3DOM Structure for Battery Electrodes and Electrolytes

  • Kiyoshi Kanamura
Part of the Nanostructure Science and Technology book series (NST)


The performance of lithium-ion batteries, especially at high rates, critically depends on the morphology of the battery active materials and the microstructure of the electrode. In particular, in all-solid-state batteries, the structure is critical because of the poor contact of the solid active material with the solid electrolyte. A three-dimensionally ordered macroporous (3DOM) structure is an ideal structure due to its high porosity and regularity, which provide a large contact area between the electrode and electrolyte and a uniform current distribution, respectively. The 3DOM solid electrolyte-active material composite electrode clearly exhibits a charge and discharge behavior, indicating that the 3DOM solid electrolyte-active material composite electrode can be applied to all-solid-state batteries.


Discharge Capacity Composite Electrode Coulombic Efficiency Colloidal Crystal Filling Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.-W. Woo, K. Dokko, K. Kanamura, Preparation and characterization of three dimensionally ordered macroporous Li4Ti5O12 anode for lithium batteries. Electrochim. Acta 53, 79–82 (2007)CrossRefGoogle Scholar
  2. 2.
    T. Ohzuku, A. Ueda, N. Yamamoto, Zero-strain insertion material of Li[Li1/3Ti1/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 142, 1431 (1995)CrossRefGoogle Scholar
  3. 3.
    S. Scharner, W. Weppner, P. Schmid-Beurmann, Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel. J. Electrochem. Soc. 146, 857 (1999)CrossRefGoogle Scholar
  4. 4.
    K. Kanamura, T. Umegaki, H. Naito, Z. Takehara, T. Yao, Structural and electrochemical characteristics of Li4/3Ti5/3O4 as an anode material for rechargeable lithium batteries. J. Appl. Electrochem. 31, 73–78 (2001)CrossRefGoogle Scholar
  5. 5.
    Y.H. Rho, K. Kanamura, Li+-ion diffusion in LiCoO2 thin film prepared by the poly(vinylpyrrolidone) sole-gel method. J. Electrochem. Soc. 151, A1406–A1411 (2004)CrossRefGoogle Scholar
  6. 6.
    Y.Li. Jiang, J.G. Duh, M.H. Yang, D.T. Shieh, Electroless-plated tin compounds on carbonaceous mixture as anode for lithium-ion battery. J. Power Sources. 193, 810–815 (2009).Google Scholar
  7. 7.
    H. Mukaibo, T. Momma, M. Mohamedi, T. Osaka, Structural and morphological modifications of a nanosized 62 atom percent Sn-Ni thin film anode during reaction with anode. J. Electrochem. Soc. 152, A560–A565 (2005)CrossRefGoogle Scholar
  8. 8.
    J. Hassoun, S. Panero, B. Scrosati, Electroplated Ni-Sn intermetallic electrodes for advanced lithium ion batteries. J. Power Sources. 160, 1336–1341 (2006)CrossRefGoogle Scholar
  9. 9.
    C.J. Wen, R.A. Huggins, Thermodynamic study of the tin-lithium system. J. Electrochem. Soc. 128, 1181–1187 (1981)CrossRefGoogle Scholar
  10. 10.
    J. Wang, I.D. Raistrick, R.A. Huggins, J.O. Besenhard, Electrochem. Solid-State Lett. 2, 161 (1999)CrossRefGoogle Scholar
  11. 11.
    F. Robert, P.-E. Lippens, J. Oliver-Fourcade, J.-C. Jumas, F. Gillot, M. Morcrette, J.-M. Tarascon, Mossbauer spectra as a “fingerprint” in tin-lithium compounds: Applications to Li-ion batteries. J. Solid State Chem. 180, 339–348 (2007)CrossRefGoogle Scholar
  12. 12.
    H. Mukaibo, T. Sumi, T. Yokoshima, T. Momma, T. Osaka, Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries. Electrochem. Solid-State Lett. 6, A218–A220 (2003)CrossRefGoogle Scholar
  13. 13.
    A. Ulus, Y. Rosenberg, L. Burstein, E. Peled, Tin-alloy graphite composite anode for lithium ion batteries. J. Electrochem. Soc. 149, A635–A643 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Stjerndahl, H. Bryngelsson, T. Gustafsson, J. Vaughey, M.M. Thackeray, K. Edstrom, Surface chemistry of intermettalic AlSb-anodes for Li-ion batteries. Electrochmica. Acta. 52, 4947–4955 (2007)CrossRefGoogle Scholar
  15. 15.
    H. Bryngelsson, M. Stjerndahl, T. Gustafsson, K. Edstrom, How dynamic is SEI? J. Power Sources 174, 970–975 (2007)CrossRefGoogle Scholar
  16. 16.
    K. Hoshina, K. Dokko, K. Kanamura, Investigation on electrochemical interface between Li4Ti5O12 and Li1−xAlxTi2−x(PO4)3 NASICON-type solid electrolyte. J. Electrochem. Soc. 152, A2138–A2142 (2005)CrossRefGoogle Scholar
  17. 17.
    X. Xu, Z. Wen, J. Wu, X. Yang, Preparation and electrical properties of NASICON-type structured Li1.4Al0.4Ti1.6(PO4)3 glass-ceramics by the citric acid-assisted sol–gel method. Solid State Ion. 178, 29–34 (2007)CrossRefGoogle Scholar
  18. 18.
    M. Cretin, P. Fabry, Comparative study of lithium ion conductors in the system Li1+xAlxA2−xIV(PO4)3 AIV = Ti or Ge and 0 < x < 0.7 for use as Li+ sensitive membranes. J. Eur. Ceram Soc. 19, 2931–2940 (1999)CrossRefGoogle Scholar
  19. 19.
    Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta, M. Wakihara, High ionic conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689–693 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Applied ChemistryTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations