll ES et al. The effect of teriparatide [human parathyroid hormone (1-34)] therapy on bone density in men with osteoporosis. J Bone Miner Res. 2003;18(1):9–17.

    Article  PubMed  CAS  Google Scholar 

  57. Kaufman JM et al. Teriparatide effects on vertebral fractures and bone mineral density in men with osteoporosis: treatment and discontinuation of therapy. Osteoporos Int. 2005;16(5):510–6.

    Article  PubMed  CAS  Google Scholar 

  58. Saag KG et al. Teriparatide or alendronate in glucocorticoid-induced osteoporosis. N Engl J Med. 2007;357(20):2028–39.

    Article  PubMed  CAS  Google Scholar 

  59. Saag KG et al. Effects of teriparatide versus alendronate for treating glucocorticoid-induced osteoporosis: thirty-six-month results of a randomized, double-blind, controlled trial. Arthritis Rheum. 2009;60(11): 3346–55.

    Article  PubMed  CAS  Google Scholar 

  60. Kurland ES et al. The importance of bisphosphonate therapy in maintaining bone mass in men after therapy with teriparatide [human parathyroid hormone(1-34)]. Osteoporos Int. 2004;15(12):992–7.

    Article  PubMed  CAS  Google Scholar 

  61. Ettinger B et al. Differential effects of teriparatide on BMD after treatment with raloxifene or alendronate. J Bone Miner Res. 2004;19(5):745–51.

    Article  PubMed  CAS  Google Scholar 

  62. Finkelstein JS et al. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003;349(13):1216–26.

    Article  PubMed  CAS  Google Scholar 

  63. Walker MD, et al. Risedronate, teriparatide or their combination in the treatment of male osteoporosis. Endocrine. 2013;44(1):237–46.

    Google Scholar 

  64. Vahle JL et al. Skeletal changes in rats given daily subcutaneous injections of recombinant human parathyroid hormone (1-34) for 2 years and relevance to human safety. Toxicol Pathol. 2002;30(3):312–21.

    Article  PubMed  CAS  Google Scholar 

  65. Jolette J et al. Defining a noncarcinogenic dose of recombinant human parathyroid hormone 1-84 in a 2-year study in Fischer 344 rats. Toxicol Pathol. 2006;34(7):929–40.

    Article  PubMed  CAS  Google Scholar 

  66. Andrews EB et al. The US postmarketing surveillance study of adult osteosarcoma and teriparatide: Study design and findings from the first 7 years. J Bone Miner Res. 2012;27(12):2429–37.

    Article  PubMed  CAS  Google Scholar 

  67. Capriani C, Irani D, Bilezikian JP. Safety of osteoanabolic therapy: a decade of experience. J Bone Miner Res. 2012;27(12):2419–28.

    Article  PubMed  CAS  Google Scholar 

  68. O’Donnell S et al. Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database Syst Rev. 2006;3, CD005326.

    PubMed  Google Scholar 

  69. Blake GM, Compston JE, Fogelman I. Could strontium ranelate have a synergistic role in the treatment of osteoporosis? J Bone Miner Res. 2009;24(8): 1354–7.

    Article  PubMed  CAS  Google Scholar 

  70. Ringe JD, Dorst A, Farahmand P. Efficacy of strontium ranelate on bone mineral density in men with osteoporosis. Arzneimittelforschung. 2010;60(5):267–72.

    PubMed  CAS  Google Scholar 

  71. Behre HM et al. Long-term effect of testosterone therapy on bone mineral density in hypogonadal men. J Clin Endocrinol Metab. 1997;82(8):2386–90.

    Article  PubMed  CAS  Google Scholar 

  72. Kenny AM et al. Effects of transdermal testosterone on bone and muscle in older men with low bioavailable testosterone levels, low bone mass, and physical frailty. J Am Geriatr Soc. 2010;58(6):1134–43.

    Article  PubMed  Google Scholar 

  73. Snyder PJ et al. Effects of testosterone replacement in hypogonadal men. J Clin Endocrinol Metab. 2000;85(8):2670–7.

    Article  PubMed  CAS  Google Scholar 

  74. Shelly W et al. Selective estrogen receptor modulators: an update on recent clinical findings. Obstet Gynecol Surv. 2008;63(3):163–81.

    PubMed  Google Scholar 

  75. Silva BC, Bilezikian JP. New approaches to the treatment of osteoporosis. Annu Rev Med. 2011;62:307–22.

    Article  PubMed  CAS  Google Scholar 

  76. Uebelhart B et al. Raloxifene treatment is associated with increased serum estradiol and decreased bone remodeling in healthy middle-aged men with low sex hormone levels. J Bone Miner Res. 2004;19(9): 1518–24.

    Article  PubMed  CAS  Google Scholar 

  77. Smith MR et al. Toremifene to reduce fracture risk in men receiving androgen deprivation therapy for prostate cancer. J Urol. 2010;184(4):1316–21.

    Article  PubMed  CAS  Google Scholar 

  78. Cummings SR et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361(8):756–65.

    Article  PubMed  CAS  Google Scholar 

  79. von Keyserlingk C et al. Clinical efficacy and safety of denosumab in postmenopausal women with low bone mineral density and osteoporosis: a meta-analysis. Semin Arthritis Rheum. 2011;41(2):178–86.

    Article  Google Scholar 

  80. Smith MR et al. Effects of denosumab on bone mineral density in men receiving androgen deprivation therapy for prostate cancer. J Urol. 2009;182(6): 2670–5.

    Article  PubMed  CAS  Google Scholar 

  81. Orwoll E et al. A randomized, placebo-controlled study of the effects of denosumab for the treatment of men with low bone mineral density. J Clin Endocrinol Metab. 2012;97(9):3161–9.

    Article  PubMed  CAS  Google Scholar 

  82. Costa AG et al. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol. 2011;7(8):447–56.

    Article  PubMed  CAS  Google Scholar 

  83. Bone HG et al. Odanacatib, a cathepsin-K inhibitor for osteoporosis: a two-year study in postmenopausal women with low bone density. J Bone Miner Res. 2010;25(5):937–47.

    PubMed  Google Scholar 

  84. Eisman JA et al. Odanacatib in the treatment of postmenopausal women with low bone mineral density: three-year continued therapy and resolution of effect. J Bone Miner Res. 2011;26(2):242–51.

    Article  PubMed  CAS  Google Scholar 

  85. Bauer DC. Discontinuation of odanacatib and other osteoporosis treatments: here today and gone tomorrow? J Bone Miner Res. 2011;26(2):239–41.

    Article  PubMed  Google Scholar 

  86. Eastell R et al. Safety and efficacy of the cathepsin K inhibitor ONO-5334 in postmenopausal osteoporosis: the OCEAN study. J Bone Miner Res. 2011; 26(6):1303–12.

    Article  PubMed  CAS  Google Scholar 

  87. Stoch SA et al. Odanacatib, a selective cathepsin K inhibitor to treat osteoporosis: safety, tolerability, pharmacokinetics and pharmacodynamics—results from single oral dose studies in healthy volunteers. Br J Clin Pharmacol. 2013;75:1240–54.

    Article  PubMed  CAS  Google Scholar 

  88. Moester MJ et al. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87(2): 99–107.

    Article  PubMed  CAS  Google Scholar 

  89. Padhi D et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  90. Michaelsson K et al. Leisure physical activity and the risk of fracture in men. PLoS Med. 2007;4(6):e199.

    Article  PubMed  Google Scholar 

  91. Ross AC et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J Clin Endocrinol Metab. 2011;96(1):53–8.

    Article  PubMed  CAS  Google Scholar 

  92. Holick MF et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2011;96(7):1911–30.

    Article  PubMed  CAS  Google Scholar 

  93. Heaney RP, Holick MF. Why the IOM recommendations for vitamin D are deficient. J Bone Miner Res. 2011;26(3):455–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosures

Dr. Bilezikian is a consultant for Eli Lilly, NPS Pharmaceuticals, Merck, GSK, Novartis, and Amgen, and receives research support from NPS Pharmaceuticals and Amgen. Drs. Costa, Cusano, and Silva: No conflicts of interest reported.

Funding Source: None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John P. Bilezikian M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Costa, A.G., Cusano, N.E., Silva, B.C., Bilezikian, J.P. (2014). Osteoporosis in Men. In: Bandeira, F., Gharib, H., Golbert, A., Griz, L., Faria, M. (eds) Endocrinology and Diabetes. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8684-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8684-8_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8683-1

  • Online ISBN: 978-1-4614-8684-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics