Skip to main content

Principles of Magnetic Resonance Imaging (MRI)

  • Chapter
  • First Online:

Abstract

Magnetic resonance imaging (MRI) is rapidly becoming the imaging modality of choice for children. It provides high-quality anatomic, spatial, functional, and physiologic information of the kidneys and urinary tract equal and often better than other advanced imaging techniques without ionizing radiation exposure. Contrast agents allow quantitative modeling for obtaining renal and urinary collecting system quantitative functional measures important for management decision analyses in pediatric urology. In this chapter, we discuss basic principles of nuclear magnetic resonance and spectroscopy as they relate to patient preparation, image acquisition and processing, and clinical indications. Understanding these factors allows practitioners to optimize image formation of magnetic resonance urography (MRU) and better interpret static and dynamic magnetic resonance urography.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Preston DL, Cullings H, Suyama A, Funamoto S, Nishi N, Soda M, et al. Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst. 2008;100(6):428–36.

    Article  PubMed  Google Scholar 

  2. Preston DL, Shimizu Y, Pierce DA, Suyama A, Mabuchi K. Studies of mortality of atomic bomb survivors. Report 13: solid cancer and noncancer disease mortality: 1950–1997. Radiat Res. 2003;160(4):381–407.

    Article  CAS  PubMed  Google Scholar 

  3. Slichter CP. Principles of magnetic resonance. 3rd enl. and updated ed. Berlin/New York: Springer; 1990.

    Google Scholar 

  4. Nishimura DG. Principles of magnetic resonance imaging. San Francisco: Stanford University Press; 2010.

    Google Scholar 

  5. Lauterbur PC. Image formation by induced local interactions. Examples employing nuclear magnetic resonance. Clin Orthop Relat Res. 1973;244:3–6.

    Google Scholar 

  6. Friedburg HGWB, Hennig J, Frankenschmidt A, Hauenstein KH. Initial clinical experiences with RARE-MR urography. Urologe A. 1987;26:309–16.

    CAS  PubMed  Google Scholar 

  7. Sigmund G, Stoever B, Zimmerhackl LB, Frankenschmidt A, Nitzsche E, Leititis JU, et al. RARE-MR-urography in the diagnosis of upper urinary tract abnormalities in children. Pediatr Radiol. 1991;21(6):416–20.

    Article  CAS  PubMed  Google Scholar 

  8. Aerts P, VanHoe L, Bosmans H, Oyen R, Marchal G, Baert AL. Breath-hold MR urography using the HASTE technique. Am J Roentgenol. 1996;166(3):543–5.

    Article  CAS  Google Scholar 

  9. Tang Y, Yamashita Y, Namimoto T, Abe Y, Nishiharu T, Sumi S, et al. The value of MR urography that uses HASTE sequences to reveal urinary tract disorders. Am J Roentgenol. 1996;167(6):1497–502.

    Article  CAS  Google Scholar 

  10. O’Malley ME, Soto JA, Yucel EK, Hussain S. MR urography: evaluation of a three-dimensional fast spin-echo technique in patients with hydronephrosis. Am J Roentgenol. 1997;168(2):387–92.

    Article  Google Scholar 

  11. Ergen FB, Hussain HK, Carlos RC, Johnson TD, Adusumilli S, Weadock WJ, et al. 3D Excretory MR urography: improved image quality with intravenous saline and diuretic administration. J Magn Reson Imaging. 2007;25(4):783–9.

    Article  PubMed  Google Scholar 

  12. Karabacakoglu A, Karakose S, Ince O, Cobankara OE, Karalezli G. Diagnostic value of diuretic-enhanced excretory MR urography in patients with obstructive uropathy. Eur J Radiol. 2004;52(3):320–7.

    Article  PubMed  Google Scholar 

  13. Nolte-Ernsting CCA, Bucker A, Adam GB, Neuerburg JM, Jung P, Hunter DW, et al. Gadolinium-enhanced excretory MR urography after low-dose diuretic injection: comparison with conventional excretory urography. Radiology. 1998;209(1):147–57.

    CAS  PubMed  Google Scholar 

  14. Sudah M, Vanninen R, Partanen K, Heino A, Vainio P, Ala-Opas M. MR urography in evaluation of acute flank pain: T2-weighted sequences and gadolinium-enhanced three-dimensional FLASH compared with urography. Am J Roentgenol. 2001;176(1):105–12.

    Article  CAS  Google Scholar 

  15. Rusinek H, Lee VS, Johnson G. Optimal dose of Gd-DTPA in dynamic MR studies. Magn Reson Med. 2001;46(2):312–16.

    Article  CAS  PubMed  Google Scholar 

  16. Jones TD, Kernek KM, Yang XJ, Lopez-Beltran A, MacLennan GT, Eble JN, et al. Thyroid transcription factor 1 expression in small cell carcinoma of the urinary bladder: an immunohistochemical profile of 44 cases. Hum Pathol. 2005;36(7):718–23.

    Article  CAS  PubMed  Google Scholar 

  17. Hackstein N, Heckrodt J, Rau WS. Measurement of single-kidney glomerular filtration rate using a contrast-enhanced dynamic gradient-echo sequence and the Rutland-Patlak plot technique. J Magn Reson Imaging. 2003;18(6):714–25.

    Article  PubMed  Google Scholar 

  18. Jones RA, Easley K, Little SB, Scherz H, Kirsch AJ, Grattan-Smith JD. Dynamic contrast-enhanced MR urography in the evaluation of pediatric hydronephrosis: part I, functional assessment. Am J Roentgenol. 2005;185(6):1598–607.

    Article  Google Scholar 

  19. Bokacheva L, Rusinek H, Zhang JL, Lee VS. Assessment of renal function with dynamic contrast-enhanced MR imaging. Magn Reson Imaging Clin N Am. 2008;16(4):597–611.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lee VS, Rusinek H, Bokacheva L, Huang AJ, Oesingmann N, Chen Q, et al. Renal function measurements from MR renography and a simplified multicompartmental model. Am J Physiol Renal Physiol. 2007;292(5):F1548–59.

    Article  CAS  PubMed  Google Scholar 

  21. Annet L, Hermoye L, Peeters F, Jamar F, Dehoux JP, Van Beers BE. Glomerular filtration rate: assessment with dynamic contrast-enhanced MRI and a cortical-compartment model in the rabbit kidney. J Magn Reson Imaging. 2004;20(5):843–9.

    Article  PubMed  Google Scholar 

  22. Buckley DL, Shurrab AE, Cheung CM, Jones AP, Mamtora H, Kalra PA. Measurement of single kidney function using dynamic contrast-enhanced MRI: comparison of two models in human subjects. J Magn Reson Imaging. 2006;24(5):1117–23.

    Article  PubMed  Google Scholar 

  23. Michaely HJ, Sourbron SP, Buettner C, Lodemann KP, Reiser MF, Schoenberg SO. Temporal constraints in renal perfusion imaging with a 2-compartment model. Invest Radiol. 2008;43(2):120–8.

    Article  PubMed  Google Scholar 

  24. Dietrich RB, Kangarloo H. Kidneys in infants and children – evaluation with MR. Radiology. 1986;159(1):215–21.

    CAS  PubMed  Google Scholar 

  25. Grattan-Smith JD, Jones RA. MR urography in children. Pediatr Radiol. 2006;36(11):1119–32; quiz 228–9.

    Article  PubMed  Google Scholar 

  26. Kass EJ, Majd M, Belman AB. Comparison of the diuretic renogram and the pressure perfusion study in children. J Urol. 1985;134(1):92–6.

    CAS  PubMed  Google Scholar 

  27. Little SB, Jones RA, Grattan-Smith JD. Evaluation of UPJ obstruction before and after pyeloplasty using MR urography. Pediatr Radiol. 2008;38:S106–24.

    Article  PubMed  Google Scholar 

  28. Chertin B, Pollack A, Koulikov D, Rabinowitz R, Shen O, Hain D, et al. Long-term follow up of antenatally diagnosed megaureters. J Pediatr Urol. 2008;4(3):188–91.

    Article  PubMed  Google Scholar 

  29. Wildbrett P, Langner S, Lode H, Abel J, Otto S, Hosten N, et al. Impact of magnetic resonance urography and ultrasonography on diagnosis and management of hydronephrosis and megaureter in paediatric patients. Afr J Paediatr Surg. 2012;9(2):122–7.

    Article  PubMed  Google Scholar 

  30. Staatz G, Nolte-Ernsting CC, Haage P, Tacke J, Rohrmann D, Stollbrink C, et al. [Gadolinium-enhanced T(1)-weighted MR urography versus T(2)-weighted (HASTE) MR urography in children]. Rofo. 2001;173(11):991–6.

    Article  CAS  PubMed  Google Scholar 

  31. Lonergan GJ, Pennington DJ, Morrison JC, Haws RM, Grimley MS, Kao TC. Childhood pyelonephritis: comparison of gadolinium-enhanced MR imaging and renal cortical scintigraphy for diagnosis. Radiology. 1998;207(2):377–84.

    CAS  PubMed  Google Scholar 

  32. Weiser AC, Amukele SA, Leonidas JC, Palmer LS. The role of gadolinium enhanced magnetic resonance imaging for children with suspected acute pyelonephritis. J Urol. 2003;169(6):2308–11.

    Article  PubMed  Google Scholar 

  33. Chan YL, Chan KW, Yeung CK, Roebuck DJ, Chu WCW, Lee KH, et al. Potential utility of MRI in the evaluation of children at risk of renal scarring. Pediatr Radiol. 1999;29(11):856–62.

    Article  CAS  PubMed  Google Scholar 

  34. Grattan-Smith JD, Little SB, Jones RA. Evaluation of reflux nephropathy, pyelonephritis and renal dysplasia. Pediatr Radiol. 2008;38 Suppl 1:S83–105.

    Article  PubMed  Google Scholar 

  35. Herz D, Merguerian P, McQuiston L, Danielson C, Gheen M, Brenfleck L. 5-year prospective results of dimercapto-succinic acid imaging in children with febrile urinary tract infection: proof that the top-down approach works. J Urol. 2010;184(4 Suppl):1703–9.

    Article  PubMed  Google Scholar 

  36. Leibovic SJ, Lebowitz RL. Reducing patient dose in voiding cystourethrography. Urol Radiol. 1981;2(2):103–7.

    Article  Google Scholar 

  37. Rodriguez LV, Spielman D, Herfkens RJ, Shortliffe LD. Magnetic resonance imaging for the evaluation of hydronephrosis, reflux and renal scarring in children. J Urol. 2001;166(3):1023–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lee SK, Chang Y, Park NH, Kim YH, Woo S. Magnetic resonance voiding cystography in the diagnosis of vesicoureteral reflux: comparative study with voiding cystourethrography. J Magn Reson Imaging. 2005;21(4):406–14.

    Article  PubMed  Google Scholar 

  39. Chang SL, Caruso TJ, Shortliffe LD. Magnetic resonance imaging detected renal volume reduction in refluxing and nonrefluxing kidneys. J Urol. 2007;178(6):2550–4.

    Article  PubMed  Google Scholar 

  40. Pearce MS, Salotti JA, Little MP, McHugh K, Lee C, Kim KP, et al. Radiation exposure from CT scans in childhood and subsequent risk of leukaemia and brain tumours: a retrospective cohort study. Lancet. 2012;380(9840):499–505.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Belt TG, Cohen MD, Smith JA, Cory DA, McKenna S, Weetman R. MRI of Wilms’ tumor: promise as the primary imaging method. AJR Am J Roentgenol. 1986;146(5):955–61.

    Article  CAS  PubMed  Google Scholar 

  42. Siegel MJ, Chung EM. Wilms’ tumor and other pediatric renal masses. Magn Reson Imaging Clin N Am. 2008;16(3):479–97, vi.

    Article  PubMed  Google Scholar 

  43. Weese DL, Applebaum H, Taber P. Mapping intravascular extension of Wilms’ tumor with magnetic resonance imaging. J Pediatr Surg. 1991;26(1):64–7.

    Article  CAS  PubMed  Google Scholar 

  44. Ritchey ML, Green DM, Breslow NB, Moksness J, Norkool P. Accuracy of current imaging modalities in the diagnosis of synchronous bilateral Wilms’ tumor. A report from the National Wilms Tumor Study Group. Cancer Am Cancer Soc. 1995;75(2):600–4.

    CAS  Google Scholar 

  45. Mandelbrot DA, Pavlakis M, Danovitch GM, Johnson SR, Karp SJ, Khwaja K, et al. The medical evaluation of living kidney donors: a survey of US transplant centers. Am J Transplant. 2007;7(10):2333–43.

    Article  CAS  PubMed  Google Scholar 

  46. Rossi C, Boss A, Artunc F, Yildiz S, Martirosian P, Dittmann H, et al. Comprehensive assessment of renal function and vessel morphology in potential living kidney donors an MRI-based approach. Invest Radiol. 2009;44(11):705–11.

    Article  PubMed  Google Scholar 

  47. Cohnen M, Brause M, May P, Hetzel G, Saleh A, Grabensee B, et al. Contrast-enhanced MR urography in the evaluation of renal transplants with urological complications. Clin Nephrol. 2002;58(2):111–17.

    Article  CAS  PubMed  Google Scholar 

  48. Blondin D, Lanzman RS, Mathys C, Grotemeyer D, Voiculescu A, Sandmann W, et al. Functional MRI of transplanted kidneys using diffusion-weighted imaging. Rofo-Fortschr Rontg. 2009;181(12):1162–7.

    Article  CAS  Google Scholar 

  49. Baker PN, Johnson IR, Harvey PR, Gowland PA, Mansfield P. A three-year follow-up of children imaged in utero with echo-planar magnetic resonance. Am J Obstet Gynecol. 1994;170(1 Pt 1):32–3.

    Article  CAS  PubMed  Google Scholar 

  50. Kajbafzadeh AM, Payabvash S, Sadeghi Z, Elmi A, Jamal A, Hantoshzadeh Z, et al. Comparison of magnetic resonance urography with ultrasound studies in detection of fetal urogenital anomalies. J Pediatr Urol. 2008;4(1):32–9.

    Article  PubMed  Google Scholar 

  51. Alamo L, Laswad T, Schnyder P, Meuli R, Vial Y, Osterheld MC, et al. Fetal MRI as complement to US in the diagnosis and characterization of anomalies of the genito-urinary tract. Eur J Radiol. 2010;76(2):258–64.

    Article  PubMed  Google Scholar 

  52. Wein AJ, Kavoussi LR, Campbell MF. Campbell-Walsh urology, editor-in-chief, Alan J. Wein; editors, Louis R. Kavoussi … et al.. 10th ed. Philadelphia: Elsevier Saunders; 2012.

    Google Scholar 

  53. Secaf E, Hricak H, Gooding CA, Ho VW, Gorczyca DP, Ringertz H, et al. Role of MRI in the evaluation of ambiguous genitalia. Pediatr Radiol. 1994;24(4):231–5.

    Article  CAS  PubMed  Google Scholar 

  54. Gambino J, Caldwell B, Dietrich R, Walot I, Kangarloo H. Congenital disorders of sexual differentiation: MR findings. AJR Am J Roentgenol. 1992;158(2):363–7.

    Article  CAS  PubMed  Google Scholar 

  55. Altun E, Martin DR, Wertman R, Lugo-Somolinos A, Fuller 3rd ER, Semelka RC. Nephrogenic systemic fibrosis: change in incidence following a switch in gadolinium agents and adoption of a gadolinium policy–report from two U.S. universities. Radiology. 2009;253(3):689–96.

    Article  PubMed  Google Scholar 

  56. Hunt CH, Hartman RP, Hesley GK. Frequency and severity of adverse effects of iodinated and gadolinium contrast materials: retrospective review of 456,930 doses. AJR Am J Roentgenol. 2009;193(4):1124–7.

    Article  PubMed  Google Scholar 

  57. Altun E, Semelka RC, Cakit C. Nephrogenic systemic fibrosis and management of high-risk patients. Acad Radiol. 2009;16(7):897–905.

    Article  PubMed  Google Scholar 

  58. Cowper SE, Boyer PJ. Nephrogenic systemic fibrosis: an update. Curr Rheumatol Rep. 2006;8(2):151–7.

    Article  PubMed  Google Scholar 

  59. Grobner T. Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrol Dial Transplant. 2006;21(4):1104–8.

    Article  CAS  PubMed  Google Scholar 

  60. Abujudeh HH, Kaewlai R, Kagan A, Chibnik LB, Nazarian RM, High WA, Kay J. Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology. 2009;253(1):81–9.

    Article  PubMed  Google Scholar 

  61. Cerwinka WH, Kirsch AJ. Magnetic resonance urography in pediatric urology. Curr Opin Urol. 2010;20(4):323–9.

    Article  PubMed  Google Scholar 

  62. Lavinio A, Harding S, Van Der Boogaard F, Czosnyka M, Smielewski P, Richards HK, et al. Magnetic field interactions in adjustable hydrocephalus shunts. J Neurosurg Pediatr. 2008;2(3):222–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda Dairiki Shortliffe MD, FAAP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Payne, R.P., Saranathan, M., Vasanawala, S., Shortliffe, L.D. (2014). Principles of Magnetic Resonance Imaging (MRI). In: Palmer, L., Palmer, J. (eds) Pediatric and Adolescent Urologic Imaging. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8654-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8654-1_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8653-4

  • Online ISBN: 978-1-4614-8654-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics