Skip to main content

Polymer and Ionic Liquid Electrolytes for Advanced Lithium Batteries

  • Chapter
  • First Online:
Nanoscale Technology for Advanced Lithium Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Lithium-ion secondary batteries have the advantages of high energy density and long cycle life and, thus, are expected to serve as energy storage devices for electric vehicles (EVs) and in devices of renewable energy (wind power, solar power, and so on). The safety of lithium-ion secondary batteries is important as battery size increase, and research and development (R&D) in battery safety issues using various electrolyte materials is strongly desired. Solid polymer electrolytes and room-temperature ionic liquids (room-temperature molten salts) have been attracting attention as safe lithium-ion secondary battery electrolytes for large-scale energy storage devices instead of volatile aprotic organic solvents. In this chapter, we describe the R&D of lithium-ion secondary batteries using solid polymer electrolytes and room-temperature ionic liquid electrolytes as highly safe materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Tarascon, M. Armand, Building better batteries. Nature 451, 652–657 (2001)

    Google Scholar 

  2. M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors? Chem. Rev. 104, 4245–4270 (2004)

    Article  CAS  Google Scholar 

  3. J.F. Cousseau, C. Siret, P. Biensan, M. Broussely, Recent developments in Li-ion prismatic cells. J. Power. Sources 162, 790–796 (2006)

    Article  CAS  Google Scholar 

  4. D.P. Abraham, E.M. Reynolds, P.L. Schultz, A.N. Jansen, D.W. Dees, Temperature dependence of capacity and impedance data from fresh and aged high-power lithium-ion cells. J. Electrochem. Soc. 153, A1610–A1616 (2006)

    Article  CAS  Google Scholar 

  5. K. Zaghib, P. Charest, A. Guerfi, J. Shim, M. Perrier, K. Striebel, Safe Li-ion polymer batteries for HEV applications. J. Power. Sources 134, 124–129 (2004)

    Article  CAS  Google Scholar 

  6. K. Takei, K. Ishihara, K. Kumai, T. Iwahori, K. Miyake, T. Nakatsu, N. Terada, N. Arai, Performance of large-scale secondary lithium batteries for electric vehicles and home-use load-leveling systems. J. Power. Sources 119–121, 887–892 (2003)

    Article  Google Scholar 

  7. K. Adachi, H. Tajima, T. Hashimoto, K. Kobayashi, Development of 16 kWh power storage system applying Li-ion batteries. J. Power. Sources 119–121, 897–901 (2003)

    Article  Google Scholar 

  8. N. Terada, T. Yanagi, S. Arai, M. Yoshikawa, K. Ohta, N. Nakajima, A. Yanai, N. Arai, Development of lithium batteries for energy storage and EV applications. J. Power. Sources 100, 80–92 (2001)

    Article  CAS  Google Scholar 

  9. D.E. Fenton, J.M. Parker, P.V. Wright, Complexes of alkali metal ions with poly(ethylene oxide). Polymer 14, 589 (1973)

    Article  CAS  Google Scholar 

  10. M.B. Armand, J.M. Chabagno, M.J. Duclot, in Fast Ion Transport in Solids, ed. by P. Vashishta, J.-N. Mundy, G.K. Shenoy (Elsevier, New York, 1979), pp. 131–136

    Google Scholar 

  11. A. Nishimoto, K. Agehara, N. Furuya, T. Watanabe, M. Watanabe, High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999)

    Article  CAS  Google Scholar 

  12. M. Kono, E. Hayashi, M. Watanabe, Network polymer electrolytes with free chain ends as internal plasticizer. J. Electrochem. Soc. 145, 1521–1527 (1998)

    Article  CAS  Google Scholar 

  13. M. Watanabe, T. Hirakimoto, S. Mutoh, A. Nishimoto, Polymer electrolytes derived from dendritic polyether macromonomers. Solid State Ion. 148, 399–404 (2002)

    Article  CAS  Google Scholar 

  14. R. Spindler, D.F. Shriver, Investigations of a siloxane-based polymer electrolyte employing13C,29Si,7Li, and23Na solid-state NMR spectroscopy. J. Am. Chem. Soc. 110, 3036–3043 (1988)

    Article  CAS  Google Scholar 

  15. G.C. Rawsky, T. Fujinami, D.F. Shriver, Aluminosilicate/poly(ethylene glycol) copolymers: A new class of polyelectrolytes. Chem. Mater. 6, 2208–2209 (1994)

    Article  CAS  Google Scholar 

  16. P.M. Blonsky, D.F. Shriver, P. Austin, H.R. Allcock, Polyphosphazene solid electrolytes. J. Am. Chem. Soc. 106, 6854–6855 (1984)

    Article  CAS  Google Scholar 

  17. H.R. Allcock, S.E. Kuharcik, C.S. Reed, M.E. Napierala, Synthesis of polyphosphazenes with ethyleneoxy-containing side groups: New solid electrolyte materials. Macromolecules 29, 3384–3389 (1996)

    Article  CAS  Google Scholar 

  18. H.R. Allcock, W.R. Laredo, I.I.I.E.C. Kellam, R.V. Morford, Polynorbornenes bearing pendent cyclotriphosphazenes with oligoethyleneoxy side groups: Behavior as solid polymer electrolytes. Macromolecules 34, 787–794 (2001)

    Article  CAS  Google Scholar 

  19. H.R. Allcock, R. Prange, T.J. Hartle, Poly(phosphazene-ethylene oxide) di- and triblock copolymers as solid polymer electrolytes. Macromolecules 34, 5463–5470 (2001)

    Article  CAS  Google Scholar 

  20. M. Watanabe, T. Endo, A. Nishimoto, K. Miura, M. Yanagida, High ionic conductivity and electrode interface properties of polymer electrolytes based on high molecular weight branched polyether. J. Power. Sources 81–82, 786–789 (1999)

    Article  Google Scholar 

  21. F. Capuano, F. Croce, B. Scrosati, Composite polymer electrolytes. J. Electrochem. Soc. 138, 1918–1922 (1991)

    Article  CAS  Google Scholar 

  22. F. Croce, B. Scrosati, G. Mariotto, Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes. Chem. Mater. 4, 1134–1136 (1992)

    Article  CAS  Google Scholar 

  23. M.C. Borghini, M. Mastragostino, S. Passerini, B. Scrosati, Electrochemical properties of polyethylene oxide-Li[(CF3SO2)2N]-γ-LiAlO2 composite polymer electrolytes. J. Electrochem. Soc. 142, 2118–2121 (1995)

    Article  CAS  Google Scholar 

  24. F. Croce, G.B. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998)

    Article  CAS  Google Scholar 

  25. F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, R. Caminiti, Physical and chemical properties of nanocomposite polymer electrolytes. J. Phys. Chem. B 103, 10632–10638 (1999)

    Article  CAS  Google Scholar 

  26. B. Scrosati, F. Croce, L. Persi, Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. J. Electrochem. Soc. 147, 1718–1721 (2000)

    Article  CAS  Google Scholar 

  27. X. Wei, D.F. Shriver, Highly conductive polymer electrolytes containing rigid polymers. Chem. Mater. 10, 2307–2308 (1998)

    Article  CAS  Google Scholar 

  28. A. Sato, T. Okumura, S. Nishimura, H. Yamamoto, N. Ueyama, Lithium ion conductive polymer electrolyte by side group rotation. J. Power. Sources 146, 423–426 (2005)

    Article  CAS  Google Scholar 

  29. K. Noda, T. Yasuda, Y. Nishi, Concept of polymer alloy electrolytes: Towards room temperature operation of lithium-polymer batteries. Electrochim. Acta 50, 243–246 (2004)

    Article  CAS  Google Scholar 

  30. S. Matsui, T. Muranaga, H. Higobashi, S. Inoue, T. Sakai, Liquid-free rechargeable Li polymer battery. J. Power. Sources 97–98, 772–774 (2001)

    Article  Google Scholar 

  31. P. Villano, M. Carewska, G.B. Appetecchi, S. Passerini, PEO-LiN(SO2CF2CF3)2 polymer electrolytes III. Test in batteries. J. Electrochem. Soc. 149, A1282–A1285 (2002)

    Article  CAS  Google Scholar 

  32. P. André, P. Deniard, R. Brec, S. Lascaud, Study of the interface nickel/composite cathode of industrially made Li/V2O5 polymer (POE) batteries working at 90 °C. J. Power. Sources 105, 66–74 (2002)

    Article  Google Scholar 

  33. H. Miyashiro, Y. Kobayashi, T. Nakamura, S. Seki, Y. Mita, A. Usami, Basic properties of all-solid-state lithium polymer secondary batteries using LiFePO4. Electrochemistry 74, 321–325 (2006)

    Article  CAS  Google Scholar 

  34. Y. Matoba, S. Matsui, M. Tabuchi, T. Sakai, Electrochemical properties of composite polymer electrolyte applied to rechargeable lithium polymer battery. J. Power. Sources 137, 284–287 (2004)

