Skip to main content

Nuclear Magnetic Resonance Study of Lithium-Ion Batteries

  • Chapter
  • First Online:
Book cover Nanoscale Technology for Advanced Lithium Batteries

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

In this chapter, the application of nuclear magnetic resonance (NMR) to lithium-ion batteries is discussed. It is shown that observation of lithium in anode carbon materials is straightforward and in situ NMR during charge/discharge has been realized. Examination of solid-state NMR of various nuclear spins in electrode materials using a technique called magic-angle spinning (MAS) is introduced. Further, measurement of the diffusion coefficient and observation of magnetic resonance imaging (MRI) of lithium-ion batteries using the pulsed-field-gradient technique are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds: Tables of Spectral Data (Springer, New York, 2009)

    Google Scholar 

  2. K.J.D. MacKenzie, M.E. Smith, Multinuclear Solid-State NMR of Inorganic Materials (Elsevier, New York, 2002)

    Google Scholar 

  3. C.P. Grey, S.G. Greenbaum, Nuclear magnetic resonance studies of lithium-ion battery materials. MRS Bull. 27, 613–618 (2002)

    Article  CAS  Google Scholar 

  4. C.P. Grey, Y.J. Lee, Lithium MAS NMR studies of cathode materials for lithium-ion batteries. Solid State Sci. 5, 883–894 (2003)

    Article  CAS  Google Scholar 

  5. C.P. Grey, N. Dupr, NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493–4512 (2004)

    Article  CAS  Google Scholar 

  6. J. Conard, H. Estrade, Résonancemagnétiquenucléaire du lithium interstitieldans le graphite. Mater. Sci. Eng. 31, 173–176 (1977)

    Article  CAS  Google Scholar 

  7. K. Zaghib, K. Tatsumi, Y. Sawada, S. Higuchi, H. Abe, T. Ohsaki, 7Li-NMR of well-graphitized vapor-grown carbon fibers and natural graphite negative electrodes of rechargeable lithium-ion batteries. J. Electrochem. Soc. 146, 2784–2793 (1999)

    Article  CAS  Google Scholar 

  8. H. Zabel, S.A. Solin (eds.), Graphite Intercalation Compounds I and II (Springer, Berlin, 1990/1992)

    Google Scholar 

  9. M. Letellier, F. Chevallier, F. Béguin, In situ 7Li NMR during lithium electrochemical insertion into graphite and a carbon/carbon composite. J. Phys. Chem. Solids 67, 1228–1232 (2006)

    Article  CAS  Google Scholar 

  10. K. Tatsumi, J. Conard, M. Nakahara, S. Menu, P. Lauginie, Y. Sawada, Z. Ogumi, 7Li NMR studies on a lithiated non-graphitizable carbon fibre at lowtemperatures. Chem. Commun. 687–688 (1997)

    Google Scholar 

  11. K. Tatsumi, T. Kawamura, S. Higuchi, T. Hosotubo, H. Nakajima, Y. Sawada, Anode characteristics of non-graphitizable carbon fibers for rechargeable lithium-ion batteries. J. Power Sources 68, 263–266 (1997)

    Article  CAS  Google Scholar 

  12. K. Tatsumi, J. Conard, M. Nakahara, S. Menu, P. Lauginie, Y. Sawada, Z. Ogumi, Low temperature 7Li-NMR investigations on lithium inserted into carbon anodes for rechargeable lithium-ion cells. J. Power Sources 81–82, 397–400 (1999)

    Article  Google Scholar 

  13. S. Wang, H. Matsui, H. Tamamura, Y. Matsumura, T. Yamabe, Mechanism of lithium insertion into disordered carbon. Phys. Rev. B58, 8163–8165 (1998)

    Article  Google Scholar 

  14. K. Guérin, M. Ménétrier, A. Février-Bouvier, S. Flandrois, B. Simon, P. Biensan, A Li NMR study of a hard carbon for lithium–ion rechargeable batteries. Solid State Ion. 127, 187–198 (2000)

    Article  Google Scholar 

  15. S. Yamazaki, T. Hashimoto, T. Iriyama, Y. Mori, H. Shiroki, N. Tamura, Study of the states of Li doped in carbons as an anode of LiB by 7Li NMR spectroscopy. J. Mol. Struct. 441, 165–171 (1998)

    Article  CAS  Google Scholar 

  16. S. Gautier, F. Leroux, E. Frackowiak, A.M. Faugére, J.-N. Rouzaud, F. Béguin, Influence of the pyrolysis conditions on the nature of lithium inserted in hard carbons. J. Phys. Chem. A105, 5794–5800 (2001)

    Article  Google Scholar 

  17. M. Letellier, F. Chevallier, F. Béguin, E. Frackowiak, J.-N. Rouzaud, The first in situ 7Li NMR study of the reversible lithium insertion mechanism in disorganised carbons. J. Phys. Chem. Solid 65, 245–251 (2004)

    Article  CAS  Google Scholar 

  18. R.E. Gerald II, J. Sanchez, C.S. Johnson, R.J. Klingler, J.W. Rathke, In situ nuclear magnetic resonance investigations of lithium ions in carbon electrode materials using a novel detector. J. Phys. Condens. Mater. 13, 8269–8285 (2001)

    Article  CAS  Google Scholar 

  19. M. Letellier, F. Chevallier, M. Morcrette, In situ 7Li nuclear magnetic resonance observation of the electrochemical intercalation of lithium in graphite; 1st cycle. Carbon 45, 1025–1034 (2007)

    Article  CAS  Google Scholar 

  20. M. Letellier, F. Chevallier, C. Clinard, E. Frackowiak, J.N. Rouzaud, F. Béguin, M. Morcrette, J.M. Tarascon, The first in situ 7Li nuclear magnetic resonance study of lithium insertion in hard-carbon anode materials for Li-ion batteries. J. Chem. Phys. 118, 6038–6045 (2003)

    Article  CAS  Google Scholar 

  21. F. Chevallier, M. Letellier, M. Morcrette, J.M. Tarascon, E. Frackowiak, J.N. Rouzaud, F. Beguin, In situ 7Li nuclear magnetic resonance observation of reversible lithium insertion into disordered carbons. Electrochem. Solid State Lett. 6, A225–A228 (2003)

    Article  CAS  Google Scholar 

  22. B. Key, R. Bhattacharyya, M. Morcrette, V. Seznéc, J.M. Tarascon, C.P. Grey, Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J. Am. Chem. Soc. 131, 9239–9249 (2009)

    Article  CAS  Google Scholar 

  23. R. Bhattacharyya, B. Key, H.L. Chen, A.S. Best, A.F. Hollenkamp, C.P. Grey, In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010)

    Article  CAS  Google Scholar 

  24. K. Sato, M. Noguchi, A. Demachi, N. Oki, M. Endo, A mechanism of lithium storage in disordered carbons. Science 264, 556–558 (1994)

    Article  CAS  Google Scholar 

  25. C. Marichal, J. Hirschinger, P. Granger, M. Ménétrier, A. Rougier, C. Delmas, 6Li and 7Li NMR in the LiNi1-y CoyO2solid solution (0 ≤ y ≤ 1). Inorg. Chem. 34, 1773–1778 (1995)

    Article  CAS  Google Scholar 

  26. Y. Paik, C.P. Gray, C.S. Johnson, J.-S. Kim, M.M. Thackeray, Lithium and deuterium NMR studies of acid-leached layered lithium manganese oxides. Chem. Mater. 14, 5109–5115 (2002)

    Article  CAS  Google Scholar 

  27. Y. Paik, W. Bowden, T. Richards, C.P. Grey, The effect of heat-treatment on electrolytic manganese dioxide: A 2H and 6Li magic angle spinning NMR study. J. Electrochem. Soc. 152, A1539–A1547 (2005)

    Article  CAS  Google Scholar 

  28. M. Ménétrier, J. Bains, L. Croguennec, A. Flambard, E. Bekaert, C. Jordy, P. Biensan, C. Delmas, NMR evidence of LiF coating rather than fluorine substitution in Li(Ni0.425Mn0.425Co0.15)O2. J. SolidState Chem. 181, 3303–3307 (2008)

    Article  Google Scholar 

  29. M.C. Tucker, M.M. Doeff, T.J. Richardson, R. Finones, J.A. Reimer, E.J. Cairns, 7Li and 31P magic angle spinning nuclear magnetic resonance of LiFePO4-type materials. Electrochem. Solid State Lett. 5, A95–A98 (2002)

    Article  CAS  Google Scholar 

  30. N. Dupré, J. Gaubicher, D. Guyomard, C.P. Grey, 7Li and 51V MAS NMR study of the electrochemical behavior of Li1+xV3O8. Chem. Mater. 16, 2725–2733 (2004)

    Article  Google Scholar 

  31. R. Siegel, C.D. HirschingerJ, S. Matar, M. Ménétrier, C. Delmas et al., 59Co and 6,7Li MAS NMR in polytypes O2 and O3 of LiCoO2. J. Phys. Chem. B 105, 4166–4174 (2001)

    Article  CAS  Google Scholar 

  32. M.P.J. Peeters, M.J. van Bommel, P.M.C.N. Wolde, H.A.M. van Hal, W.C. Keur, A.P.M. Kentgens, A 6Li, 7Li and 59Co MAS NMR study of rock salt type LixCoO2 (0.48 ≤ x ≤ 1.05). Solid State Ion. 112, 41–52 (1998)

    Article  CAS  Google Scholar 

  33. Y.J. Lee, F. Wang, C.P. Grey, 6Li and 7Li MAS NMR studies of lithium manganate cathode materials. J. Am. Chem. Soc. 120, 12601–12613 (1998)

    Article  CAS  Google Scholar 

  34. V.W.J. Verhoeven, I.M. de Schepper, G. Nachtegaal, A.P.M. Kentgens, E.M. Kelder, J. Schoonman, F.M. Mulder, Lithium dynamics in LiMn2O4 probed directly by two-dimensional 7Li NMR. Phys. Rev. Lett. 86, 4314–4317 (2001)

    Article  CAS  Google Scholar 

  35. M. Wagemaker, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, Li-ion diffusion in the equilibrium nanomorphology of spinel Li4+xTi5O12. J. Phys. Chem. B 113, 224–230 (2009)

    Article  CAS  Google Scholar 

  36. L.S. Cahill, R.P. Chapman, J.F. Britten, G.R. Goward, 7Li NMR and two-dimensional exchange study of lithium dynamics in monoclinic Li3V2(PO4)3. J. Phys. Chem. B 110, 7171–7177 (2006)

    Article  CAS  Google Scholar 

  37. L.S. Cahill, R.P. Chapman, C.W. Kirby, G.R. Goward, The challenge of paramagnetism in two-dimensional 6,7Li exchange NMR. Appl Magn Reson 32, 565–581 (2007)

    Article  CAS  Google Scholar 

  38. L.S. Cahill, Y. Iriyama, L.F. Nazar, G.R. Goward, Synthesis of Li4V(PO4)2F2 and 6,7Li NMR studies of its lithium ion dynamics. J. Mater. Chem. 20, 4340–4346 (2010)

    Article  CAS  Google Scholar 

  39. L.J.M. Davis, I. Heinmaa, G.R. Goward, Study of lithium dynamics in monoclinic Li3Fe2(PO4)3 using 6Li VT and 2D Exchange MAS NMR Spectroscopy. Chem. Mater. 22, 769–775 (2010)

    Article  CAS  Google Scholar 

  40. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic, London, 1994)

    Google Scholar 

  41. M. Murakami, H. Yamashige, H. Arai, O.Z. UchimotoY, Direct evidence of LiF formation at electrode/electrolyte interface by 7Li and 19F double-resonance solid-state NMR Spectroscopy. Electrochem. Solid State Lett. 14, A134–A137 (2011)

    Article  CAS  Google Scholar 

  42. K. Hayamizu, Y. Aihara, S. Arai, W.S. Price, Diffusion, conductivity and DSC studies of a polymer gel electrolyte composed of cross-linked PEO, g-butyrolactone and LiBF6. Solid State Ion. 107, 1–12 (1998)

    Article  CAS  Google Scholar 

  43. K. Hayamizu, Y. Aihara, S. Arai, Pulse-gradient spin-echo 1H, 7Li, and 19F NMR diffusion and ionic conductivity measurements of 14 organic electrolytes containing LiN(SO2CF3)2. J. Phys. Chem. B 103, 519–524 (1999)

    Article  CAS  Google Scholar 

  44. K. Hayamizu, Y. Aihara, S. Arai, W.S. Price, Self-diffusion coefficients of lithium, anion, polymer, and solvent in polymer gel electrolytes measured using 7Li, 19F, and 1H pulsed-gradient spin-echo NMR. Electrochim. Acta 45, 1313–1319 (2000)

    Article  CAS  Google Scholar 

  45. K. Hayamizu, Ion and solvent diffusion and ion conduction of PC-DEC and PC-DME binary solvent electrolytes of LiN(SO2CF3)2. Electrochim. Acta 49, 3397–3402 (2004)

    Article  CAS  Google Scholar 

  46. K. Hayamizu, S. Seki, H. Miyashiro, Y. Kobayashi, Direct in situ observation of dynamic transport for electrolyte components by NMR combined with electrochemical measurements. J. Phys. Chem. B 110, 22302–22305 (2006)

    Article  CAS  Google Scholar 

  47. J. Kawamura, K. Hattori, T. Hongo, R. Asayama, N. Kuwata, T. Hattori, J. Mizusaki, Microscopic states of water and methanol in Nafion membrane observed by NMR micro imaging. Solid State Ion. 176, 2451–2456 (2005)

    Article  CAS  Google Scholar 

  48. Y. Iwai, J. Kawamura, Observation of electrophoretic nuclear magnetic resonance imaging in polymer electrolyte. J. Phys. Soc. Jpn. Suppl. A79, 160–162 (2010)

    Article  Google Scholar 

  49. W.F. Kirk, S.H. Bergens, R.E. Wasylishen, The use of 1H NMR microscopy to study proton-exchange membrane fuel cells. Chem. Phys. Chem. 7, 67–75 (2005)

    Article  Google Scholar 

  50. K. Teranishi, S. Tsushima, S. Hirai, Analysis of water transport in PEFCs by magnetic resonance imaging measurement. J. Electrochem. Soc. 153, A664–A668 (2006)

    Article  CAS  Google Scholar 

  51. M. Sonderegger, J. Roos, C. Kugler, M. Mali, D. Brinkmann, NMR imaging of Li-7 in a PEO(8)(LiClO4) film. Solid State Ion. 53, 849–852 (1992)

    Article  Google Scholar 

  52. R.E. Gerald II, C.S. Johnson, J.W. Rathke, R.J. Klingler, G. Sandí, L.G. Scanlon, 7Li NMR study of intercalated lithium in curved carbon lattices. J Power Sources 89, 237–243 (2000)

    Article  CAS  Google Scholar 

  53. H.J. Mamin, M. Poggio, C.L. Degen, D. Rugar, Nuclear magnetic resonance imaging with 90-nm resolution. Nat. Nanotechnol. 2, 301–306 (2007)

    Article  CAS  Google Scholar 

  54. C.L. Degen, M. Poggio, H.J. Mamin, C.T. Rettner, D. Rugar, Nanoscale magnetic resonance imaging. Proc. Natl. Acad. Sci. U. S. A. 106, 1313–1317 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miwa Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Murakami, M., Iwai, Y., Kawamura, J. (2014). Nuclear Magnetic Resonance Study of Lithium-Ion Batteries. In: Osaka, T., Ogumi, Z. (eds) Nanoscale Technology for Advanced Lithium Batteries. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8675-6_12

Download citation

Publish with us

Policies and ethics