Skip to main content

Lattice Dynamics of Solids, Surfaces, and Nanostructures

  • Chapter
  • First Online:
Length-Scale Dependent Phonon Interactions

Part of the book series: Topics in Applied Physics ((TAP,volume 128))

Abstract

We present results of lattice dynamical calculations for solids, surfaces, and nanostructures. The calculations have been made by employing two levels of theoretical approaches: the density functional perturbation theory (DFPT) and an adiabatic bond charge method (BCM). The concepts of folded, confined, and gap phonon modes in the low-dimensional systems (surfaces and nanostructures) are explained with examples. The computed results are used to discuss the size, dimensionality, and symmetry dependence of phonon modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    MATH  Google Scholar 

  2. Lord Rayleigh (1887) Proc Lond Math Soc 17:4

    Google Scholar 

  3. Lifshitz IM, Rosenzweig LM (1948) Zh Eksp Teor Fiz 18:1012

    Google Scholar 

  4. Kress W, de Wette F (eds) (1991) Surface phonons. Springer, Berlin

    Google Scholar 

  5. Hulpke E (ed) (1992) Helium atom scattering from surfaces. Springer, Berlin

    Google Scholar 

  6. Yu PY, Cardona M (2010) Fundamentals of semiconductors, 4th edn. Springer, Heidelberg

    Book  Google Scholar 

  7. Weber W (1974) Phys Rev Lett 33:371

    Article  ADS  Google Scholar 

  8. Rustagi KC, Weber W (1976) Solid State Commun 18:673

    Article  ADS  Google Scholar 

  9. Srivastava GP (1990) The physics of phonons. Adam Hilger, Bristol

    Google Scholar 

  10. Srivastava GP (1999) Theoretical modelling of semiconductor surfaces. World Scientific, Singapore

    Book  Google Scholar 

  11. Martin RM (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  12. Yin MT, Cohen ML (1982) Phys Rev B 26:3259

    Article  ADS  Google Scholar 

  13. Kunc K, Martin RM (1982) Phys Rev Lett 48:406

    Article  ADS  Google Scholar 

  14. Giannozzi P, de Gironcoli S, Pavone P, Baroni S (1991) Phys Rev B 43:7231

    Article  ADS  Google Scholar 

  15. Price DL, Rowe JM, Nicklow RM (1971) Phys Rev B 3:1268

    Article  ADS  Google Scholar 

  16. Nilsson G, Nelin G (1971) Phys Rev B 3:364

    Article  ADS  Google Scholar 

  17. Nilsson G, Nelin G (1972) Phys Rev B 6:3777

    Article  ADS  Google Scholar 

  18. Warren JL, Yarnell JL, Dolling G, Cowley RA (1967) Phys Rev 158:805

    Article  ADS  Google Scholar 

  19. Baǧcı S, Tütüncü HM, Duman S, Srivastava GP (2010) Phys Rev B 81:144507

    Article  ADS  Google Scholar 

  20. Pickett CW, Freeman AJ, Koelling DD (1980) Phys Rev 22:2695

    Article  ADS  Google Scholar 

  21. Lu ZW, Singh DJ, Krakauer H (1989) Phys Rev B 39:4921

    Article  ADS  Google Scholar 

  22. Takeda T, Kübler J (1979) J Phys F Met Phys 9:661

    Article  ADS  Google Scholar 

  23. Gao GY, Niu YL, Cui T, Zhang J, Li Y, Xie Y, He Z, Ma YM, zou GT (2007) J Phys Condens Matter 19:425234

    Google Scholar 

  24. Syassen K, Holzapfel WB (1975) Solid State Commun 16:533

    Article  ADS  Google Scholar 

  25. Singh N, Singh SP (1990) Phys Rev B 42:1652

    Article  ADS  Google Scholar 

  26. Nixon LW, Papaconstantopoulos DA, Mehl MJ (2008) Phys Rev B 78:214510

    Article  ADS  Google Scholar 

  27. Delin A, Fast L, Johansson B, Eriksson O, Wills JM (1998) Phys Rev B 58:4345

    Article  ADS  Google Scholar 

  28. Kittel C (1996) Introduction to solid state physics, 7th edn. Wiley, New York

    Google Scholar 

  29. Stassis C, Loong C-K, Zarestky J (1982) Phys Rev B 26:5426

    Article  ADS  Google Scholar 

  30. McMillian WL (1968) Phys Rev 167:331

    Article  ADS  Google Scholar 

  31. Rapp Ö, Sundqvist B (1981) Phys Rev B 24:144

    Article  ADS  Google Scholar 

  32. He T, Huang Q, Ramirez AP, Wang Y, Regan KA, Rogado N, Hayward MA, Haas MK, Slusky JJ, Inumara K, Zandbergen HW, Ong NP, Cava RJ (2001) Nature (London) 411:54

    Article  ADS  Google Scholar 

  33. Li SY, Fan R, Chen XH, Wang CH, Mo WQ, Ruan KQ, Xiong YM, Luo XG, Zhang HT, Li L, Sun Z, Cao LZ (2001) Phys Rev B 64:132505

    Article  ADS  Google Scholar 

  34. Mao ZQ, Rosario MM, Nelson KD, Wu K, Deac IG, Schiffer P, Liu Y, He T, Regan KA, Cava RJ (2003) Phys Rev B 67:094502

    Article  ADS  Google Scholar 

  35. Kim JH, Ahn JS, Kim J, Park M-S, Lee SI, Choi EJ, Oh S-J (2002) Phys Rev B 66:172507

    Article  ADS  Google Scholar 

  36. Szajek A (2001) J Phys Condens Matter 13:L595

    Article  ADS  Google Scholar 

  37. Dugdale SB, Jarlborg T (2001) Phys Rev B 64:100508

    Article  ADS  Google Scholar 

  38. Shim JH, Kwon SK, Min BI (2001) Phys Rev B 64:180510

    Article  ADS  Google Scholar 

  39. Singh DJ, Mazin II (2001) Phys Rev B 64:140507

    Article  ADS  Google Scholar 

  40. Hase I (2004) Phys Rev B 70:033105

    Article  ADS  Google Scholar 

  41. Johannes MD, Pickett WE (2004) Phys Rev B 70:060507(R)

    Google Scholar 

  42. Tütüncü HM, Srivastava GP (2006) J Phys Condens Matter 18:11089

    Article  ADS  Google Scholar 

  43. Heid R, Renker B, Schober H, Adelmann P, Ernst D, Bohnen K-P (2004) Phys Rev B 69:092511

    Article  ADS  Google Scholar 

  44. Wälte A, Fuchs G, Müller KH, Handstein A, Nenkov K, Narozhnyi VN, Drechsler SL, Shulga S, Schultz L, Rosner H (2004) Phys Rev B 70:174503