    Article  CAS  Google Scholar 

  35. Y. Aihara, J. Kuratomi, T. Bando, T. Iguchi, H. Yoshida, T. Ono, K. Kuwana, Investigation on solvent-free solid polymer electrolytes for advanced lithium batteries and their performance. J. Power. Sources 114, 96–104 (2003)

    Article  CAS  Google Scholar 

  36. Y. Kang, H.J. Kim, E. Kim, B. Oh, J.H. Cho, Photocured PEO-based solid polymer electrolyte and its application to lithium-polymer batteries. J. Power. Sources 92, 255–259 (2001)

    Article  CAS  Google Scholar 

  37. Y. Kobayashi, S. Seki, A. Yamanaka, H. Miyashiro, Y. Mita, T. Iwahori, Development of high-voltage and high-capacity all-solid-state lithium secondary batteries. J. Power. Sources 146, 719–722 (2005)

    Article  CAS  Google Scholar 

  38. H. Miyashiro, Y. Kobayashi, S. Seki, Y. Mita, A. Usami, M. Nakayama, M. Wakihara, Fabrication of all-solid-state lithium polymer secondary batteries using Al2O3-coated LiCoO2. Chem. Mater. 17, 5603–5605 (2005)

    Article  CAS  Google Scholar 

  39. Y. Kobayashi, S. Seki, M. Tabuchi, H. Miyashiro, Y. Mita, T. Iwahori, High-performance genuine lithium polymer battery obtained by fine-ceramic-electrolyte coating of LiCoO2. J. Electrochem. Soc. 152, A1985–A1988 (2005)

    Article  CAS  Google Scholar 

  40. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Mita, T. Iwahori, Fabrication of high-voltage, high-capacity all-solid-state lithium polymer secondary batteries by application of the polymer electrolyte/inorganic electrolyte composite concept. Chem. Mater. 17, 2041–2045 (2005)

    Article  CAS  Google Scholar 

  41. S. Seki, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, N. Terada, Improvement in high-voltage performance of all-solid-state lithium polymer secondary batteries by mixing inorganic electrolyte with cathode materials. J. Electrochem. Soc. 153, A1073–A1076 (2006)

    Article  CAS  Google Scholar 

  42. H. Miyashiro, S. Seki, Y. Kobayashi, Y. Ohno, Y. Mita, A. Usami, All-solid-state lithium polymer secondary battery with LiNi0.5Mn1.5O4 by mixing of Li3PO4. Electrochem. Commun. 7, 1083–1086 (2005)

    Article  CAS  Google Scholar 

  43. N. Imanishi, Y. Ono, K. Hanai, R. Uchiyama, Y. Liu, A. Hirano, Y. Takeda, O. Yamamoto, Surface-modified meso-carbon microbeads anode for dry polymer lithium-ion batteries. J. Power. Sources 178, 744–750 (2008)

    Article  CAS  Google Scholar 

  44. Y. Kobayashi, S. Seki, Y. Mita, Y. Ohno, H. Miyashiro, P. Charest, A. Guerfi, K. Zaghib, High reversible capacities of graphite and SiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries. J. Power. Sources 185, 542–548 (2008)

    Article  CAS  Google Scholar 

  45. K.E. Johnson, What’s an ionic liquid ? Electrochem. Soc. Interface 16, 38–41 (2007)

    CAS  Google Scholar 

  46. A. Noda, K. Hayamizu, M. Watanabe, Pulsed-gradient spin-echo1H and19F NMR ionic diffusion coefficient, viscosity, and ionic conductivity of non-chloroaluminate room-temperature ionic liquids. J. Phys. Chem. B 105, 4603–4610 (2001)

    Article  CAS  Google Scholar 

  47. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 1. Variation of anionic species. J. Phys. Chem. B 108, 16593–16600 (2004)

    Article  CAS  Google Scholar 

  48. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, Physicochemical properties and structures of room temperature ionic liquids. 2. variation of alkyl chain length in imidazolium cation. J. Phys. Chem. B 109, 6103–6110 (2005)

    Article  CAS  Google Scholar 

  49. H. Tokuda, K. Ishii, M.A.B.H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, Physicochemical properties and structures of room-temperature ionic liquids. 3. Variation of cationic structures. J. Phys. Chem. B 110, 2833–2839 (2006)

    Article  CAS  Google Scholar 

  50. H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, How ionic are room-temperature ionic liquids? An indicator of the physicochemical properties. J. Phys. Chem. B 110, 19593–19600 (2006)

    Article  CAS  Google Scholar 

  51. A. Noda, M. Watanabe, Highly conductive polymer electrolytes prepared by in situ polymerization of vinyl monomers in room temperature molten salts. Electrochim. Acta 45, 1265–1270 (2000)

    Article  CAS  Google Scholar 

  52. S. Washiro, M. Yoshizawa, H. Nakajima, H. Ohno, Highly ion conductive flexible films composed of network polymers based on polymerizable ionic liquids. Polymer 45, 1577–1582 (2004)

    Article  CAS  Google Scholar 

  53. M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, Ion gels prepared by in situ radical polymerization of vinyl monomers in an ionic liquid and their characterization as polymer electrolytes. J. Am. Chem. Soc. 127, 4976–4983 (2005)

    Article  CAS  Google Scholar 

  54. T. Fukushima, A. Kosaka, Y. Ishimura, T. Yamamoto, T. Takigawa, N. Ishii, T. Aida, Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300, 2072–2074 (2003)

    Article  CAS  Google Scholar 

  55. A. Hayashi, M. Yoshizawa, C.A. Angell, F. Mizuno, T. Minami, M. Tatsumisago, High conductivity of superionic-glass-in-ionic-liquid solutions. Electrochem. Solid-State Lett. 6, E19–E22 (2003)

    Article  CAS  Google Scholar 

  56. Y. Tominaga, S. Asai, M. Sumita, S. Panero, B. Scrosati, Fast ionic conduction in PEO-based composite electrolyte filled with ionic liquid-modified mesoporous silica. Electrochem. Solid-State Lett. 8, A22–A25 (2005)

    Article  CAS  Google Scholar 

  57. K.R. Seddon, A. Stark, M.J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 72, 2275–2287 (2000)

    Article  CAS  Google Scholar 

  58. J. Dupont, R.F. De Souza, P.A.Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)

    Article  CAS  Google Scholar 

  59. P. Wasserscheid, W. Keim, Ionic liquids – new ‘solutions’ for transition metal catalysis. Angew. Chem. Int. Ed. 39, 3773–3789 (2000)

    Google Scholar 

  60. T. Welton, Ionic liquids in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)

    Article  CAS  Google Scholar 

  61. R.A. Sheldon, R. Madeira Lau, M.J. Sorgedrager, F. Van Rantwijk, K.R. Seddon, Biocatalysis in ionic liquids. Green Chem. 4, 147–151 (2002)

    Article  CAS  Google Scholar 

  62. A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Goldman, Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J. Electrochem. Soc. 146, 1687–1695 (1999)

    Article  CAS  Google Scholar 

  63. M. Ue, M. Takeda, T. Takahashi, M. Takehara, Ionic liquids with low melting points and their application to double-layer capacitor electrolytes. Electrochem. Solid-State Lett. 5, A119–A121 (2002)

    Article  CAS  Google Scholar 

  64. M. Ue, M. Takeda, A. Toriumi, A. Kominato, R. Hagiwara, Y. Ito, Application of low-viscosity ionic liquid to the electrolyte of double-layer capacitors. J. Electrochem. Soc. 150, A499–A502 (2003)

    Article  CAS  Google Scholar 

  65. D. Kuang, P. Wang, S. Ito, S.M. Zakeeruddin, M. Grätzel, Stable mesoscopic dye-sensitized solar cells based on tetracyanoborate ionic liquid electrolyte. J. Am. Chem. Soc. 128, 7732–7733 (2006)

    Article  CAS  Google Scholar 

  66. T. Kato, T. Kado, S. Tanaka, A. Okazaki, S. Hayase, Quasi-solid dye-sensitized solar cells containing nanoparticles modified with ionic liquid-type molecules. J. Electrochem. Soc. 153, A626–A630 (2006)

    Article  CAS  Google Scholar 

  67. M. Doyle, S.K. Choi, G. Proulx, High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites. J. Electrochem. Soc. 147, 34–37 (2000)

    Article  CAS  Google Scholar 

  68. A. Noda, M.A.B.H. Susan, K. Kudo, S. Mitsushima, K. Hayamizu, M. Watanabe, Brønsted acid–base ionic liquids as proton-conducting nonaqueous electrolytes. J. Phys. Chem. B 107, 4024–4033 (2003)

    Article  CAS  Google Scholar 

  69. R. Hagiwara, T. Nohira, K. Matsumoto, Y. Tamba, A fluorohydrogenate ionic liquid fuel cell operating without humidification. Electrochem. Solid-State Lett. 8, A231–A233 (2005)

    Article  CAS  Google Scholar 

  70. M.A. Navarra, S. Panero, B. Scrosati, Novel, ionic-liquid-based, gel-type proton membranes. Electrochem. Solid-State Lett. 8, A324–A327 (2005)

    Article  CAS  Google Scholar 

  71. W. Lu, A.G. Fadeev, B. Qi, B.R. Mattes, Fabricating conducting polymer electrochromic devices using ionic liquids. J. Electrochem. Soc. 151, H33–H39 (2004)

    Article  CAS  Google Scholar 

  72. S. Ono, S. Seki, R. Hirahara, Y. Tominari, J. Takeya, High-mobility, low-power, and fast-switching organic field-effect transistors with ionic liquids. Appl. Phys. Lett. 92, 103313-1-3 (2008).

    Google Scholar 

  73. H. Nakagawa, S. Izuchi, K. Kuwana, T. Nukuda, Y. Aihara, Liquid and polymer gel electrolytes for lithium batteries composed of room-temperature molten salt doped by lithium salt. J. Electrochem. Soc. 150, A695–A700 (2003)

    Article  CAS  Google Scholar 

  74. B. Garcia, S. Lavallée, G. Perron, C. Michot, M. Armand, Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta 49, 4583–4588 (2004)

    Article  CAS  Google Scholar 

  75. T. Sato, T. Maruo, S. Marukane, K. Takagi, Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells. J. Power. Sources 138, 253–261 (2004)

    Article  CAS  Google Scholar 

  76. H. Sakaebe, H. Matsumoto, N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI) – novel electrolyte base for Li battery. Electrochem. Commun. 5, 594–598 (2004)

    Article  Google Scholar 

  77. H. Matsumoto, M. Yanagida, K. Tanimoto, M. Nomura, Y. Kitagawa, Y. Miyazaki, Highly conductive room temperature molten salts based on small trimethylalkylammonium cations and bis(trifluoromethylsulfonyl)imide. Chem. Lett. 29, 922–923 (2000)

    Google Scholar 

  78. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, Y. Mita, A. Usami, N. Terada, M. Watanabe, Reversibility of lithium secondary batteries using a room-temperature ionic liquid mixture and lithium metal. Electrochem. Solid-State Lett. 8, A577–A578 (2005)

    Article  CAS  Google Scholar 

  79. S. Seki, Y. Ohno, H. Miyashiro, Y. Kobayashi, A. Usami, Y. Mita, N. Terada, K. Hayamizu, S. Tsuzuki, M. Watanabe, Quaternary ammonium room-temperature ionic liquid/lithium salt binary electrolytes: electrochemical study. J. Electrochem. Soc. 155, A421–A427 (2008)

    Article  CAS  Google Scholar 

  80. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, N. Kihira, M. Watanabe, N. Terada, Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J. Phys. Chem. B 110, 10228–10230 (2006)

    Article  CAS  Google Scholar 

  81. S. Seki, Y. Ohno, Y. Kobayashi, H. Miyashiro, A. Usami, Y. Mita, H. Tokuda, M. Watanabe, K. Hayamizu, S. Tsuzuki, M. Hattori, N. Terada, Imidazolium-based room-temperature ionic liquid for lithium secondary batteries. J. Electrochem. Soc. 154, A173–A177 (2007)

    Article  CAS  Google Scholar 

  82. M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, M. Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries. J. Power. Sources 162, 658–662 (2006)

    Article  CAS  Google Scholar 

  83. A. Guerfi, S. Duchesne, Y. Kobayashi, A. Vijh, K. Zaghib, LiFePO4 and graphite electrodes with ionic liquids based on bis(fluorosulfonyl)imide (FSI)- for Li-ion batteries. J. Power. Sources 175, 866–873 (2008)

    Article  CAS  Google Scholar 

  84. H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, M. Kono, Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]-. J. Power. Sources 160, 1308–1313 (2006)

    Article  CAS  Google Scholar 

  85. T. Tamura, T. Hachida, K. Yoshida, N. Tachikawa, K. Dokko, M. Watanabe, New glyme-cyclic imide lithium salt complexes as thermally stable electrolytes for lithium batteries. J. Power. Sources 195, 6095 (2010)

    Article  CAS  Google Scholar 

  86. T. Tamura, K. Yoshida, T. Hachida, M. Tsuchiya, M. Nakamura, Y. Kazue, N. Tachikawa, K. Dokko, M. Watanabe, Physicochemical properties of glyme-Li salt complexes as a new family of room-temperature ionic liquids. Chem. Lett. 39, 753 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiro Seki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Seki, S., Watanabe, M. (2014). Polymer and Ionic Liquid Electrolytes for Advanced Lithium Batteries. In: Osaka, T., Ogumi, Z. (eds) Nanoscale Technology for Advanced Lithium Batteries. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8675-6_6

Download citation

Publish with us

Policies and ethics