Skip to main content

Part of the book series: SpringerBriefs in Systems Biology ((BRIEFSBIOSYS))

  • 852 Accesses

Abstract

The instrument instructions for a selected reaction monitoring experiment contain the basic programming needed to detect the set of peptides that will act as the quantitative surrogate for each protein being measured. The overarching goal of the design process is find the best peptides to monitor and optimize the collision induced dissociation conditions to give the best signal for those peptides. The general stages are finding an initial set of candidate peptides for initial testing, optimizing the conditions for those candidates, selecting the best of the optimized group, and validating the proper detection of the correct peptides. A six step approach is used to go through these stages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wysocki VH, Tsaprailis G, Smith LL, Breci LA (2000) Mobile and localized protons: a framework for understanding peptide dissociation. J Mass Spectrom 35:1399–1406

    Article  PubMed  CAS  Google Scholar 

  2. Gucinski AC, Dodds ED, Li W, Wysocki VH (2010) Understanding and exploiting peptide fragment ion intensities using experimental and informatic approaches. Methods Mol Biol 604:73–94

    Article  PubMed  CAS  Google Scholar 

  3. Harrison AG, Csizmadia IG, Tang TH (2000) Structure and fragmentation of b2 ions in peptide mass spectra. J Am Soc Mass Spectrom 11:427–436

    Article  PubMed  CAS  Google Scholar 

  4. Harrison AG (2009) To b or not to b: the ongoing saga of peptide b ions. Mass Spectrom Rev 28:640–654

    Article  PubMed  CAS  Google Scholar 

  5. Lau KW, Hart SR, Lynch JA, Wong SC, Hubbard SJ, Gaskell SJ (2009) Observations on the detection of b- and y-type ions in the collisionally activated decomposition spectra of protonated peptides. Rapid Commun Mass Spectrom 23:1508–14

    Article  PubMed  CAS  Google Scholar 

  6. Kinter M, Sherman NE (2000) Protein sequencing and identification using tandem mass spectrometry. Wiley, New York

    Book  Google Scholar 

  7. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW 3rd, Su AI (2009) BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 10:R130

    Article  PubMed  Google Scholar 

  8. Desiere F, Deutsch EW, King NL, Nesvizhskii AI, Mallick P, Eng J, Chen S, Eddes J, Loevenich SN, Aebersold R (2006) The PeptideAtlas project. Nucleic Acids Res 34:D655–D658

    Article  PubMed  CAS  Google Scholar 

  9. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins D (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  Google Scholar 

  10. Spicer V, Yamchuk A, Cortens J, Sousa S, Ens W, Standing KG, Wilkins JA, Krokhin OV (2007) Sequence-specific retention calculator. A family of peptide retention time prediction algorithms in reversed-phase HPLC: applicability to various chromatographic conditions and columns. Anal Chem 79:8762–8768

    Article  PubMed  CAS  Google Scholar 

  11. Ludwig C, Claassen M, Schmidt A, Aebersold R (2012) Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry. Mol Cell Proteomics 11:M111.013987

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kinter, M., Kinter, C.S. (2013). Designing a Selected Reaction Monitoring Method. In: Application of Selected Reaction Monitoring to Highly Multiplexed Targeted Quantitative Proteomics. SpringerBriefs in Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8666-4_3

Download citation

Publish with us

Policies and ethics