    Article  ADS  Google Scholar 

  45. Schier RE, Farnsworth HE (1959) J Chem Phys 30:917

    Article  ADS  Google Scholar 

  46. Fernandez C, Ying WS, Shih HD, Jona F, Jepsen D, Narcus PM (1981) J Phys C 14:L55

    Article  ADS  Google Scholar 

  47. Kubby JA, Griffith JE, Becker RS, Vickers JS (1987) Phys Rev B 36:6079

    Article  ADS  Google Scholar 

  48. Yuen WT, Liu WK, Joyce BA, Stradling RA (1990) Semicond Sci Technol 5:373

    Article  ADS  Google Scholar 

  49. Wolkow RA (1992) Phys Rev Lett 68:2636

    Article  ADS  Google Scholar 

  50. Hamers RJ, Tromp RM, Demuth JE (1986) Phys Rev B 34:5343

    Article  ADS  Google Scholar 

  51. Munz AW, Ziegler Ch, Göpel W (1995) Phys Rev Lett 74:2244

    Article  ADS  Google Scholar 

  52. Rossmann R, Meyerheim HL, Jahns V, Wever J, Moritz W, Wolf D, Dornich D, Schulz H (1992) Surf Sci 279:199

    Article  ADS  Google Scholar 

  53. Fontes E, Patel JR, Comin F (1993) Phys Rev Lett 70:2790

    Article  ADS  Google Scholar 

  54. Lucas CA, Dower CS, McMorrow DF, Wong GCL, Lamelas FJ, Fuoss PH (1993) Phys Rev B 47:10375

    Article  ADS  Google Scholar 

  55. Lambert WR, Trevor PL, Cardillo MJ, Sakai A, Hamann DR (1987) Phys Rev B 35:8055

    Article  ADS  Google Scholar 

  56. Dabrowski J, Scheffler M (1992) Appl Surf Sci 56–58:15

    Article  Google Scholar 

  57. Krüger P, Pollmann J (1993) Phys Rev B 47:1898

    Article  ADS  Google Scholar 

  58. Krüger P, Pollmann J (1995) Phys Rev Lett 74:1155

    Article  ADS  Google Scholar 

  59. Fritsch J, Pavone P (1995) Surf Sci 344:159

    Article  ADS  Google Scholar 

  60. Jenkins SJ, Srivastava GP (1996) J Phys Condens Matter 8:6641

    Article  ADS  Google Scholar 

  61. Tütüncü HM, Jenkins SJ, Srivastava GP (1997) Phys Rev B 56:4656

    Article  ADS  Google Scholar 

  62. Stigler W, Pavone P, Fritsch J (1998) Phys Rev B 58:13686

    Article  ADS  Google Scholar 

  63. Tütüncü HM, Jenkins SJ, Srivastava GP (1998) Phys Rev B 57:4649

    Article  ADS  Google Scholar 

  64. Lu Z-Y, Chiarotti GL, Scandolo S, Tosatti E (1998) Phys Rev B 58:13698

    Article  ADS  Google Scholar 

  65. Tütüncü HM, Baǧcı S, Srivastava GP (2004) Phys Rev B 70:195401

    Article  ADS  Google Scholar 

  66. Tütüncü HM, Duman S, Baǧcı S, Srivastava GP (2004) Phys Rev B 72:085327

    Article  Google Scholar 

  67. Takagi N, Shimonaka S, Aruga T, Nishijima M (1999) Phys Rev B 60:10919

    Article  ADS  Google Scholar 

  68. Thachepan S, Okuyama H, Aruga T, Nishijima M, Ando T, Baǧcı S, Tütüncü HM, Srivastava GP (2003) Phys Rev B 68:033310

    Article  ADS  Google Scholar 

  69. Mazur A, Pollmann J (1986) Phys Rev Lett 57:1811

    Article  ADS  Google Scholar 

  70. Pollman J, Kalla R, Krüger P, Mazur A, Wolfgarten G (1986) Appl Phys A Solids Surf 41:21

    Article  ADS  Google Scholar 

  71. Alerhand OL, Mele EJ (1987) Phys Rev B 59:657

    ADS  Google Scholar 

  72. Alerhan OL, Mele EJ (1987) Phys Rev B 35:5533

    Article  ADS  Google Scholar 

  73. Mazur A, Pollmann J (1990) Surf Sci 255:72

    Article  Google Scholar 

  74. Boardman AD, O’Connor DE, Young PA (1973) Symmetry and its applications in science. McGraw Hill, Maidenhead

    Google Scholar 

  75. Alfonso DR, Drabold DA, Ulloa SE (1995) Phys Rev B 51:1989

    Article  ADS  Google Scholar 

  76. Alfonso DR, Drabold DA, Ulloa SE (1995) Phys Rev B 51:14669

    Article  ADS  Google Scholar 

  77. Hepplestone SP, Srivastava GP (2008) Phys Rev Lett 101:105502

    Article  ADS  Google Scholar 

  78. Hepplestone SP, Srivastava GP (2006) Nanotechnol 17:3288

    Article  ADS  Google Scholar 

  79. Jusserand B, Paquet D, Mollot F, Alexandre F, Le Roux G (1987) Phys Rev B 35:2808

    Article  ADS  Google Scholar 

  80. Hepplestone SP, Srivastava GP (2005) Appl Phys Lett 87:231905

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge many helpful discussions from our collaborators (students and postdocs) on the works presented here.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Tütüncü .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tütüncü, H.M., Srivastava, G.P. (2014). Lattice Dynamics of Solids, Surfaces, and Nanostructures. In: Shindé, S., Srivastava, G. (eds) Length-Scale Dependent Phonon Interactions. Topics in Applied Physics, vol 128. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8651-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8651-0_1

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8650-3

  • Online ISBN: 978-1-4614-8651-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics