Skip to main content

Acoustic Carrier Transport in GaAs Nanowires

  • Chapter
  • First Online:
Length-Scale Dependent Phonon Interactions

Part of the book series: Topics in Applied Physics ((TAP,volume 128))

  • 2282 Accesses

Abstract

Present semiconductor technologies allow the growth of different types of nanostructures, such as quantum wells, wires, and dots on the surface of a single semiconductor crystal. The piezoelectric field of surface acoustic waves (SAWs) propagating on the crystal surface provides an efficient mechanism for the controlled exchange of electrons and holes between these nanostructures. In this review, we explore this ability of dynamic SAW fields to demonstrate acoustically driven single-photon sources using coupled quantum wells and dots based on (Al,Ga)As (311)A material system. We address the growth of the coupled nanostructures by molecular beam epitaxy, the dynamics of the acoustic carrier transfer between them, as well as the acoustic control of recombination in quantum dots. The latter provides the basis for the operation of the acoustically driven single-photon sources, which are characterized by a low jitter and repetition frequency close to 1 GHz.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to the use of APS copyrighted material, this contribution is subjected to the following restriction: Readers may view, browse, and/or download material for temporary copying purposes only, provided these uses are for noncommercial personal purposes. Except as provided by law, this material may not be further reproduced, distributed, transmitted, modified, adapted, performed, displayed, published, or sold in whole or part, without prior written permission from the American Physical Society.

References

  1. Alsina F, Santos PV, Hey R (2002) Spatial-dispersion-induced acoustic anisotropy in semiconductor structures. Phys Rev B 65:193301

    Article  ADS  Google Scholar 

  2. Alsina F, Santos PV, Hey R, García-Cristóbal A, Cantarero A (2001) Dynamic carrier distribution in quantum wells modulated by surface acoustic waves. Phys Rev B 64:0410304(R)

    Google Scholar 

  3. Alsina F, Santos PV, Schönherr HP, Nötzel R, Ploog KH (2003) Real-time dynamics of the acoustically-induced carrier transport in GaAs quantum wires. Phys Rev B 67:161305(R)

    Google Scholar 

  4. Alsina F, Santos PV, Schönherr HP, Seidel W, Nötzel R, Ploog KH (2002)Surface-acoustic-wave-induced carrier transport in quantum wires. Phys Rev B 65:165330

    Article  ADS  Google Scholar 

  5. Alsina F, Stotz JAH, Hey R, Jahn U, Santos PV (2008) Acoustic charge and spin transport in GaAs quantum wires. Phys Stat Sol (c) 9:2907

    Article  Google Scholar 

  6. Alsina F, Stotz JAH, Hey R, Santos PV (2004) Acoustically induced potential dots on GaAs quantum wells. Solid State Commun 129:453

    Article  ADS  Google Scholar 

  7. Alsina F, Stotz JAH, Hey R, Santos PV (2006) Radiative recombination during acoustically induced transport in GaAs quantum wells. J Vac Sci Technol B 24:2029

    Article  Google Scholar 

  8. Auld BA (1990) Acoustic fields and waves in solids. Robert E. Krieger Publishing Company, Malabar, Florida

    Google Scholar 

  9. Batista PD, Hey R, Santos PV (2008) Efficient electrical detection of ambipolar acoustic transport in GaAs. Appl Phys Lett 93:262108

    Article  ADS  Google Scholar 

  10. Bennett AJ, Unitt DC, See P, Shields AJ, Atkinson P, Cooper K, Ritchie DA (2005) Electrical control of the uncertainty in the time of single photon emission events. Phys Rev B 72(3):033316

    Article  ADS  Google Scholar 

  11. Benson O, Santori C, Pelton M, Yamamoto Y (2000) Regulated and entangled photons from a single quantum dot. Phys Rev Lett 84:2513

    Article  ADS  Google Scholar 

  12. Biasiol G, Reinhardt F, Gustafsson A, Kapon E (1997) Self-limiting OMCVD growth of GaAs on V-grooved substrates with application to InGaAs/GaAs quantum wires. J Electron Mater 26:1194

    Article  ADS  Google Scholar 

  13. Bouwmeester D, Ekert AK, Zeilinger A (eds) (2000) The physics of quantum information. Springer, Berlin

    MATH  Google Scholar 

  14. Bödefeld C, Ebbecke J, Toivonen J, Sopanen M, Lipsanen H, Wixforth A (2006) Experimental investigation towards a periodically pumped single-photon source. Phys Rev B 74:035407

    Article  ADS  Google Scholar 

  15. Brassard G, Lütkenhaus N, Mor T, Sanders BC (2000) Limitations on practical quantum cryptography. Phys Rev Lett 85:1330

    Article  ADS  Google Scholar 

  16. Couto Jr. ODD, Iikawa F, Rudolph J, Hey R, Santos PV (2007) Anisotropic spin transport in (110) GaAs quantum wells. Phys Rev Lett 98:036603

    Article  ADS  Google Scholar 

  17. Couto Jr ODD, Lazić S, Iikawa F, Stotz J, Hey R, Santos PV (2009) Photon anti-bunching in acoustically pumped quantum dots. Nat Phot 3:645

    Article  Google Scholar 

  18. Craig NJ, Taylor JM, Lester EA, Marcus CM, Hanson MP, Gossard AC (2004) Tunable nonlocal spin control in a coupled-quantum dot system. Science 304:565

    Article  ADS  Google Scholar 

  19. de Lima Jr. MM, Hey R, Stotz JAH, Santos PV (2004) Acoustic manipulation of electron–hole pairs in GaAs at room temperature. Appl Phys Lett 84:2569

    Article  ADS  Google Scholar 

  20. de Lima Jr. MM, Santos PV (2005) Modulation of photonic structures by surface acoustic waves. Rep Prog Phys 68:1639

    Article  ADS  Google Scholar 

  21. Eberl K, Petroff PM, Demeester P (eds) (1995) Low dimensional structures prepared by epitaxial growth or regrowth on patterned substrates, NATO advanced science institute series E, vol 298. Kluwer Academic, Dordrecht

    Google Scholar 

  22. Foden CL, Talyanskii VI, Milburn GJ, Leadbeater ML, Pepper M (2000) High-frequency acousto-electric single-photon source. Phys Rev A 62:011803(R)

    Google Scholar 

  23. Fricke J, Notzel R, Jahn U, Niu Z, Schönherr HP, Ramsteiner M, Ploog KH (1999) Patterned growth on GaAs (311)A substrates: Engineering of growth selectivity for lateral semiconductor nanostructures. J Appl Phys 86:2896

    Article  ADS  Google Scholar 

  24. Geddes CD, Lakowicz JR (eds) (2005) Reviews in fluorescence 2005. Springer Science + Business Media, New York

    Google Scholar 

  25. Gell JR, Atkinson P, Bremner SP, Sfigakis F, Kataoka M, Anderson D, Jones GAC, Barnes CHW, Ritchie DA, Ward MB, Norman CE, Shields AJ (2006) Surface-acoustic-wave-driven luminescence from a lateral p-n junction. Appl Phys Lett 89:243505

    Article  ADS  Google Scholar 

  26. Gell JR, Ward MB, Shields AJ, Atkinson P, Bremner SP, Anderson D, Kataoka M, Barnes CHW, Jones GAC, Ritchie DA (2007) Temporal characteristics of surface-acoustic-wave-driven luminescence from a lateral p-n junction. Appl Phys Lett 91:013506

    Article  ADS  Google Scholar 

  27. Gell JR, Ward MB, Young RJ, Stevenson RM, Atkinson P, Anderson D, Jones GAC, Ritchie DA, Shields AJ (2008) Modulation of single quantum dot energy levels by a surface-acoustic-waves. Appl Phys Lett 93:081115

    Article  ADS  Google Scholar 

  28. Gisin N, Ribordy G, Tittel W, Zbinden H (2002) Quantum cryptography. Rev Mod Phys 74:145

    Article  ADS  Google Scholar 

  29. Hey R, Friedland KJ, Kostial H, Ploog KH (2004) Conductance anisotropy of high-mobility two-dimensional hole gas at GaAs/(Al,Ga)As (113)A single heterojunctions. Phys E 21:737

    Article  Google Scholar 

  30. Hosey T, Talyanskii V, Vijendran S, Jones GAC, Ward MB, Unitt DC, Norman CE, Shields AJ (2004) Lateral n-p junction for acoustoelectric nanocircuits. Appl Phys Lett 85:491

    Article  ADS  Google Scholar 

  31. Hoskins MJ, Morkoç H, Hunsinger BJ (1982) Charge transport by surface acoustic waves in GaAs. Appl Phys Lett 41:332

    Article  ADS  Google Scholar 

  32. Imamoglu A (1992) Nonclassical light generation by coulomb blockade of resonant tunneling. Phys Rev B 46:15982

    Article  ADS  Google Scholar 

  33. Intonti F, Emiliani V, Lienau C, Elsaesser T, Nötzel R, Ploog KH (2001) Near-field optical spectroscopy of localized and delocalized excitons in a single GaAs quantum wire. Phys Rev B 63:75313

    Article  ADS  Google Scholar 

  34. Jiao SJ, Batista PD, Biermann K, Hey R, Santos PV (2009) Electrical detection of ambipolar acoustic carrier transport by surface acoustic waves. J Appl Phys 106:053708

    Article  ADS  Google Scholar 

  35. Kim J, Benson O, Kan H, Yamamoto Y (1999) A single-photon turnstile device. Nature 397:500

    Article  ADS  Google Scholar 

  36. Kiselev AA, Kim KW (2000) Progressive suppression of spin relaxation in two-dimensional channels of finite width. Phys Rev B 61:13115

    Article  ADS  Google Scholar 

  37. Korpel A (1997) Acousto-optics. Marcel Dekker, New York

    Google Scholar 

  38. Lienau C, Richter A, Behme G, Süplitz M, Heinrich D, Elsaesser T, Ramsteiner M, Nötzel R, Ploog KH (1998) Nanoscale mapping of confinement potentials in single semiconductor quantum wires by near-field optical spectroscopy. Phys Rev B 58:2045

    Article  ADS  Google Scholar 

  39. Lounis B, Orrit M (2005) Single-photon sources. Rep Prog Phys 68:1129

    Article  ADS  Google Scholar 

  40. Michler P, Kiraz A, Becher C, Schoenfeld WV, Petroff PM, Zhang L, Hu E, Imamog̃lu A (2000) A quantum dot single-photon turnstile device. Science 290:2282

    Google Scholar 

  41. Miskinis R, Rutkowski O, Urba E (1996) Surface acoustic waves on the (11n) cuts of gallium arsenide. J Appl Phys 80:4867

    Article  ADS  Google Scholar 

  42. Nötzel R, Menniger J, Ramsteiner M, Ruiz A, Schönherr HP, Ploog KH (1996) Selectivity of growth on patterned GaAs (311)A substrates. Appl Phys Lett 68:1132

    Article  ADS  Google Scholar 

  43. Nötzel R, Niu ZC, Ramsteiner M, Schönherr HP, Trampert A, Däweritz L, Ploog KH (1998) Uniform quantum-dot arrays formed by natural self-faceting on patterned substrates. Nature (London) 392:56

    Article  ADS  Google Scholar 

  44. Nötzel R, Ploog KH (2000) Patterned growth on high-index GaAs (311)A substrates. Appl Surf Sci 166:406

    Article  ADS  Google Scholar 

  45. Nötzel R, Ramsteiner M, Menniger J, Trampert A, Schönherr HP, Däweritz L, Ploog KH (1996) Micro-photoluminescence study at room temperature of sidewall quantum wires formed on patterned GaAs (311)A substrates by molecular beam epitaxy. J Appl Phys 35:L297

    Article  Google Scholar 

  46. Nötzel R, Ramsteiner M, Niu Z, Schönherr HP, Däweritz L, Ploog KH (1997) Enhancement of optical nonlinearity in strained (InGa)As sidewall quantum wires on patterned GaAs (311)A substrates. Appl Phys Lett 70:1578

    Article  ADS  Google Scholar 

  47. Pochung Chen CP, Sham LJ (2001) Control of exciton dynamics in nanodots for quantum operations. Phys Rev Lett 87:067401

    Article  ADS  Google Scholar 

  48. Rayleigh L (1885) On waves propagated along the plane surface of an elastic solid. Proc Lond Math Soc s1-17(1):4

    Google Scholar 

  49. Richter A, Behme G, Süptitz M, Lienau C, Elsaesser T, Nötzel R, Ploog KH (1997) Real-space transfer and trapping of carriers into single GaAs quantum wires studied by near-field optical spectroscopy. Phys Rev Lett 79:2145

    Article  ADS  Google Scholar 

  50. Richter A, Süptitz M, Heinrich D, Lienau C, Elsaesser T, Nötzel R, Ploog KH (1998) Exciton transport into a single GaAs quantum wire studied by picosecond near-field optical spectroscopy. Appl Phys Lett 73:2176

    Article  ADS  Google Scholar 

  51. Rocke C, Zimmermann S, Wixforth A, Kotthaus JP, Böhm G, Weimann G (1997) Acoustically driven storage of light in a quantum well. Phys Rev Lett 78:4099

    Article  ADS  Google Scholar 

  52. Royer D, Dieulesaint E (2000) Elastic waves in solids. Springer, Heidelberg

    Book  Google Scholar 

  53. Santori C, Pelton M, Solomon G, Dale Y, Yamamoto Y (2001) Triggered single photons from a quantum dot. Phys Rev Lett 86:1502

    Article  ADS  Google Scholar 

  54. Santos PV, Nötzel R, Ploog KH (1999) Polarization anisotropy in quasi-planar sidewall quantum wires on patterned GaAs (311)A substrates. J Appl Phys 85:8228

    Article  ADS  Google Scholar 

  55. Santos PV, Stotz JAH, Hey R (2005) Control of photogenerated carriers and spins using surface acoustic waves. In: Takayanagi H, Nitta J (eds) Realizing controllable quantum states: Proc. of the Int. Symp. on Mesoscopic Superconductivity and Spintronics - In the light of quantum computation, p 357. World Scientific, Singapore

    Google Scholar 

  56. Shilton JM, Talyanskii VI, Pepper M, Ritchie DA, Frost JEF, Ford CJB, Smith CG, Jones GAC (1996) High-frequency single-electron transport in a quasi-one-dimensional GaAs channel induced by surface acoustic waves. J Phys Condens Matter 8:L531

    Article  ADS  Google Scholar 

  57. Sogawa T, Gotoh H, Hiyarama Y, Santos P, Ploog K (2007) Dimensional oscillation in GaAs/AlAs quantum wells by 2-dimensional standing surface acoustic waves. Appl Phys Lett 91:141917

    Article  ADS  Google Scholar 

  58. Sogawa T, Santos PV, Zhang SK, Eshlaghi S, Wieck AD, Ploog KH (2001) Dynamic band structure modulation of quantum wells by surface acoustic waves. Phys Rev B 63:121307(R)

    Google Scholar 

  59. Sogawa T, Santos PV, Zhang SK, Eshlaghi S, Wieck AD, Ploog KH (2001) Transport and lifetime enhancement of photoexcited spins in GaAs by surface acoustic waves. Phys Rev Lett 87:276601

    Article  ADS  Google Scholar 

  60. Stotz JAH, Hey R, Santos PV, Ploog KH (2005) Coherent spin transport via dynamic quantum dots. Nat Mater 4:585

    Article  ADS  Google Scholar 

  61. Talyanskii VI, Milburn GJ, Stotz JAH, Santos PV (2007) Acoustoelectric single-photon detector. Semicond Sci Technol 22:209

    Article  ADS  Google Scholar 

  62. Tanski WJ, Merritt SW, Sacks RN, Cullen DE, Branciforte EJ, Carroll RD, Eschrich TC (1987) Heterojunction acoustic charge transport devices on GaAs. Appl Phys Lett 52:18

    Article  ADS  Google Scholar 

  63. Tsai CS (1990) Guided-wave acousto-optics. Springer, Berlin

    Book  Google Scholar 

  64. Wang XL, Voliotis V (2006) Epitaxial growth and optical properties of semiconductor quantum wires. J Appl Phys 99:121301

    Article  ADS  Google Scholar 

  65. White RM (1970) Surface elastic waves. In: Proc. of the IEEE, vol 58. IEEE, New York, p 1238

    Google Scholar 

  66. White RM, Vollmer FW (1965) Direct piezoelectric coupling to surface elastic waves. Appl Phys Lett 7(12):314

    Article  ADS  Google Scholar 

  67. Wiele C, Haake F, Rocke C, Wixforth A (1998) Photon trains and lasing: The periodically pumped quantum dot. Phys Rev A 58:R2680

    Article  ADS  Google Scholar 

  68. Wixforth A, Scriba J, Wassermeier M, Kotthaus J, Weimann G, Schlapp W (1989) Surface acoustic waves on GaAs/Al x Ga1−x As heterostructures. Phys Rev B 40:7874

    Article  ADS  Google Scholar 

  69. Yamamoto Y, Santori C, Solomon G, Vuckovic J, Fattal D, Waks E, Diamanti E (2005) Single photons for quantum information systems. Progr Informat 1:5

    Article  Google Scholar 

  70. Zhang V, Lefebvre HE, Gryba T (1997) Theoretical study of surface acoustic waves in (n11) GaAs-cuts. IEEE Trans Sonics Ultrason SU-44:406

    Article  Google Scholar 

Download references

Acknowledgments

This work has been the results of many fruitful collaborations. Our special thanks are addressed to R Hey for the supply of state-of-the-art molecular-beam epitaxy samples, as well as to F. Alsina, F. Iikawa, J. A. H. Stotz, R. Nötzel, and U. Jahn for the collaboration in the field of carrier transport in QWRs. We also thank A. Tahraoui for discussions and comments on the manuscript. Finally, we also acknowledge the technical support from A.-K. Bluhm, M. Höricke, S. Krauß, W. Seidel, H.-P. Schönherr, and E. Wiebicke in the fabrication of the samples. This work was supported by the NanoQUIT consortium, Bundesministerium für Bildung und Forschung (BMBF), Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snežana Lazić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lazić, S., Hey, R., Santos, P.V. (2014). Acoustic Carrier Transport in GaAs Nanowires. In: Shindé, S., Srivastava, G. (eds) Length-Scale Dependent Phonon Interactions. Topics in Applied Physics, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8651-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8651-0_9

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8650-3

  • Online ISBN: 978-1-4614-8651-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics