Skip to main content

Phonons in Bulk and Low-Dimensional Systems

  • Chapter
  • First Online:
Length-Scale Dependent Phonon Interactions

Part of the book series: Topics in Applied Physics ((TAP,volume 128))

Abstract

This review highlights selected advances of the last decade in the theory of acoustic and optical phonons in dimensionally confined structures. The basic concepts of the elastic continuum and dielectric continuum models are reviewed. Following this review, specific examples of phonon confinement in dimensionally confined structures are highlighted. These examples include: phonons in single wall carbon nanotubes (CNTs), phonons in multi wall nanotubes, graphene sheets, graphene nanoribbons, graphene quantum dots, graphite confined along the c-axis, and wurtzite structures including quantum wells and quantum dots. The review also covers a number of mechanisms underlying carrier–phonon scattering processes. Finally, this review summarizes the mode amplitudes for a variety of nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stroscio MA, Dutta M (2001) Phonons in nanostructures. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Auld BA (1973) Acoustic fields and waves in solids. Wiley-Interscience, John Wiley & Sons, New York

    Google Scholar 

  3. Fuchs R, Kliewer KL (1965) Optical modes of vibration in an ionic crystal slab. Phys Rev 140:A2076–A2088

    Article  ADS  Google Scholar 

  4. Fuchs R, Kliewer KL, Pardee WJ (1966) Optical properties of an ionic crystal slab. Phys Rev 150:589–596

    Article  ADS  Google Scholar 

  5. Engleman R, Ruppin R (1968) Optical lattice vibrations in finite ionic crystals: I. J Phys C2:614–629

    ADS  Google Scholar 

  6. Engleman R, Ruppin R (1968) Optical lattice vibrations in finite ionic crystals: II. J Phys C2:630–643

    Google Scholar 

  7. Engleman R, Ruppin R (1968) Optical lattice vibrations in finite ionic crystals: III. J Phys C2:1515–1531

    ADS  Google Scholar 

  8. Ruppin R, Engleman R (1970) Optical phonons in small crystals. Rep Prog Phys 33:149–196

    Article  ADS  Google Scholar 

  9. Licari JJ, Evrard R (1977) Electron–phonon interaction in a dielectric slab: effect of the electronic polarizability. Phys Rev B15:2254–2264

    Article  ADS  Google Scholar 

  10. Wendler L (1985) Electron–phonon interaction in dielectric bilayer systems: effects of the electronic polarizability. Phys Status Solidi (b) 129:513–530

    Article  ADS  Google Scholar 

  11. Mori N, Ando T (1989) Electron–optical phonon interaction in single and double heterostructures. Phys Rev B40:6175–6188

    Article  ADS  Google Scholar 

  12. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    MATH  Google Scholar 

  13. Loudon R (1964) The Raman effect in crystals. Adv Phys 13:423–482; Erratum, ibid. (1965) 14:621

    Google Scholar 

  14. Chen C, Dutta M, Stroscio MA (2004) Electron scattering via interaction with optical phonons in wurtzite crystals. Phys Rev B70:075316

    Article  ADS  Google Scholar 

  15. Qian J, Allen MJ, Yang Y, Dutta M, Stroscio MA (2009) Quantized long-wavelength optical phonon modes in graphene nanoribbon in the elastic continuum model. Superlattice Microstruct 46:881–888

    Article  ADS  Google Scholar 

  16. Raichura A, Dutta M, Stroscio MA (2004) Continuum model for acoustic phonons in nanotubes: phonon bottleneck. Phys Status Solidi (b) 241:3448–3453

    Article  ADS  Google Scholar 

  17. Suzurra H, Ando T (2002) Phonons and electron–phonon scattering in carbon nanotubes. Phys Rev B65:235412

    Article  ADS  Google Scholar 

  18. Raichura A, Dutta M, Stroscio MA (2004) Quantized optical vibrational modes of finite-length multi wall nanotubes: optical deformation potential. Superlattices Microstruct 35:147–153

    Article  ADS  Google Scholar 

  19. Vogl P (1980) The electron–phonon interaction in semiconductors. In: Ferry DK, Barker JR, Jacoboni C (eds) Physics of nonlinear transport in semiconductors. NATO Advanced Study Institute Series. Plenum, New York

    Google Scholar 

  20. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  ADS  Google Scholar 

  21. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294:1317–1320

    Article  ADS  Google Scholar 

  22. Baughman RH (2002) Carbon nanotubes—the route toward applications. Science 297:787–792

    Article  ADS  Google Scholar 

  23. Guo J, Goasguen S, Lundstrom M, Datta M (2002) Metal–insulator–semiconductor electrostatics of carbon nanotubes. Appl Phys Lett 81:1486–1488

    Article  ADS  Google Scholar 

  24. Xu JM (2001) Highly ordered carbon nanotube arrays and IR detection. Infrared Phys Technol 42:485–491

    Article  ADS  Google Scholar 

  25. Kraus H (1967) Thin elastic shells. Wiley, New York

    MATH  Google Scholar 

  26. Raichura A, Dutta M, Stroscio MA (2003) Quantized acoustic vibrations of single-wall carbon nanotube. J Appl Phys 94:4060–4065

    Article  ADS  Google Scholar 

  27. Raichura A, Dutta M, Stroscio MA (2005) Acoustic phonons and phonon bottleneck in single wall nanotubes. J Comput Electron 4:91–95

    Article  Google Scholar 

  28. Constantinou NC, Ridley BK (1990) Interaction of electrons with the confined LO phonons of a free-standing GaAs quantum wire. Phys Rev B41:10622–10626

    Article  ADS  Google Scholar 

  29. Constantinou NC, Ridley BK (1990) Guided and interface LO phonons in cylindrical GaAs/Al x Ga1−x AS quantum wires. Phys Rev B41:10627–10631

    Article  ADS  Google Scholar 

  30. Stroscio MA, Dutta M, Kahn D, Kim KW (2001) Continuum model of optical phonons in a nanotube. Superlattice Microstruct 29:405–409

    Article  ADS  Google Scholar 

  31. Collins PG, Hersam M, Arnold M, Martel R, Avouris P (2001) Current saturation and electrical breakdown in multiwalled carbon nanotubes. Phys Rev Lett 86:3128–3131

    Article  ADS  Google Scholar 

  32. Pennington G, Goldsman N (2003) Semiclassical transport and phonon scattering of electrons in semiconducting carbon nanotubes. Phys Rev B68:045426

    Article  ADS  Google Scholar 

  33. Stroscio MA, Dutta M, Raichura A (2007) Conductance of nanowires: phonons effects. J Comput Electron 6:247–249

    Article  Google Scholar 

  34. Sun K, Stroscio MA, Dutta M (2009) Thermal conductivity of carbon nanotubes. J Appl Phys 105:074316

    Article  ADS  Google Scholar 

  35. Klemens PG (2004) Graphite, graphene and carbon Nanotubes. Thermal conductivity. In Proceeding of the 26th international thermal conductivity conference, DEStech Publications, Lancaster

    Google Scholar 

  36. Nicklow R, Wakabayashi N, Smith HG (1972) Lattice dynamics of pyrolytic graphite. Phys Rev B5:4951–4962

    Article  ADS  Google Scholar 

  37. Fan YW, Goldsmith BR, Collins PG (2005) Identifying and counting point defects in carbon nanotubes. Nature 4:906–911

    Article  Google Scholar 

  38. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  ADS  Google Scholar 

  39. Rana F, Geroge PA, Strait JH, Dawlaty J, Shivaraman S, Chandrashekhar M, Spencer MG (2009) Carrier recombination and generation rates for intravalley and intervalley phonon scattering in graphene. Phys Rev B79:115447

    Article  ADS  Google Scholar 

  40. Dresselhaus MS, Dresselhaus G, Eklund P (1996) Science of fullerenes and carbon nanotubes. Academic, Salt Lake City

    Google Scholar 

  41. Babiker M (1986) Longitudinal polar optical modes in semiconductor quantum wells. J Phys C Solid State Phys 19:683–697

    Article  ADS  Google Scholar 

  42. Maultzsch J, Reich S, Thomsen C, Requardt H, Ordejon P (2004) Phonon dispersion in graphite. Phys Rev Lett 2004:075501

    Article  ADS  Google Scholar 

  43. Wirtz L, Rubio A (2004) The phonon dispersion of graphite revisited. Solid State Commun 131:141–152

    Article  ADS  Google Scholar 

  44. Akturk A, Pennington G, Goldsman N, Wickenden A (2007) Electron transport and velocity oscillations in a carbon nanotube. IEEE Trans Nanotechnol 6:469–474

    Article  ADS  Google Scholar 

  45. Sun K, Stroscio MA, Dutta M (2009) Graphite C-axis thermal conductivity. Superlattice Microstruct 45:60–64

    Article  ADS  Google Scholar 

  46. Chen C, Dutta M, Stroscio MA (2004) Confined and interface phonon modes in GaN/ZnO heterostructures. J Appl Phys 95:2540–2546

    Article  ADS  Google Scholar 

  47. Hellwege KH, Madelung O, Hellege AM (1987) Landolt–Bornstein-numerical data and functional relationships in science and technology. Springer, New York

    Google Scholar 

  48. Komirenko SM, Kim KW, Stroscio MA, Dutta M (1999) Dispersion of polar optical phonons in wurtzite heterostructures. Phys Rev B59:5013–5020

    Article  ADS  Google Scholar 

  49. Chen C, Dutta M, Stroscio MA (2004) Surface-optical phonon assisted transitions in quantum dots. J Appl Phys 96:2049–2054

    Article  ADS  Google Scholar 

  50. Klein MC, Hache F, Ricard D, Flytzanis C (1990) Size dependence of electron–phonon coupling in semiconductor nanospheres: the case of CdSe. Phys Rev B41:11123–11132

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to AFOSR for supporting portions of the original research reported in this review. One author (Z. P. Wang) wishes to acknowledge CSC for supporting his visit to the University of Illinois at Chicago.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Stroscio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wang, Z., Reinhardt, K., Dutta, M., Stroscio, M.A. (2014). Phonons in Bulk and Low-Dimensional Systems. In: Shindé, S., Srivastava, G. (eds) Length-Scale Dependent Phonon Interactions. Topics in Applied Physics, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8651-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8651-0_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8650-3

  • Online ISBN: 978-1-4614-8651-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics